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Abstract. We present an improved version of the anchor points reactive potential (APRP) method 

for potential energy surfaces; the improvement for the surfaces themselves consists of using a set 

of internal coordinates with better global behavior, and we also extend the method to fit the 

surface couplings. We use the new method to produce a 3 x 3 matrix of diabatic potential energy 

surfaces and couplings for the photodissociation of phenol as functions of all 33 internal 

coordinates. The diabatic potential matrix is based on two kinds of calculations at a sequence of 

anchor points along  the O-H dissociation coordinate: (1) fourfold way diabatic calculations 

based on MC-QDPT/jul-cc-pVDZ calculations for the potential energy surfaces and diabatic 

couplings as functions of the O-H bond stretch, C-O-H bond angle, and C-C-O-H torsion and for 

the diabatic couplings as functions of the nine out-of-plane phenoxyl distortion coordinates and 

(2) M06-2X/jul-cc-pVDZ density functional Hessian calculations for the potentials along the 30 

vibrational coordinates of the phenoxyl group. The potential energy surfaces and couplings are 

used to calculate and characterize adiabatic surfaces and conical intersections, and the resulting 

equilibrium geometries, vibrational frequencies, and vertical excitation energies are in good 

agreement with available reference data. We also calculate the geometries of the minimum 

energy conical intersections. The surfaces and couplings are used for full-dimensional tunneling 

calculations of the adiabatic photodissociation rate, i.e., the rate of O–H bond fission following 

photoexcitation. Finally we use the couplings to provide indicators of which vibrational modes 

are effective in promoting dissociation.  
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1. INTRODUCTION 

By separating the electronic and nuclear degrees of freedom, the widely used Born-

Oppenheimer (BO) approximation1 leads the useful concepts of adiabatic states and potential 

energy surfaces (PESs). Adiabatic PESs are (3N – 6)-dimensional hypersurfaces (where N is the 

number of atoms in a molecule) with (3N – 8)-dimensional cuspidal ridges along conical 

intersection (CI) seams where two or more adiabatic PESs are degenerate. The couplings 

between nuclear motions and electronic motions are usually called nonadiabatic couplings, and 

they are responsible for nonadiabatic transitions between different adiabatic states and for the 

development of coherent superpositions of adiabatic electronic states as the nuclear positions 

evolve. Nonadiabatic couplings are usually small in regions removed from conical intersection 

seams and from the regions of near degeneracy surrounding them, and when they are small, 

nuclear motions can be treated to a good approximation as evolving on a single adiabatic PES.2  

The BO approximation breaks down when two or more adiabatic PESs approach closely or 

intersect. The nonadiabatic couplings vary rapidly in such regions and become singular at CIs, 

thereby promoting nonadiabatic transitions in those regions. To model electronically 

nonadiabatic processes where two or more electronic states are coupled via nonadiabatic 

couplings, one can use either the adiabatic representation or a diabatic representation.3 In the 

adiabatic representation, which is unique, the electronic Hamiltonian (always defined here, as 

usual, to also include nuclear repulsion) is diagonal; the diagonal elements are the adiabatic PESs 

Vi , and the nonadiabatic couplings are vectors deriving from the action of nuclear momentum 

operators on the adiabatic electronic wave functions. In a diabatic representation, these vectors 

couplings are negligible (or assumed negligible), and diabatic electronic states and their 

associated PESs, Ui i , are coupled through scalar off-diagonal elements, Uij , of the electronic 

Hamiltonian; these off-diagonal elements are called diabatic couplings. Diabatic states are 

sometimes called quasidiabatic states because strict diabatic states, in which the nuclear-

momentum couplings are not just negligible but zero, do not exist in general.4 Thus diabatic 
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states are not uniquely defined, and many schemes have been proposed to construct diabatic 

states.5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 

Potential energy surfaces can be constructed in either the adiabatic or diabatic 

representation, but the cuspidal ridges of the adiabatic potentials and the singularity of 

nonadiabatic couplings in ubiquitous conical intersection regions32 prevent the analytic 

representation of adiabatic PESs and nonadiabatic couplings. On the other hand, diabatic 

potentials and couplings change smoothly with respective to geometrical variations, and they 

allow for convenient representation. After one has the diabatic PESs available, one can carry out 

dynamics calculations in either the diabatic or the adiabatic representation, where the latter 

would be obtained from the diabatic PESs and diabatic couplings by transformations. In the 

present article, we develop an analytic representation of the multidimensional coupled potential 

energy surfaces for phenol in the diabatic representation, in particular we use potentials obtained 

by fourfold-way diabatization,17,31,33 and the resulting diabatic surfaces and couplings yield the 

adiabatic surfaces and couplings by standard equations given elsewhere.34 

As a prototypical process in photochemistry, the photodissociation of phenol to phenoxyl 

radical and H atom has been studied extensively both experimentally and theoretically, 

especially in recent years.33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 The 

photodissociation of phenol involves passage through a crossing region of the 1ππ* excited state 

and the 1πσ* state, which is repulsive along the O−H dissociation coordinate r, and this crossing 

region surrounds a conical intersection (CI1) of the 1ππ* and 1πσ* states. The repulsive 1πσ* 

state further crosses the 1ππ ground state at another conical intersection (CI2) at larger r. Thus 

we need to consider three adiabatic PESs called Vi , with i = 1, 2, 3, or three diabatic PESs; the 

latter are the diagonal elements Uii
 of a 3 x 3 matrix potential, but we call them Ui

 for simplicity. 

The roles of the two CIs in the photodissociation of phenol and of the vibrational modes that 

affect the probabilities of transitions at the CIs have been studied extensively, leading to 

stimulating insights and debates. Wave-packet studies37,43,50,51 have been carried out to study 
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the dynamics of phenol photodissociation, but they were performed with two-dimensional 

potential energy surfaces by considering only the O−H stretching coordinate and a selected 

coupling mode. Due to the complexity of the phenol molecule, which has 13 atoms and whose 

PESs are therefore 33-dimensional, only recently was there an attempt to get higher-dimensional 

PESs.54 Very recently, Zhu and Yarkony constructed full-dimensional coupled PESs of phenol 

using a diabatic Hamiltonian whose domain of definition was constructed using quasiclassical 

surface hopping trajectories.55 In the present article we present full-dimensional coupled PESs of 

phenol as obtained by a quite different approach. Either set of coupled PESs should be able to 

lead to more complete studies of the phenol photodissociation process including the key role of 

the phenoxyl ring vibrations.  

The size of phenol prevents the use of many PES fitting approaches, such as permutation-

invariant polynomials,58,59,60 and the interpolated moving-least squares61,62,63 method, that 

have been widely used for smaller systems. Here we use an improved version of our recently 

proposed anchor points reactive potential (APRP) method,64 which combines general analytic 

forms for large-amplitude modes with molecule-specific and anchor-point-specific molecular 

mechanics terms for small-amplitude modes, to obtain full-dimensional semiglobal diabatic 

PESs for photodissociation of phenol. The improvement consists in the use of internal 

coordinates with better global behavior. The surfaces are based on partitioning the internal 

coordinates into three groups: the reaction coordinate r (also called the primary coordinate), 

secondary coordinates s, and tertiary coordinates Q, and the potentials are semiglobal in that they 

are defined for all possible values of the primary and secondary coordinates but only for small-

amplitude vibrations of the tertiary coordinates away from the planar reference geometry of the 

phenoxyl fragment. 

The geometry and atomic numbering of phenol and phenoxyl radical are shown in Fig. 1. 

(The structures mentioned in the caption of Fig. 1 will be explained more fully below.) In the 

present work, the O−H fission coordinate was chosen as the reaction coordinate r; the C1−O−H 
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bond angle θ and C2−C1−O−H torsion angle φ were chosen as secondary coordinates; and the 

internal coordinates of phenoxyl were chosen as tertiary coordinates Q. We use smooth diabatic 

potentials and couplings along r and φ calculated previously33 combined with new calculations 

of the diabatic potentials and couplings along θ and small-amplitude-vibration approximations of 

the dependence of the potentials on the tertiary coordinates at several anchor points (explained 

below).  

Upon dissociation, the ground 1ππ state of phenol diabatically connects to the excited A
~

 

2B2 state of phenoxyl radical and H atom, while the repulsive 1πσ* state diabatically connects to 

the ground X
~

 2B1 state of phenoxyl radical and H atom. These diabatic connections are 

apparent in Fig. 2, which more properly belongs in the results section but is placed here to 

provide the reader with a picture of the general shapes of the potential surfaces to make the 

presentation in Section II clearer. 

This paper has two “take home” messages –  (i) improved methodology that others may 

want to adopt and (ii) new insights into the excited state photochemistry of a prototype molecule. 

Because the paper is multi-faceted, we close the introduction with a guide to the contents of the 

various sections.  

Section 2 presents the improved version of the APRP. The APRP stands in relation to full 

surface fitting as combined quantum mechanical and molecular mechanical (QM/MM) methods 

stand in relation to pure quantum mechanics.65 In QM/MM methods, most of a system is treated 

by MM, but a subset of atoms is treated by QM.  In APRP, the dependence of the potential on 

most coordinates (called tertiary coordinates) is treated by MM, but the dependence on subset of 

the coordinates (called primary and secondary coordinates) is treated by completely general 

surface fitting. Furthermore, the treatment of the MM subsystem in the APRP goes beyond 

conventional MM in several respects: first, although the dependence of the potential on tertiary 

coordinates uses a type of MM functional form, the coordinates are chosen to have better global 

behavior than those usually used in MM; second, the parameters in the MM part are not general 

Page 5 of 63 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t



 6

parameters chosen to be reasonable for typical systems, but rather than are system specific; third, 

as compared to previous system-specific MM methods,66,67 the MM parameters vary as 

functions of the primary coordinates. A key element of the treatment is that, unlike conventional 

MM, the APRP method is applicable to reactive systems. 

Section 2 contains many equations; although these are the heart of the paper, readers only 

interested in take home message (ii) need not fully absorb these equations in order to read the 

later sections. Section 3 presents the results of applying the APRP not just to the ground-state 

potential energy surface of phenol but to a 3 x 3 matrix representation that yields the three lowest 

singlet states and their couplings. We use the results of this fit to understand the stationary points 

on the adiabatic surfaces, the multidimensional character of electronically adiabatic tunneling, 

the relation between the thickness of a barrier and its closeness to a conical intersection, the 

conical intersection seams both for geometries where the diabatic coupling vanishes by 

symmetry and for general geometries where there is no symmetry (C1 point group), and the 

possible role of various normal-mode vibrations in the photodissociation process. 

2. METHODS and COMPUTATIONAL DETAILS 

2.1 Anchor points reactive potential (APRP) method for diabatic potentials 

Here we summarize the APRP method, specializing the description to the case of phenol 

photodissociation. The potential of diabatic state i is written as  

 
Ui =Ui

[1](r)+Ui
[2]

s | r( )+Ui
[3]

Q | r( ), (1a) 

where f(x|r) denotes a function with a dependence on x and a parametric dependence on r, and 

the three terms on the right side are called the primary, secondary, and tertiary terms. General 

functional forms were used to fit Ui
[1]  and Ui

[2]  with tertiary coordinates fixed at reference 

geometries, and we take Ui
[2]  to be separable: 

 ( ) ( )rUrUU iii || ],2[],2[]2[ θφ θφ += . (1b) 
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 7

The tertiary potentials are described by interpolation between preselected anchor points with tent 

functions: 

 Ui
[3] = Ui

[a]
Q

[a]( ) Ti
[a] r( )

a=1

NA

∑ , (2) 

where ( )][][ aa
iU Q  is the expansion of the potential energy of diabatic state i around anchor point 

a, and ( )rT
a

i
][  is the tent function at anchor point a.  

The tent functions are defined by  

 Ti
[1] =

            1                     r < ri
[1]

r − ri
[2]( )

4

r − ri
[2]( )

4
+ r − ri

[1]( )
4

               ri
[1] ≤ r < ri

[2]















, (3a) 
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. (3c) 

In the present case of phenol, all diabatic calculations were carried out by fourfold-way 

diabatization using multi-configurational quasi-degenerate perturbation theory (MC-QDPT)68 

with the jul-cc-pVDZ basis set,69 as described previously.33 More specifically, we calculated the 

diabatic states U1 (1ππ), U2 (1ππ*), and U3 (1πσ*) along the chosen reaction coordinate r (O–H 

distance) and secondary coordinates θ (C1–O–H bond angle) and φ (C2–C1–O–H torsion) with 
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 8

other coordinates fixed, and we used these calculations to fit the primary and secondary 

potentials. The scans of r and φ were performed in the same way as the previous work;33 in 

particular, rigid scans of the C1–O–H bend (θ, with values of 90, 100, 107, 120, and 130°) were 

carried out at various r from 0.964 to 5.0 Å with other coordinates taken as the same as those 

obtained for the planar equilibrium geometry of ground state phenol by the complete-active-

space self-consistent-field (CASSCF)70 method with the aug-cc-pVTZ basis set71.  

Primary potentials. The primary potential of the diabatic 1ππ state was fit to the Varshni 

model potential,72 given by  

 
22

1111
]1[

1 )]}1)/((exp[)/(1{ −−−= rrrrDU β . (4) 

The diabatic 1ππ* state has a minimum near the ground-state equilibrium distance re, and it 

crosses the diabatic first 1πσ* state at about 1.3 Å and a second 1πσ* state of higher energy at 

about 1.5 Å. For the photodissociation of phenol, the 1ππ* state is only important in the small-r 

range, so it is acceptable to fit the U2
[1](r)curve to a Morse potential73 and we used 

 2
2

22
]1[

2 )]}(exp[1{ ArrDU +−−−= α . (5) 

A three-term function was used to fit the repulsive potential of first diabatic 1πσ* state: 

 ∑ +−−=
=

3

1
3,3,3

]1[
3 )](exp[

i
iii ArraU α .  (6) 

Secondary potentials. The torsion potential )|(]2[ rUi φ  of diabatic state i is fitted with the 

following expression: 

 ∑ −=
=

jn

j

j
jii rWU

1
,

],2[ )2cos1)(( φφ , (7) 

where nj is the number of terms to expand the torsion potential [nj = 1 for diabatic states U1 and 

U2 (1ππ and 1ππ*) and nj = 2 for diabatic state U3 (1πσ*)], and Wi, j
 is the barrier height of the 

jth term. The latter was expanded as a linear combination of Gaussian functions, given by 
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 ])(exp[
1

2
,,,,,,, ∑ −−=

=

kn

k
kjikjikjiji rrAW α . (8) 

In fitting the C1–O–H bending potentials, we used cosθ rather than θ in order to have the 

proper symmetry of bend potentials with respect to π – ∆θ and π + ∆θ: 

 ∑ −=
=

jn

j

j
ijii rrkU

2
0,,

],2[ ))(cos)(cos( θθθ
  (9) 

The force constant ki,j was further expanded with linear combinations of Gaussians similar to eqn 

(8). A hyperbolic tangent function is used to fit the dependence of cos θi,0 on r: 

 )cos(cos
2

))(tanh(1
coscos 1,2,

1,1,
1,0, ii

ii
ii

rra
θθθθ −

−+
+=  (10) 

where 1,cos iθ  and 2,cos iθ  are constant parameters.
 

Tertiary potentials. Now we turn to ]3[
iU , which depends on tertiary coordinates and 

depends parametrically on r through the use of anchor points. The dependence of the diabatic 

potentials on tertiary coordinates is needed only for small extensions from planar geometries. For 

planar geometries, the diabatic states U1 (1ππ), U2 (1ππ*), and U3 (1πσ*) belong to the A′, A′, 

and A′′ irreducible representations, respectively, and as shown in Fig. 2, the two states with same 

symmetries are always well separated, while the intersecting diabatic states along the reaction 

coordinate r have different symmetries; thus the adiabatic states are good approximations to the 

diabatic states under the Cs symmetry constraint of the planar geometries. Hence we chose 

anchor points with planar structures and obtained the diabatic states at each anchor point by 

adiabatic calculations of the correct symmetry as described next.  

For diabatic states U1 (1ππ) and U3 (1πσ*), since they are the lowest states of their 

symmetry, we utilize ground-state Kohn-Sham calculations with the M06-2X exchange-

correlation potential74 and the jul-cc-pVDZ basis set  to perform partial optimization (optimizing 

all secondary and tertiary coordinates for fixed r) and calculate the Hessians at each of the 
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 10

anchor points. For diabatic state U2 (1ππ*), since it is an excited state (S1) in A′ symmetry, time-

dependent density functional theory (TDDFT)75,76 was used to perform the partial optimization 

and Hessian calculations, again with the M06-2X exchange-correlation potential and the jul-cc-

pVDZ basis set. 

For each diabatic state, four planar anchor points were chosen along the O−H dissociation 

coordinate; for U1, they are at r = 0.964, 1.32, 2.00, and 5.00 Å, and for U2 and U3, they are at r 

= 0.964, 1.32, 2.26, and 5.00 Å. The first anchor point for each of the diabatic states has the 

ground-state equilibrium O−H bond length calculated by CASSCF/jul-cc-pVDZ; the second 

anchor point was chosen to have an O−H bond length close to the first conical intersection (CI1) 

in planar geometry; the third anchor points were chosen to have an O−H bond length close to the 

second conical intersection (CI2); and the final anchor points were chosen to yield the correct 

asymptotic limit of phenoxyl radical.  

The ground state of phenoxyl is  2B1 and it has a low-lying  2B2 excited state; these 

states connect diabatically to surfaces U3 (1πσ *) and U1 (1ππ), respectively, and they were 

optimized with UM06-2X/jul-cc-pVDZ. The geometric parameters and Hessians of phenoxyl in 

these two states were used for the final anchor points with r = 5.00 Å. For anchor points with 

other O−H bond lengths, geometrical parameters and Hessians were obtained with partial 

optimizations. Since U2 state is not very relevant after the first conical intersection (CI1), the 

geometrical parameters and Hessian elements at r = 1.32 Å were used for it at the next two 

anchor points r = 2.26 Å and 5.00 Å.  

In our original APRP, the tertiary potential around anchor point a was expanded as 

 , (11) 
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where Urel,i
[a]  is the energy of state i at the partially optimized geometry of anchor point a, relative 

to the energy of a fixed reference geometry, ][a
iF  is the partial force constant matrix, and ][a

iQ  is 

a column vector of the internal displacements around anchor structure a with elements  

 
][

,e
][ a

jij
a
ji QQQ −= , (12) 

where Q j  is an internal coordinate, and ][
,e
a

jiQ  is the optimized value of Q j for state i in the 

constrained optimized geometry of anchor point a. By partitioning internal displacements Qi
[a] 

into stretches (S), bends (B), and torsions (T), eq 11 can be written as 

 
aaaaaaa

i
a

i iUiUiUiUiUiUUU
,,,,,, BTSTSBTTBBSS][

rel,
][ ++++++= , (13) 

where the SS, BB, and TT terms are the potentials from bond stretches, bond angle bends, and 

torsions, and the SB, ST, and BT terms are the potentials from stretch–bend couplings, stretch–

torsion couplings, and bend–torsion couplings, respectively. The force constant matrices in the 

terms of eqn (13) are respectively called Fi
SS,a , F

i
BB,a , F

i
TT,a

, Fi
SB,a , Fi

ST,a , and Fi
BT,a . 

In the current application of APRP to the construction of diabatic PESs of phenol, instead 

of using simple internal displacements ][a
iQ , we used variables with better global behaviors.  

For bond stretches, instead of r – re, we use R = (r – re)/r. This coordinate was originally 

proposed by Simons, Parr, and Finlan (SPF)77 for diatomic molecules. The use of SPF 

coordinates includes anharmonic effects and corrects the over-repulsion for large bond length (r > 

re) and under-repulsion for short bond length (r < re) of widely used force fields using r - re.  

For bond angle bends, instead of θ – θe,  we use cosθe – cosθ to preserve the continuity 

when the bond angle crosses π. 

For torsions, eφφ −  is replaced with 
( )

2
sin eφφ −n

 or )(sin eφφ −n  (depending on whether 

it is a diagonal or off-diagonal term) to maintain the correct periodicity behavior, where n is an 
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integer number that indicates the local periodicity of the torsion. For phenol, the torsions in the 

phenoxyl ring all have n = 1. 

With the new choice of variables, the terms in eqn (13) can be written explicitly as 

 ∑ ∑












 −













 −
+∑













 −
=

= ≠=

S SS

1

][
,e

][
,e,SS

,
1

2][
,e,SS

,
SS

2

1

2

1,
N

j

N

jk k

a
kik

j

a
jija

ijk

N

j j

a
jija

ijj
a

r

rr

r

rr
k

r

rr
k

i
U , (14a) 

 

Ui
BB,a =

1

2
k jj,i

BB,a (

j=1

NB

∑ cosθ j − cosθe, ji
[a] )2

+
1

2
k jk ,i

BB,a (cosθe, ji
[a] − cosθ j )

k≠ j

NB

∑ (

j=1

NB

∑ cosθe,ki
[a] − cosθk )

, (14b) 

 

( )

)(sin)(sin
2

1

2
sin

2

1,

][
,e

1

][
,e

,TT
,

1

][
,e2,TT

,
TT

T T

T

a
kik

N

j
k

N

jk

a
jijj

a
ijk

N

j

a
jijja

ijj
a

nnk

n
kiU

φφφφ

φφ

−∑ ∑ −+

∑
−

=

= ≠

=
, (14c) 

 

Ui
SB,a = k jk ,i

SB,a rj − re, ji
[a]

rj

(cosθe,ki
[a] − cosθk )

k=1

NB

∑
j=1

NS

∑ , (14d) 

 

)(sin, ][
,e

1 1

][
,e,SB

,
ST S T a

kikk

N

j

N

k j

a
jija

ijk
a

n
r

rr
kiU φφ −∑ ∑

−
=

= =
, (14e) 

 

)(sin)cos(cos,BT ][
,e

1 1

][
,e

,BT
,

B T a
kikk

N

j

N

k
j

a
ji

a
ijk

a
nkiU φφθθ −∑ ∑ −=

= =
. (14f) 

Note that in eqn (14c), 
( )

2
sin en φφ −

 is used to build the local periodicity for the diagonal 

terms, while )(sin en φφ −  is used to replace eφφ −  in cross terms.  

The force constants in eqns (14a) to (14f) are related to the Hessian elements in eqn (13) by 

  
][

,e
][

,
,SS

,
,SS
,

a
ki

a
jie

a
ijk

a
ijk rrFk = ,  
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jie
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a
jie

a
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k

][
,

,ST
,,ST

, = , 

and 

 

k jk ,i
BT,a =

F
jk ,i
BT,a

sinθe,ki
[a] nk

. 

With our new choice of variables to describe bond stretches, bond angle bends, and 

torsions, eqns (14) have much better behavior than the terms used previously for large distortions, 

although they require no more information. Thus, we recommend using them to construct force 

fields in the future.  

In addition to the above terms, we added a repulsive Born-Mayer potential between all 

pairs (1-4, 2-5, and 3-6) of para carbon atoms to all three diabatic potentials (see Fig. 1 for 

atomic numbering); this prevents the nonbonded atoms from getting too close during trajectories. 

The Born-Mayer potential is given as 

 ∑ −=
6–35,–24,–1=Y–X

Y–XBM )exp( rBV α  (15) 

where the interaction parameters are taken from the literature:78 B is 42000 kcal mol-1, and α is 

3.58/Å. 

Page 13 of 63 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t



 14

2.2. Diabatic couplings 

In a similar spirit to that used in the APRP representations of the diabatic potentials, the 

diabatic couplings are expressed as 

 
( ) ( )rUrUU ijijij ||, ],2[]3[ φφ+= S

S , (16) 

where ],2[ φ
ijU  is fitted to MC-QDPT data, and Uij

[3,S]is constructed by interpolating linear 

expansions around anchor structures with tent functions:  

 ( )∑ ∑
= =











+=

A

1

9

1

]0[
,

],3[
N

a

aijaaiji
rTSAUjU

α
αα

S , (17) 

where ]0[
,aijU  is a constant parameter for anchor structure a, and ( )rTa  is the tent function with 

the same form as ( )rT a
i

][  used for tertiary potential. The parameter αijaA  in the representation 

of diabatic coupling jU
i

 equals the first partial derivative of jU
i

 with respect to αS  at anchor 

structure a. Four planar anchor points with other geometric parameters fixed at CASSCF/aug-cc-

pVTZ optimized ground state minimum were chosen along the O−H dissociation coordinate, and 

they are the same for all diabatic couplings: r = 0.964, 1.32, 2.26, and 5.00 Å. 

The diabatic coupling U12 of diabatic state U1 (1ππ ) to diabatic state U2 (1ππ*) is less 

important than the other couplings since the energy separation between those two states is quite 

large at all considered geometries. Therefore we used a simpler treatment for this coupling. In 

particular, we set all A12aα  parameters equal to zero, and we set U12,3
[0]  and U12,4

[0]  equal to zero; 

we set U12,1
[0]  = -0.02 eV, and we set U12,2

[0]  = -0.03 eV. 

By symmetry, there is no contribution to diabatic couplings U13 and U23 from the in-plane 

vibrational coordinates of planar phenol. So we need only consider the contribution of out-of-

plane modes to the diabatic couplings U13 and U23. Phenol has ten out-of-plane coordinates, nine 
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in the phenoxyl ring plus the C2−C1−O−H torsion φ. The nine out-of-plane phenoxyl coordinates 

we use (labeled S1 to S9) are similar to those used by Pongor et al.79 These coordinates are given 

in Table 1.  

Since the diabatic coupling matrix elements U23 and U13 are important near the first 

conical intersection (near anchor point 2) and the second conical intersection (near anchor point 

3), respectively, the gradients αaA23  (α = 1 to 9) and αaA13  (α = 1 to 9) were calculated 

numerically (with a step size of 10 degree) from MC-QDPT/jul-cc-pVDZ fourfold way 

calculations for anchor points 2 and 3, respectively. The gradients of diabatic couplings were set 

to zero for anchor points away from the relevant conical intersections. 

To fit 
],2[

13
φ

U  and 
],2[

23
φ

U , flexible and general functional form needs to be used. As 

discussed previously, both of these couplings are zero at φ = 0° due to symmetry. At φ = 90°, the 

phenol molecule also has Cs symmetry and in this case, three diabatic states U1 (1ππ), U2 (1ππ*), 

and U3 (1πσ*) belong to A′, A′′, and A′, respectively. Only 
],2[

23
φ

U  would be zero at φ = 90° due 

to symmetry. We use the following functional forms to fit ],2[
13

φ
U  and 

],2[
23
φ

U  

 ∑=
=

−3

1

12],2[
13 sin)(

η
η

φ φη
raU , (18a) 

 ( ) ∑=
=

3

1

],2[
23 2sin)(|

η
η

φ ηφφ rarU , (18b) 

where )(raη  is fitted with a linear combination of N Gaussians: 

 ∑ −−=
=

N

m
mmm rrAa

1
,,, )](exp[ ηηηη α  (19) 
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Three Gaussian functions were used to fit a1 in eqn (18a), and two Gaussian functions were used 

to fit a2  and a3 in eqn (18a). All ηa (η = 1, 2, and 3) in eqn (18b) were fitted with one Gaussian 

function. 

2.3. Adiabatic potentials and nonadiabatic couplings 

With diabatic potentials and couplings fitted in internal coordinates, the analytic Cartesian 

gradients of diabatic potentials and diabatic couplings ijnU∇  (n = 1, …, 3N) are evaluated 

straightforwardly by using Wilson B-matrices.64 The adiabatic potential energies Vi are the 

eigenvalues of diabatic potential energy matrix U. The analytic Cartesian gradients of the 

adiabatic potentials and the nonadiabatic couplings are34  

 jkn
kj

jkijin UccV ∇∑=∇
,

* , (20) 

and 

 







=

≠∇∑
−=

)(                                             0

)(           
1

,

*

ji

jiUcc
VV

kln
lk

jlik
ijijF , (21) 

where n = 1, …, 3N and cij is the element of orthogonal matrix C that diagonalizes the diabatic 

potential matrix U. 

2.4. Further information about the surfaces and couplings 

Full details of the development of the APRP and the optimized parameters are given in the 

supplementary material.80 A Fortran subroutine that provides the diabatic potential energy 

surface matrices and their analytic derivatives, adiabatic potential energies and their analytic 

derivatives, and nonadiabatic couplings is available in the POTLIB library.81,82 
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2.5. Additional computational details 

The reference orbitals and diabatic prototypes employed in the MC-QDPT fourfold-way 

diabatizations are specified in Ref. 33. These calculations were performed with HONDOPLUS.83 

For fitting the tertiary potential, the adiabatic partial optimizations and Hessian calculations 

at anchor points were performed by Kohn-Sham density functional theory with the M06-2X 

exchange-correlation functional and the jul-cc-pVDZ basis set with ultrafine grids with 

Gaussian09.84  

The geometry optimizations and frequency analyses of equilibrium and transition structures 

were performed by the POLYRATE program85 with the APRP surfaces. The geometry of the 

minimum energy conical intersection (MECI) between adiabatic states Vi and Vj was obtained by 

minimizing the penalty function 2)()(
2

1
jiji VVVVF −++= α  with α = 105 Eh

-1 (where Eh = 1 

hartree). 

We ran thousands of sample dissociative coupled-surface trajectories to confirm that the 

final versions of the coupled potential energy surfaces conserve energy and angular momentum 

and do not visit regions of configuration space where the surfaces yield unphysical results. These 

calculations were carried out with the ANT program.86  

3. RESULTS AND DISCUSSION 

3.1. Equilibrium geometries and frequencies 

The bond lengths and bond angles of the 1ππ and 1ππ* state of phenol and the 2B1 and 2B2 

states of phenoxyl radical are given in Tables 2, 3, and 4. For the 1ππ state of phenol, the 

experimental geometry is available by microwave spectroscopy87 and electron-diffraction.88 The 

geometry of the 1ππ* state of phenol is available from simultaneous fit to the vibronic intensities 

and effective rotational constants.89 No experimental bond lengths and bond angles are available 

for phenoxyl radical, and theoretical results90 obtained by CASPT2 calculations with 9 active 

electrons in 8 active orbitals with the aug-cc-pVTZ basis set are listed for comparison. Due to the 
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use of Born-Mayer repulsion of para-situated C atoms to avoid unphysical behavior in test 

trajectory calculations, the C−C bond lengths optimized with our APRP surface are slightly 

larger than the M06-2X results, but the tables show that both are in very good agreement with the 

literature87,88,89,90 results. The C1−O bond of ground-state phenol is a typical single bond, 

having the bond length of 1.365 Å. The C−C bond lengths increase from ~1.40 Å in the ground 

state phenol to ~1.43 Å in the S1 state of phenol, suggesting the benzene ring is expanded upon 

excited to the S1 state. 

The excited 2B2 state of phenoxyl radical resembles the ground-state geometry of phenol 

(to which it connects diabatically) in that it has all C−C bond distances around 1.40 Å and a 

C1−O bond length of 1.33 Å.  However, the equilibrium geometry of the ground state (2B1) of 

phenoxyl radical differs significantly from the geometries of both the 1ππ state of phenol and the 

2B2 state of phenoxyl radical. The ground state of phenoxyl radical has a geometry similar to that 

of a quinone, with much shorter C1−O bond length of 1.246 Å, and the C−C bond lengths are 

less symmetrical, with 1.461 Å for C1−C2 and C1−C6, 1.379 Å for C2-C3 and C5−C6, and 

1.416 Å for C3−C4 and C4−C5, comparable to the C−O bond length (1.222 Å) and two C−C 

bond lengths (1.334, and 1.477 Å) in 1,4-benzoquinone.91 The vibrational frequencies of the 

ground-state adiabatic surface were calculated at the minimum-energy geometries of the APRP 

surface, and they are compared in Fig. 3 to M06-2X frequencies and available experimental 

fundamental frequencies of phenol92 and phenoxyl radical.93 The frequencies calculated with 

our adiabatic PES reproduce the M06-2X results, both overestimating the experimental 

frequencies slightly. The overestimate by M06-2X is consistent with known trends,94 but 

nevertheless we did not scale the density functional frequencies or Hessians in the present work. 

3.2. Energetics and thermal adiabatic rate constants 

The adiabatic vertical excitation energies of phenol and phenoxyl radical calculated with 

the APRP PESs are shown and compared with previous theoretical and available experimental 
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results in Table 5. Experimentally, the spectrum for the optically allowed excitation of phenol 

from its ground state to the 1ππ* state has a maximum at 4.58 eV.95 The excitation to the 1πσ* 

state is electric dipole forbidden, and no reliable experimental result is available. Previous high-

level ab initio studies suggested that the vertical excitation energy of the 1πσ* state should in the 

range 5.6-5.9 eV.44,51,33 Our APRP surface predicts vertical excitation energies to be 4.58 and 

5.88 eV for excitations to the 1ππ* state and the 1πσ* state, respectively, in good agreement with 

these reference values. In comparison to these results, the MC-QDPT/jul-cc-pVDZ results that 

were used in the construction of primary and secondary potential yield vertical excitation 

energies of 4.70 and 5.86 eV for the two states of phenol.33 The slight difference between the 

APRP and MC-QDPT values is a result of the different equilibrium geometry of phenol used in 

the calculations. The CASSCF/aug-cc-pVTZ optimized geometry was used in the calculation 

with MC-QDPT while the equilibrium geometries of the APRP surface were used for the APRP 

result. The fact that the APRP agrees slightly better with the reference values is just a fortuitous 

result of this technical shift in geometric parameters.  

The excitation energy of ground state phenoxyl radical to the 2B2 state was first determined 

to be 1.06 eV in a gas-phase ultraviolet photoelectron spectroscopy experiments.96 It was later 

observed to be 1.10 eV by UV-VIS and IR polarization spectroscopy of phenoxyl radical in 

cryogenic argon matrices.97 The excitation energy of phenoxyl radial from the 2B1state to the 

2B2 state calculated by our APRP surface is 1.07 eV, agreeing quite well with experimental 

results.  

The equilibrium dissociation energy of the O−H bond calculated from the APRP PES is 

3.93 eV, which is smaller than the experimentally derived De,33,98,99 as shown in Table 5.  

The classical adiabatic excitation energy, i.e., the energy of the S1 state minimum minus 

that of the S0 state minimum on the APRP surfaces was calculated to be 4.42 eV. We can 

calculate the quantal adiabatic excitation energy, i.e., the 00
0  energy, which is the energy of the 
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S1 zero point level minus that of the S0 zero point level on the APRP surfaces, by adding the S1 

zero point energy (2.66 eV) and subtracting the S0 zero point energy (2.85 eV); that yields 4.22 

eV. This may be compared to the experimental value51 of 4.51 eV. 

Although there has been considerable emphasis on the location of the conical intersection, 

we should keep in mind that there is generally a saddle point on the lower adiabatic surface on 

the side of a conical intersection,100 and for some purposes the characteristics of this saddle 

point are equally important or more important than the characteristics of the conical intersection. 

The transition state (i.e., saddle point) for H dissociation on the first excited adiabatic state 

surface was located, with a classical barrier height of 0.72 eV with respect to the S1 minimum (or 

5.14 eV with respect to the S0 minimum). At the saddle point geometry, the energies of the S0 

and S2 states of phenol are 1.66 and 5.95 eV, respectively. The large energy gap (0.81 eV) 

between the S1 and S2 states at the saddle point suggests that an adiabatic model of dissociation 

on the S1 surface might be a good zero-order model for the early dynamics of H-dissociation. 

The transition state has two nonplanar structures, which are mirror images, with C2−C1−O−H 

torsion angles of -20.4and 20.4°. As shown in Fig. 1, the C−C and C−O bond lengths in the 

transition state structures are very close to those in the ground state phenoxyl radical. The O−H 

bond length of the transition state structures is 1.33 Å, close to 1.32 Å at which value the S1 and 

S2 states of phenol intersect for planar geometry at the MC-QDPT level.33 The imaginary 

frequency at the saddle point is 4271i cm-1, which is rather high because the reduced mass for 

hydrogenic dissociation is low and because the saddle point is so close to a conical intersection. 

(A barrier due to a CI may be thin because the CI is pointy at the top, as compared to flat for a 

saddle point.) The minimum energy path in mass-scaled (i.e., isoinertial) coordinates101,102 

(MEP) was calculated using the Page-McIver algorithm,103 and the calculated potential energy 

MEPV  along the MEP is shown in Fig. 4a. The abscissa of this figure is the reaction coordinate s, 

defined as the distance along the curved MEP through the isoinertial coordinates scaled to a 
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reduced mass of 1 amu. We already noted the high imaginary frequency, which shows that the 

barrier is thin at the top, but Fig. 4a shows it is thin farther down as well. In fact, the MEPV  

barrier of photodissociation of phenol on the S1 excited state surface is much thinner than MEPV  

curves of typical chemical reactions, consistent with the large imaginary frequency.  

The zero point vibrational energy of the saddle point is 2.58 eV, as compared to the zero 

point vibrational energy of 2.66 eV for the equilibrium structure on S1. The ground-state 

vibrationally adiabatic potential ( G
aV ) curve is defined as the sum of MEPV  and the zero point 

energy of modes transverse to the reaction path; this potential is important because it serves as an 

effective potential energy for vibrationally adiabatic tunneling.101,102,104,105,106,107,108 The 

ground-state vibrationally adiabatic barrier G
aV  along the S1 surface of phenol is shown in Fig. 

4b. The sum of the potential energy and the zero point energy at the saddle point is 3.30 eV, and 

the maximum value of this sum (i.e., of the ground-state vibrationally adiabatic potential) is also 

3.30 eV, and this occurs very close to the saddle, at s = 0.004 Å, where rOH = 1.32 Å. Only two 

states (n = 0 and n = 1) of the O−H stretching mode have energies below the barrier as shown in 

Fig. 4b. 

Figure 4b can be used to illustrate the thinness of the effective barrier for tunneling by 

comparing it to that for the H + H2 hydrogen-exchange reaction. The ground-state vibrationally 

adiabatic potential ( G
aV ) curve for the H + H2 reaction is shown in Fig. 3 of a previous paper.109 

In that figure, as in the present article, the reaction coordinate is scaled to 1 amu, so it is 

meaningful to compare the widths of the barriers. Examination of G
aV  for the H + H2 reaction at 

an energy 0.10 eV below the barrier top shows a width of 0.7 Å, whereas the width of G
aV  in Fig. 

4b at an energy 0.10 eV below the barrier top is only 0.12 Å, a factor of six thinner. This is 

certainly a dramatic difference. This may uncover a previously unappreciated general 
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phenomenon, namely that barriers close to conical intersections may sometimes be very thin, 

allowing considerable tunneling on the lower surface at energies below the barrier.  

Figure 4c shows the minimum energy reaction path is roughly divided into two stages, first 

the torsion angle changes with approximately constant O-H distance, then the O-H bond breaks 

at roughly constant torsion angle. If we consider the MEP in the downward direction, this means 

that the MEP approaches the minimum along the lowest-frequency normal mode, which is the 

expected result.110,111 When the reaction path changes from the O–H stretch to the torsion, the 

potential energy barrier becomes more gradual (the rise from the equilibrium geometry is less 

steep along a low-frequency mode than along a high-frequency one). Although this change in 

character of the MEP and the associated MEPV  is interesting mechanistically, it has little effect 

on the tunneling because, as shown in Fig. 4, the change of character of the reaction path to 

become the torsion occurs for s < –0.3 Å, whereas the tunneling occurs in the region with s > –

0.3 Å. If the change in character of the MEP were to occur at higher energy, the barrier would 

not retain its thin shape all the way down to the lowest tunneling energy.   

It is interesting to calculate the rate constants for the electronically adiabatic thermal 

dissociation of phenol to produce phenoxyl radical and H atom on the S1 surface; such rate 

constants cannot be compared directly to experiment not only because the actually dissociation is 

not completely electronically adiabatic but also, and perhaps more significantly, because phenol 

need not become thermalized on the S1 surface prior to dissociation. Nevertheless, the 

calculation – being the first calculation of the tunneling process to include all degrees of freedom 

—provides valuable insight. The thermal rate constants of the unimolecular H-dissociation of 

phenol on the V2 surface were calculated with canonical variational theory (CVT),112,113 with 

vibrations transverse to the reaction coordinate quantized. Tunneling was included in the 

calculations by four different methods: the zero-curvature tunneling (ZCT) approximation,101,114 

the small-curvature tunneling (SCT) approximation,108 the large curvature tunneling (LCT) 

approximation,115,116 and the microcanonically optimized tunneling (µOMT) 
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approximation.116,117 The ZCT calculation may be considered to be an approximation to the 

SCT one (as explained further below). The SCT calculations are vibrationally adiabatic and the 

LCT calculation is vibrationally nonadiabatic, and they also have different tunneling paths 

appropriate to the limits of small curvature of the reaction path and large curvature of the 

reaction path; the µOMT approximation chooses between them on the basis that, for each 

tunneling energy, the tunneling approximation that yields the most tunneling (largest rate 

constant) is expected to be most accurate.118,119 Since only two vibrational states of the O-H 

stretching mode have energy levels below the barrier, we performed the calculations using 

quantized-reactant-state tunneling calculations.120,121 We found that the SCT and µOMT 

approximations give nearly the same result, both larger than the result given by LCT 

approximation. Therefore the SCT result is our most accurate, but we show both the ZCT and 

SCT results in Table 6 because the comparison is physically interesting. The ZCT result shows 

the effect of tunneling along the MEP as if it were a straight path in isoinertial coordinates, 

whereas the SCT result includes corner cutting across the concave side of the curved path to 

shorten the tunneling path and increase the tunneling probability. The unimolecular thermal rate 

constants increase by many orders of magnitude when one includes tunneling, and the effect of 

corner cutting is very significant.  

The SCT tunneling probability in the n = 0 state of the O–H stretch (at an energy 2.66 eV 

above the equilibrium minimum of the S1 potential) is 7.5 × 10-6, and the SCT tunneling 

probability in the n = 1 state of the O–H stretch (at an energy of 3.07 eV) is 0.050. 

Without considering the tunneling effect, the lifetime of the S1 state, which is the reciprocal 

of the tabulated unimolecular rate constant, is calculated to be 3.2 × 107 ns at 300 K. Including 

tunneling by the SCT approximation, the lifetime is found to be between 0.4 and 5 ns for the 

temperatures shown in Table 6. Although we cautioned that the electronically adiabatic thermal 

lifetime cannot be compared directly to the photochemical lifetime, it is still interesting that the 

experimental lifetime of the S1 state of phenol was reported to be τ ≈ 2 ns,49 which shows that 
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the calculation is not entirely unreasonable even if the remarkably good agreement of such an 

approximate calculation is partly fortuitous. Independent of this quantitative comparison though, 

the calculations show that without a doubt the dissociation reaction proceeds many orders of 

magnitude faster due to tunneling.  

3.3. Selected scans and 3D plots of conical intersections 

Figure 2 show the diabatic potential energy curves of three states, namely, the ground 1ππ 

state, the 1ππ* state, and the repulsive 1πσ* state along the O−H stretch with the other geometric 

parameters fixed at the equilibrium geometry of ground-state phenol. As the O−H bond length 

increases, the APRP 1πσ* state intersects the 1ππ* state at 1.32 Å (CI1); then it further intersects 

the 1ππ state at 2.23 Å (CI2), and it finally dissociates to the ground state of phenoxyl radical 

(2B1 state) and H atom. The 1ππ state, which is the ground state of phenol at short O−H bond 

length, intersects the 1πσ* state at 2.23 Å, and it dissociates to the excited state of phenoxyl 

radical (2B2 state) and H atom. MC-QDPT diabatic potential curves are also shown in Fig. 2 for 

comparison. The MC-QDPT curves cross at rOH ≈ 1.32 and 2.26 Å for 1ππ*/1πσ* and 

1ππ/1πσ*.33 Figure 2 shows clearly that – despite the small difference in the location of CI2 – the 

APRP PES reproduces the MC-QDPT diabatic potential curves very well.  

For planar geometry, the diabatic couplings are zero by symmetry, so the adiabatic states 

also intersect at r = 1.316 (CI1), where V2 = V3 = 5.613 eV and r = 2.232 Å (CI2) where V1 = V2 

= 4.434 eV. Those points belong to the seams of conical intersections along which two adiabatic 

state are degenerate.  

In Fig. 5, the diabatic potential (U1, U2, and U3) and diabatic couplings (U13 and U23) are 

shown along the O−H bond stretch coordinate at various torsion angles (φ = 30, 50, 70, and 90°). 

The diabatic potential curves calculated by fourfold way diabatization with MC-QDPT wave 

functions are also presented in Fig. 5 to show how well our PES reproduce both the calculated 

diabatic potentials and diabatic couplings. For a nonzero value of the C2−C1−O−H torsion angle, 
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the diabatic potential U3 still crosses U2 and U1 along the O−H bond stretch, but the 

C2−C1−O−H torsion breaks the planar symmetry and results in nonzero diabatic couplings, thus 

lifting the degeneracy all along the adiabatic curves and converting the intersections to avoided 

crossings.  (Note that the term “avoided crossing” should not be understood as implying that 

surfaces do not cross;32 rather it means that they do not cross along the path under discussion.) 

The only exception is at φ = 90°, where the phenol molecule again has Cs symmetry, but now 

with the symmetry plane perpendicular to the benzene ring; diabatic states U2 (1ππ*) and U3 

(1πσ*) now have A′′ and A′ symmetry, respectively, and the diabatic coupling U23 is zero by 

symmetry. Our PES yields zero diabatic coupling of U23 at φ = 90° by construction, shown in 

Fig. 5d. 

Three-dimensional plots of diabatic surfaces U2 and U3 and adiabatic surfaces V2 and V3 

are shown in Fig. 6 as functions of the O−H bond stretch and the C2−C1−O−H torsion 

coordinate with the other geometric parameters fixed with their values corresponding to the 

equilibrium structure of ground-state phenol. The diabatic states cross at both planar and non-

planar geometries, forming a seam with U2 = U3 in the r and φ space. The diabatic coupling U23 

is not zero for most nonplanar geometries, but it is zero along the φ = 0 that intersects the 

diabatic intersection scheme at r = 1.316 Å to yield a conical intersection there, this is simply 

another view of the CI1 intersection geometry shown in Fig. 2. We should keep in mind that at φ 

= 90°, U23 is zero along the O−H bond stretching coordinate by symmetry, and there is another 

conical intersection with V2 = V3.  

In Fig. 7, we also provide plots similar to Fig. 6 but now for U1, U3, V1, and V2. This 

provides another view of the intersection at r = 2.232 Å and φ = 0°, labeled CI2 in Fig. 2. The 

ability to reproduce the conical intersection with our diabatic PES reflects one advantage of 

developing PESs in a diabatic representation – namely we do not have to fit the cusps in the 
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adiabatic representation near conical intersections or to line up avoid crossings in the nearly 

degenerate adiabatic surfaces; these features emerge naturally from the diagonalization. 

Although the conical intersections look like points in Figs. 6 and 7, we should keep in mind 

that these are just points on 31-dimensional intersection seams. The point with the lowest energy 

along a seam of conical intersections is called the minimum energy conical intersection (MECI), 

and its energy is an important characteristic of the coupled surfaces. With our analytic PESs, we 

located the MECI between V2 and V3 (MECI1) and the MECI between V1 and V2 (MECI2). Both 

MECIs have planar structures. MECI1 has rOH = 1.273 Å with V2 = V3 = 5.35 eV and MECI2 

has rOH = 1.971 Å with V1 = V2 = 4.17 eV. The C−C, C−O, and O−H bond lengths and C−O−H 

bond angles of MECI1 and MECI2 are shown in Fig. 8, along with those of ground state phenol 

and phenoxyl radical. Both MECIs have C–C bond lengths similar to those in the equilibrium 

ground state phenoxyl radical equilibrium which corresponds to the diabatic state U3 (1πσ*); 

these ring distortions lower the energy of the 1πσ* state with respect to what is shown in Fig. 2, 

and consequently the conical intersections have lower energies and shorter O−H bond lengths 

than the CIs in Fig. 2 (1.273 v. s. 1.316 Å for the first CI and 1.971 v. s. 2.231 Å for the second 

CI).  

The energy of MECI1, 5.35 eV, is 0.21 eV higher than the saddle point discussed in the 

previous subsection. This small difference is consistent with the statement made there that the 

saddle point is close to a conical intersection and yet the gap between V2 and V3 increases from 0 

to 0.81 eV as one moves from MECI1 to the V2 saddle point, so the dynamics is much more 

adiabatic near the saddle point than near the CI. The displacement of the minimum energy path 

from the conical intersection does make the gap nonzero, but the gap is still much smaller than in 

the H + H2 reaction where the gap at the saddle pot is more than 6 eV.122 
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3.4. Diabatic couplings and adiabatic potentials for out-of-plane geometries 

When out-of-plane modes are involved, the Cs symmetry of the phenol molecule is broken. 

The diabatic potential U3 still crosses U2 and U1 along the O−H stretching coordinate, but the 

adiabatic potentials V1, V2, and V3 need not intersect each other because of the non-zero diabatic 

couplings. Figure 9 shows one-dimensional cuts through the potential surfaces for nonplanar 

geometries with the C2−C1−O−H torsion angle equal to φ = 145°. The phenoxyl ring is fixed at 

the ground state equilibrium geometry of phenol with θCOH = 107° and 130° in Figs. 9a and 9b; 

the phenoxyl ring is fixed at the transition state geometry of the S1 excited state with θCOH = 

112° in Fig. 9c; and the phenoxyl ring is fixed at the ground-state equilibrium geometry of 

phenoxyl radical with θCOH = 115° in Fig. 9d. In all cases, the adiabatic potential curves show 

avoided intersections along the O−H stretching coordinate, as expected.  

Near conical intersections, diabatic potential energy curves may cross along the 

C2−C1−O−H torsion coordinate. But adiabatic potential energy curves avoid crossing since the 

nonzero diabatic couplings lift the degeneracy of diabatic states. This is shown clearly in Fig. 10. 

In Fig. 10a, for rOH = 1.29 Å with all other geometric parameters except φ fixed at the ground 

equilibrium geometry of phenol, the diabatic potential U3 crosses U2 at φ = 25°, but the adiabatic 

potential curves V2 and V3 avoid crossing. In fig. 10b, for rOH = 2.10 Å, the diabatic potential U3 

crosses U1 at φ = 24°, but again the adiabatic potential curves V1 and V2 avoid crossing. 

So far we have shown cuts through the APRP PESs for a fixed geometry of the phenoxyl 

moiety of phenol. The good performance of our APRP PES for those geometries is expected 

since we used general functional forms to fit the dependence of MC-QDPT diabatic potentials 

and couplings on the primary and secondary coordinates. Next we examine the PESs for some 

nonplanar geometries with distorted phenoxyl groups. In the language of the APRP, we are 

looking here at how the PESs and couplings vary for geometries with distortions in tertiary 

coordinates. In particular, we examine the dependence on the ν16a (an out-of-plane ring 
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puckering/twisting vibration of a´´ symmetry) and ν16b modes that have been singled out for 

attention in experimental studies.46,51 (We use Wilson’s labeling scheme123 for the phenol and 

phenoxyl vibrational modes.) 

The diabatic potentials and relevant diabatic couplings along Cartesian normal-mode 

displacements of the ν16a and ν16b modes were calculated with our APRP PESs and compared 

with MC-QDPT results at the two conical intersections in Figs. 11 and 12. The normalized 

Cartesian normal-mode displacements of ν16a and ν16b modes calculated by the M06-L 

functional124 with the aug-cc-pVTZ basis set were used in order to be consistent with previous 

MC-QDPT calculations.33 The APRP diabatic potentials and couplings agree qualitatively with 

the MC-QDPT results.  The diabatic coupling U23 increases linearly along the Cartesian normal-

mode displacements of both ν16a and ν16b modes at CI1. At CI2, the diabatic coupling U13 also 

increases linearly along the Cartesian normal-mode displacement of the ν16a mode.  However, it 

remains very small along the Cartesian normal-mode displacement of the ν16b  mode. These 

calculations of the diabatic couplings for out-of-plane distortion of the ring in phenol can be used 

in the future for full-dimensional studies of the effects of vibrational mode coupling on the 

dynamics of photodissociation of phenol. However, we can also gain insight into the 

photodissociation dynamics by studying the couplings even without carrying out full dynamics 

studies, and we consider that next. 

First we recall the Ehrenfest effective PES, which we will call V , for multi-electronic-state 

molecular dynamics is a weighted average over the adiabatic PESs, Vj , where the weights are the 

diagonal elements, jjρ , of the electronic density matrix.34,125,126,127,128 Then we consider a 

photoexcited system with 22ρ  >> 11ρ  and 22ρ  >> 33ρ  approaching CI1. If the system is not 

adiabatic, we expect to see 33ρ  increase, and that puts a higher weight on V3 and raises V , 

which makes it less likely that the system dissociates. Now let the system undergo a vibration in 

an out-of-plane mode while it approaches CI1; this has two consequences: (1) the vibration 
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causes U2 and V2 to go up, which raises V , decreasing the probability of dissociation; and (2) 

the vibration causes |U23| to go up, which makes the system more adiabatic, which keeps 33ρ  

low, which tends to keep V  low, which increases the probability of dissociation.  For some 

modes, call them “inactive” modes, effect (1) may dominate. For other modes, call them “active” 

modes, effect (2) may dominate. We conclude that reaction will preferentially occur through 

those molecules that happen to have active modes excited as they get to CI1. 

When one experimentally observes the products (as Ashfold and coworkers46,51 do), one 

will then see an excess of molecules with active modes excited since those are the ones that 

preferentially reacted. Under the conditions of the experiments, most of the vibrational modes 

are initially in their ground vibrational state. Let qm  be an out-of-plane vibrational mode, and let 

Zm  be the zero point energy in that mode. Near a planar geometry,  

 U2 =U2(q = 0)+
1

2
kmqm

2 , (22) 

and 

 U23 =Cmqm , (23) 

where km  is a force constant, and Cm  depends on the fit to the diabatic couplings. (Both km  and 

Cm  depend on geometry in the APRP.)  Let Dm = Cm , and let Qm  be the harmonic turning 

point of qm :  

 Qm = 2Zm km
, (24) 

Since an active mode has |U23| large and U2(Qm)−U2(0)  small, we define 

 )0()(

)(
)(

2m2

m23
m

UQU

QU
QX

−
≡ . (25) 

Substituting eqns (22), (23), and (24) into eqn (25), we have 
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 X (Qm) = Dm 2 / kmZm
. (26) 

This is the simplest unitless quantity that goes up when |U23| goes up and is larger when the rise 

in U2 is smaller.  

We calculated )( mQX  for all out-of-plane modes at a planar geometry of the S1 state of 

phenol that has the same OH distance as the transition state but the rest of the coordinates the 

same as in the equilibrium geometry of the S1 state. We found that )( mQX  is 0.12 for mode ν16a 

(103 cm-1), 0.064 for mode 11 (197 cm-1), and 0.050 for mode 10a (389 cm-1), but it ranges 

between 0.013 and 2 × 10-4 for the other seven out-of-plane modes of phenol (with frequencies 

in the range 92–865 cm-1). This provides a simple explanation for why ν16a mode is the most 

prominent excited mode observed46,51 in the products of the photodissociation reaction; and we 

note that mode 10a is also observed51 to be excited in the products. We note that vibrational 

modes can also be excited during the energy release phase as the system progresses from the 

region of the saddle point and CI1 down to products, but the analysis just given is consistent with 

the interpretation51 of at least some of the observed vibrational mode selectivity as arising from 

the ability of various vibrational modes to promote state coupling. Unfortunately this is called 

promotion of “nonadiabatic transitions” in Ref. 51, but actually—as the above discussion should 

make clear—the relevant consideration is promotion of diabatic coupling, which leads to 

adiabatic passage, not nonadiabatic transitions. 

3.5. Nonplanar conical intersections 

The conical intersections occur in a (3N – 8)-dimensional manifold, where N is the number 

of atoms. Thus, in phenol molecule, the conical intersection should have a dimension of 31. Both 

U13 and U23 vanish for planar geometries, which form a 23-dimensional manifold, because 2N – 

3 = 23. With the further constraint of U2 = U3 or U1 = U3, the 1ππ*/1πσ* and 1ππ/1πσ*conical 

intersections occur in a 22-dimensional manifold in planar geometry.  This is a relatively low-
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dimensional subset of the full 31-dimensional seam, and therefore most of the conical 

intersection seam has nonplanar geometry.  

Locating conical intersections that are not determined by symmetry can be carried out by 

special algorithms in the adiabatic representation.129,130 However, with the analytic diabatic 

PES matrices of phenol on hand, we can locate such conical intersections more easily.131,132 

Contour plots of U2 - U3 and U23 with respect to the C2−C1−O−H torsion angle φ and one of the 

H out-of-plane bend angles, in particular θ8−2−1−3, which denotes the deviation of atom 8 from 

the 2-1-3 plane, are shown in Fig. 13 at r = 1.29 Å. At the planar geometries, both φ and 

θ8−2−1−3 are zero, and adiabatic state V3 is 0.21 eV higher in energy than adiabatic state V2. The 

seam with U22 = U33 = 0 and the seam with U23 = 0 cross at φ = 40.1° and θ8−2−1−3 = 25.0°.  If 

these two diabatic states formed a closed space, that point (solid circle in Fig. 13) will be a 

nonplanar conical intersection of V2 and V3, but due to the perturbation by diabatic state U1, the 

location of the true conical intersection is displaced from this point. Nevertheless this is a good 

starting point for a search, and by making a contour plot of V2 – V3 in this vicinity (which is 

inexpensive because we have an analytic representation), we find that V2 = V3 = 5.93 eV at φ = 

49.3° and θ8−2−1−3 = 15.8° (solid square in Fig. 13).  

In Fig. 14, we present the contour plots of U1 - U3 and U13 with respect to the C−C−O−H 

torsion angle φ and one of the H out-of-plane bend angles θ9−3−2−4 at r = 2.20 Å. The seam with 

U1 - U3 = 0 eV and the seam with U13 = 0 eV cross at φ2−1−7−13 = 12.4° and θ9−3−2−4 = -16.2° 

which is also a nonplanar conical intersection with V1 = V2 = 4.54 eV as a result of the smallness 

of the perturbation by diabatic state U2 at this geometry. 

4. SUMMARY AND CONCLUDING REMARKS 

Photochemical reactions and other light-induced processes involving electronically 

excited states are important for synthesis and a myriad of other applications, but theoretical 
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understanding has lagged that for thermal reactions. In this paper we take steps to try to 

improve this situation.  First, using on a new method, we present fully analytic coupled 

potential energy surfaces and their couplings, based on high-level electronic structure 

calculations for a system with a  large number (33) of internal degrees of freedom. These 

surfaces are based on an improved version of the APRP method that uses internal coordinates 

with better global behavior than the usual ones. For the three-state photodissociation of phenol, 

we have used the improved APRP method to develop analytic full-dimensional diabatic potential 

energy surfaces with not only for the surfaces and their analytic gradients, but also for analytic 

diabatic coupling surfaces and their gradients; by transformation the method then yields adiabatic 

energy surfaces and their gradients and nonadiabatic momentum couplings.  

Selected scans show that our APRP diabatic potential PESs and diabatic couplings surfaces 

reproduce well the results calculated previously by the fourfold way with the MC-QDPT method. 

We illustrate the magnitudes of the diabatic couplings and adiabatic gaps for various nonplanar 

geometries and show how they may be used to provide a simple estimate of which vibrational 

modes promote the dissociation process. By diagonalizing the diabatic potential matrices, conical 

intersections can be correctly reproduced, and we show how to use the APRP potential to locate 

points on conical intersection seams at nonsymmetrical geometries.   

We used the APRP potentials to locate the transition state, minimum-energy path, and 

vibrationally adiabatic potential energy curve for photodissociation of phenol on the S1 surface 

and to study of thermal rate constants for adiabatic dissociation, which confirmed the importance 

of tunneling for S1 state photodissociation of phenol.  

The APRP potential for phenol can be used for the study of dynamics of photodissociation 

of phenol to elucidate the effect of ring motion, including out-of-plane vibrational modes. The 

success of the APRP method in producing coupled surfaces and couplings suitable for full-scale 

dynamics calculations is encouraging because the method is very general, and the improved 

APRP method can be used to map out coupled potential energy surfaces and their couplings for 
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other complex systems, thereby allowing much more complete molecular dynamics simulations 

than have been practical in the past. 
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Table 1. Out-of-plane coordinates of phenoxyl 

 

 

Coordinate                         Definition                         
 

δ1 C2−C1−C6−C5 torsion 

δ2 C1−C6−C5−C4 torsion 

δ3 C6−C5−C4−C3 torsion 

δ4 C5−C4−C3−C2 torsion 

δ5 C4−C3−C2−C1 torsion 

δ6 C3−C2−C1−C6 torsion 

S1 )(6 654321
2/1 δδδδδδ −+−+−−

  

S2 )22(12 654321
2/1 δδδδδδ −+−−+−−

 

S3 )(4 6431
2/1 δδδδ +−+−−

 

S4  O7 out-of-plane bend 

S5  H12 out-of-plane bend 

S6  H11 out-of-plane bend 

S7  H10 out-of-plane bend 

S8  H9 out-of-plane bend 

S9  H8 out-of-plane bend 
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Table 2. Calculated and experimental geometric parameters of the ground 1ππ state of phenola 

 
APRP M06-2Xb microwavec electron-diffractiond 

bond lengths (Å)                          

C1–C2 1.402 1.396 1.391 1.399 

C2–C3 1.400 1.395 1.394 1.399 

C3–C4 1.399 1.394 1.395 1.399 

C4–C5 1.402 1.397 1.395 1.399 

C5–C6 1.397 1.392 1.392 1.399 

C6–C1 1.402 1.396 1.391 1.399 

C2–H8 1.092 1.092 1.086 1.083 

C3–H9 1.090 1.090 1.084 1.083 

C4–H10 1.089 1.089 1.080 1.083 

C5–H11 1.090 1.090 1.084 1.083 

C6–H12 1.089 1.089 1.081 1.083 

C1–O7 1.365 1.365 1.375 1.381 

O7–H13 1.022 0.964 0.957 0.958 

bond angles (deg)                          

C6–C1–C2 120.4 120.4 120.9 121.6 

C1–C2–C3 119.5 119.6 119.4 118.8 

C2–C3–C4 120.6 120.6 120.5 120.6 

C3–C4–C5 119.3 119.3 119.2 119.7 

C4–C5–C6 120.8 120.8 120.8 120.6 

C5–C6–C1 119.4 119.4 119.2 118.8 

C1–C2–H8 120.0 120.0 120.0 

C2–C3–H9 119.3 119.3 119.5 

C3–C4–H10 120.3 120.3 120.3 

C4–C5–H11 119.9 119.9 119.8 

C5–C6–H12 121.7 121.7 121.6 

C6–C1–O7 117.1 117.1 117.0 117.2 

C1–O7–H13 107.2 109.5 108.8 106.4 
a See Fig. 1 for numbering of atoms. 
b jul-cc-pVDZ 
c Ref. 87 
d Ref. 88 
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Table 3. Calculated and experimental geometric parameters of the 1ππ* state of phenola 

  APRP M06-2X b Expt. c 

bond lengths (Å) 

C1–C2 1.434 1.429 1.421 

C2–C3 1.424 1.419 1.420 

C3–C4 1.427 1.421 1.431 

C4–C5 1.425 1.419 1.425 

C5–C6 1.426 1.421 1.426 

C6–C1 1.425 1.420 1.413 

C2–H8 1.090 1.090 1.083 

C3–H9 1.087 1.087 1.080 

C4–H10 1.090 1.091 1.079 

C5–H11 1.087 1.087 1.080 

C6–H12 1.087 1.087 1.079 

C1–O7 1.338 1.338 1.356 

O7–H13 1.034 0.967 0.992 

bond angles (degree) 

C6–C1–C2 123.6 124.0 123.4 

C1–C2–C3 117.5 117.3 118.5 

C2–C3–C4 119.4 119.3 118.5 

C3–C4–C5 122.4 122.7 123.1 

C4–C5–C6 119.1 118.9 118.6 

C5–C6–C1 118.0 117.8 118.4 

C1–C2–H8 120.0 120.1 120.2 

C2–C3–H9 120.7 120.8 

C3–C4–H10 118.7 118.5 

C4–C5–H11 120.2 120.2 

C5–C6–H12 123.3 123.4 122.3 

C6–C1–O7 116.2 116.0 115.9 

C1–O7–H13 106.5 109.5 108.8 
a See Fig. 1 for numbering of atoms. 
b TD-DFT with the M06-2X functional and the jul-cc-pVDZ basis set 
c Ref. 89 
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Table 4. Calculated geometric parameters of the X
~

 2B1 and A
~

 2B2 states of phenoxyl radicala 

   APRP M06-2Xb CASPT2c 

  X
~

 2B1 state                         

bond lengths (Å)                         

C1–C2 1.461 1.453 1.448 

C2–C3 1.379 1.375 1.379 

C3–C4 1.416 1.410 1.408 

C1–O7 1.246 1.249 1.255 

C2–H8 1.090 1.090 1.081 

C3–H9 1.090 1.090 1.081 

C4–H10 1.090 1.090 1.081 

bond angles (deg)                          

C6–C1–C2 117.2 117.3 117.5 

C1–C2–C3 120.8 120.8 120.7 

C2–C3–C4 121.3 120.1 120.3 

C1–C2–H8 116.9 116.9 117.1 

C4–C3–H9 120.4 120.4 119.6 

  A
~

 2B2 state                         

bond lengths (Å)                          

C1–C2 1.409 1.403 1.402 

C2–C3 1.397 1.392 1.393 

C3–C4 1.400 1.394 1.394 

C1–O7 1.331 1.333 1.330 

C2–H8 1.088 1.088 1.079 

C3–H9 1.090 1.090 1.081 

C4–H10 1.088 1.088 1.079 

bond angles (deg)                          

C6–C1–C2 121.0 121.0 120.9 

C1–C2–C3 118.7 118.7 118.9 

C2–C3–C4 121.3 121.2 121.1 

C1–C2–H8 119.6 119.6 119.7 

C4–C3–H9 118.7 118.7 118.8 
a See Fig. 1 for numbering of atoms. 
b jul-cc-pVDZ   
c Ref. 90 
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Table 5. Vertical excitation energies of phenol and phenoxyl and the equilibrium dissociation 

energy of phenol (in eV) 

                                                                        

    phenol     phenoxyl  
                                               

  1ππ* - 1ππ 1πσ* - 1ππ De  2B2 - 2B1 
                                                                        

APRPa 4.58 5.88 3.93  1.07 

SA(3)-CAS(12,11)/jul-cc-pVDZb 5.04 5.56 2.54  1.79 

SA(3)-MC-QDPT(12,11)/jul-cc-pVDZb 4.70 5.86 4.37  0.94 

CC2/aug-cc-pVDZc  4.86 5.36 

MRCI/aug-cc-pVDZd 4.75 5.76    

CASPT2(10/10)/aug(O)-cc-pVTZe 4.52 5.64 4.05  0.65 

EOM-CCSD/aug(O)-cc-pVTZe 4.97 5.67    

Experimental 4.58f  4.18g /4.08g 1.06h/1.10i 
                                                                        

a The equilibrium geometries of phenol and phenoxyl radical were optimized with the APRP 
PES and were used to calculate the vertical excitation energies and the equilibrium dissociation 
energy for breaking the O–H bond. 
b Ref. 33 
c Ref. 49 

d Ref. 44 
e Ref. 51 
f Highest peak value obtained from Ref. 95 
g Derived in Ref. 33 from Ref. 98 (first value) and Ref. 99 (second value) 
h Ref. 96 
i Ref. 97 
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Table 6. Thermal unimolecular rate constants and lifetimes for hydrogen dissociation of phenol 

on the V2 surface at various temperatures 
 

T(K) CVT CVT/ZCT CVT/SCT 

  Rate constant (s-1) 

150 7.8 × 10-10 5.4 × 106 5.4 × 108 

300 3.0 × 101 2.1 × 106 1.9 × 108 

600 4.6 × 106 1.2 × 108 2.2 × 108 

1000 5.6 × 108 1.8 × 109 2.4 × 109 

  Lifetime (ns) 

150 1.2 × 1018 185 1.9 

300 3.2 × 107 481 5.1 

600 213 8.4 4.4 

1000 1.8 0.6 0.4 
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Figure 1. The figure shows the structure of the transition state on adiabatic surface S1, and it also 

shows four sets of bond distances for key eight C−C, C−O, and O−H bond lengths (in Å) and the  

C−O−H bond angle (in degrees). From top to bottom are values for the equilibrium geometry of 

the S1 state of phenol, the saddle point of the S1 state (the structure shown), the X
~

 2B1 state of 

phenoxyl radical, and the A
~

 2B2 state phenoxyl radical. “N.A.” denotes not applicable. 
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Figure 2. Calculated and APRP diabatic potential energy curves of phenol along the O−H 

dissociation coordinate. The other geometric parameters are fixed at their values at the 

equilibrium geometry of ground state phenol. The locations of the conical intersections on the 

APRP surfaces for these cuts are r = 1.316 Å and r = 2.231 Å, respectively.  
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Figure 3. Comparison of vibrational frequencies calculated from the ground-state APRP surface, 

from M06-2X calculations with available experimental results. Top: the 1ππ state of phenol; 

bottom: the X
~

 2B1 state of phenoxyl radical.  
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Figure 4. (a) Calculated MEPV  vs the reaction coordinate s (scaled to a reduced mass of one amu) 

for the O−H dissociation of phenol on the S1 adiabatic surface. (b) Calculated ground-state 
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vibrationally adiabatic potential ( G
aV ) vs the reaction coordinate s; The horizontal dashed lines 

labeled n = 0 and n = 1 denote the energy levels of the reaction coordinate mode (the O–H 

stretch) with vibrational quantum numbers of 0 and 1. The numbers denotes the values of O−H 

bond length in Å at the termini of the classically forbidden regions for tunneling at these two 

energies. (c) Calculated O−H bond length and C2−C1−O−H torsion angle vs the reaction 

coordinate s.  
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(d) 

Figure 5. Calculated and APRP diabatic potentials (U1, U2, and U3) and diabatic couplings (U13 

and U23) of phenol along the O−H dissociation coordinate r at various C2−C1−O−H torsion 

angles φ. The other geometric parameters are fixed at their values at the equilibrium geometry of 

ground state phenol. 
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Figure 6. Three-dimensional plots of (a) the U2 and U3 diabatic potential-energy surfaces 

showing the diabatic crossing of the 1ππ* and 1πσ* states and (b) the V2 and V3 adiabatic 

potential-energy surfaces of phenol as functions of r and φ. The conical intersection (CI1) is seen 

at r = 1.32 Å and φ = 0° with all other geometric parameters fixed at the ground state equilibrium 

geometry of phenol.   
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Figure 7. Three-dimensional plots of (a) the U1 and U3 diabatic potential-energy surfaces 

showing the diabatic crossing of the 1ππ and 1πσ* states and (b) the V1 and V2 adiabatic 

potential-energy surfaces of phenol as functions of r and φ. The conical intersection (CI2) is seen 

at r = 2.23 Å and φ = 0° with all other geometric parameters fixed at the ground state equilibrium 

geometry of phenol.   
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Figure 8. The figure shows the structure of MECI1 and four sets of bond distances for key eight 

C−C, C−O, and O−H bond lengths (in Å) and the  C−O−H bond angle (in degrees). From top to 

bottom are values for the equilibrium geometry of the S0 state of phenol, MECI1, MECI2, and 

the X
~

 2B1 state phenoxyl radical. “N.A.” denotes not applicable. 
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Figure 9. Diabatic potentials (U1, U2, and U3) and adiabatic potentials (V1, V2, and V3) versus rOH with C2−C1−O−H torsion φCCOH 

= 145°, (a) all other geometric parameters fixed at the ground state equilibrium geometry of phenol, (b) θCOH = 130° and all other 

geometric parameters fixed at the ground state equilibrium geometry of phenol, (c) all other geometric parameters fixed at the excited 
state (S1) transition state geometry of phenol, (d) θCOH = 115° and all other geometric parameters fixed at the ground state equilibrium 

geometry of phenoxyl radical. 
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Figure 10. Diabatic potentials (U1, U2, and U3) and adiabatic potentials (V1, V2, and V3) versus 

C2−C1−O−H torsion φCCOH (a) with rOH = 1.29 Å and all other geometric parameters fixed at 

the ground state equilibrium geometry of phenol, (b) with rOH = 2.10 Å and all other geometric 

parameters fixed at the ground state equilibrium geometry of phenol. 
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Figure 11. The atomic displacements of vibrational mode ν16a (a), and calculated and APRP 

diabatic potentials and the most relevant diabatic couplings at conical intersections of the 1ππ* 

and 1πσ* states (b) and the 1ππ and 1πσ* states (c) along scaled Cartesian normal-mode 

displacements. 

(a) 

(b) 

(c) 
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Figure 12. The atomic displacements of vibrational mode ν16b (a), and calculated and APRP 

diabatic potentials and the most relevant diabatic couplings at conical intersections of the 1ππ* 
and 1πσ* states (b) and the 1ππ and 1πσ* states (c) along scaled Cartesian normal-mode 
displacements. 

(a) 

(b) 

(c) 
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Figure 13. Contour plots of U2 – U3 and U23 (in eV) to locate the non-planar conical intersection 

of the 1ππ* and 1πσ* states at rOH = 1.29 Å. The solid square and circle are explained in Section 

3.5. 
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Figure 14. Contour plots of U1 – U3 and U13 (in eV) to locate the non-planar conical intersection 

of the 1ππ and 1πσ* states at r = 2.20 Å. 

  

Page 56 of 63Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t



 57

References

                                                 
1 M. Born and R. Oppenheimer, Ann. Phys., 1927, 84, 457. 
2 B. K. Kendrick, C. A. Mead and D. G. Truhlar, Chem. Phys., 2002, 277, 31. 
3 A. W. Jasper, C. Zhu, S. Nangia and D. G. Truhlar, Faraday Discuss., 2004, 127, 1. 
4 C. A. Mead and D. G. Truhlar, J. Chem. Phys., 1982, 77, 6090. 
5 W. Lichten, Phys. Rev., 1963, 131, 229. 
6 T. F. O'Malley, J. Chem. Phys., 1969, 51, 322. 
7 B. C. Garrett and D. G. Truhlar, in Theoretical Chemistry: Advances and Perspectives, Vol. 6A, 

Henderson D., Ed. (Academic Press, New York, 1981), pp. 215. 
8 H.-J. Werner and W. Meyer, J. Chem. Phys., 1981, 74, 5802. 
9 J. B. Delos, Rev. Mod. Phys., 1981, 53, 287. 
10 D. Stahel, M. Leoni and K. Dressler, J. Chem. Phys., 1983, 79, 2541. 
11 M. H. Alexander, Chem Phys., 1985, 92, 337. 
12 T. C. Thompson, D. G. Truhlar and C. A. Mead, J. Chem. Phys., 1985, 82, 2392. 
13 T. Pacher, L. S. Cederbaum and H. Köppel, J. Chem. Phys., 1988, 89, 7367. 
14A. Boutalib and F. X. Gadéa, J. Chem. Phys., 1992, 97, 1144. 
15 M. Marchi, J. N. Gehlen, D. Chandler and M. Newton, J. Am. Chem. Soc., 1993, 115, 4178. 
16 Y. Mo and J. Gao, J. Comput. Chem., 2000, 21, 1458. 
17 H. Nakamura and D. G. Truhlar, J. Chem. Phys., 2001, 115, 10353; H. Nakamura and D. G. 

Truhlar, J. Chem. Phys., 2002, 117, 5576; H. Nakamura and D. G. Truhlar, J. Chem. Phys., 
2003, 118, 6816. 

18 P.-H. Sit, M. Cococcioni and N. Marzari, Phys. Rev. Lett., 2006, 97, 28303. 
19 O. Godsi, C. R. Evenhuis and M. A. Collins, J. Chem. Phys., 2006, 125, 104105. 
20 G. A. Arteca and O. Tapia, Int. J. Quantum Chem., 2007, 107, 382.  
21 F. D. X. George and S. Kumar, J. Chem. Phys., 2007, 119, 409. 
22 B. N. Papas, M. S. Schuuman and D. R. Yarkony, J. Chem. Phys. 2008, 129, 124104. 
23 J. E. Subotnik, S. Yeganeh, R. J. Cave and M. A. Ratner, J. Chem. Phys., 2008, 129, 244101. 
24 T. Ichino, J. Gauss and J. F. Stanton, J. Chem. Phys., 2009, 130, 174105. 
25 T. Voorhis, T. Kowalczak, B. Kaduk, L.-P. Wang, C.-L. Cheng and Q. Wu, Annu. Rev. Phys. 

Chem., 2010, 61, 149. 
26 A. Sirjoosingh and S. Hammes-Schiffer, J. Phys. Chem. A, 2011, 115, 2367. 
27 E. Alguire and J. E. Subotnik, J. Chem. Phys., 2011, 135, 44114. 
28 M. Pavanello and J. Neugebauer, J. Chem. Phys., 2011, 135, 134113. 
29 Y. C. Park, H. An, H. Choi, Y. S. Lee and K. K. Baeck, Theor. Chem. Acc., 2012, 131, 1212. 
30 X. Zhu and D. R. Yarkony, J. Chem. Phys., 2012, 137, 22A511. 
31 K. R. Yang, X. Xu and D. G. Truhlar, Chem. Phys., Lett., 2013, 573, 84. 

Page 57 of 63 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t



 58

                                                                                                                                                             
32 D. G. Truhlar and C. A. Mead, Phys. Rev. A, 2003, 68, 32501. 
33 X. Xu, K. R. Yang and D. G. Truhlar, J. Chem. Theory Comput., 2013, 9, 3612. 
34 A. W. Jasper and D. G. Truhlar, in Conical Intersections: Theory, Computation, and 

Experiment, edited by W. Domcke, D. Yarkony and H. Köppel (World Scientific, Singapore, 
2011), pp. 375-414. 

35 A. L. Sobolewski and  W. Domcke, J. Phys. Chem. A, 2001, 105, 9275.  
36 A. L. Sobolewski, W. Domcke, C. Dedonder-Lardeux and C. Jouvet, Phys. Chem. Chem. 

Phys., 2002, 4, 1093. 
37 Z. Lan, W. Domcke, V. Vallet, A. L. Sobolewski and S. Mahapatra, J. Chem. Phys., 2005, 122, 

224315. 
38 M. N. R. Ashfold, B. Cronin, A. L. Devine, R. N. Dixon and M. G. D. Nix, Science 2006, 312, 

1637. 
39 C.-M. Tseng, Y. T. Lee, M.-F. Lin, C.-K. Ni, S.-Y. Liu, Y.-P. Lee, Z. F. Xu and M. C. Lin, J. 

Phys. Chem. A, 2007, 111, 9463. 
40 A. L. Devine, M. G. D. Nix, B. Cronin and M. N. R. Ashfold, Phys. Chem. Chem. Phys., 2007, 

9, 3749. 
41 G. A. King, A. L. Devine, M. G. D. Nix, D. E. Kelly and M. N. R. Ashfold, Phys. Chem. 

Chem. Phys., 2008, 10, 6417. 
42 M. N. R. Ashfold, A. L. Devine, R. N. Dixon, G. A. King, M. G. D. Nix and T. A. A. Oliver, 

Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 12701. 
43 M. G. D. Nix, A. L. Devine, R. N. Dixon and M. N. R. Ashfold, Chem. Phys. Lett., 2008, 463, 

305. 
44 O. P. J. Vieuxmaire, Z. Lan, A. L. Sobolewski and W. Domcke, J. Chem. Phys., 2008, 129, 

224307. 
45 M. L. Hause, Y. H. Yoon, A. S. Case and F. F. Crim, J. Chem. Phys., 128, 104307. 

46 G. A. King, T. A. A. Oliver, M. G. D. Nix and M. N. R. Ashfold, J. Phys. Chem. A, 2009, 113, 
7984. 

47 A. Iqbal, M. S. Y. Cheung, M. G. D. Nix and V. G. Stavros, J. Phys. Chem. A, 2009, 113, 
8157. 

48 M. N. R. Ashfold, G. A. King, D. Murdock, M. G. D. Nix, T. A. A. Oliver and A. G. Sage, 
Phys. Chem. Chem. Phys., 2010, 12, 1218. 

49 A. Pino, A. N. Oldani, E. Marceca, M. Fujii, S.-I. Ishiuchi, M. Miyazaki, M. Broquier, C. 
Dedonder and C. Jouvet, J. Chem. Phys., 2010, 133, 124313. 

50 H. An and K. K. Baeck, J. Phys. Chem. A, 2011, 115, 13309. 
51 R. N. Dixon, T. A. A. Oliver and M. N. R. Ashfold, J. Chem. Phys., 2011, 134, 194303. 
52 Y. Zhang, T. A. A. Oliver, M. N. R. Ashfold and S. E. Bradforth, Faraday Discuss. 2012, 157, 

141. 
53 G. M. Roberts, A. S. Chatterly, J. D. Young and V. G. Stavros, J. Phys. Chem. Lett., 2012, 3, 

348. 

Page 58 of 63Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t



 59

                                                                                                                                                             
54 S. G. Ramesh and W. Domcke, Faraday Discuss. 2013, 163, 73. 
55 X. Zhu and D. R. Yarkony, J. Chem. Phys., 2014, 140, 024112. 
56 M. C. Capello, M. Broquier, S.-I. Ishiuchi, W. Y. Sohn, M. Fujii, C. Dedonder-Lardeux, C. 

Jouvet and G. A. Pino, J. Phys. Chem. A, 2014, 118, 2056. 
57 T. N. V. Karsili, A. M. Wenge, B. Marchetti and M. N. R. Ashfold, Phys. Chem. Chem. Phys., 

2014, 16, 588. 
58 B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem., 2009, 28, 577. 
59 J. M. Bowman, B. J. Braams, S. Carter, C. Chen, G. Czakó, B. Fu, X. Huang, E. Kamarchik, A. 

R. Sharma, B. C. Shepler, Y. Wang and Z. Xie, J. Phys. Chem. Lett., 2010, 1, 1866. 
60 Y. Paukku, K. R. Yang, Z. Varga and D. G. Truhlar, J. Chem. Phys., 2013, 139, 044309. 
61 R. Dawes, D. L. Thompson, Y. Guo, A. F. Wagner and M. Minkoff, J. Chem. Phys., 2007, 

126, 184108. 
62 Y. Guo, I. Tokmakov, D. L. Thompson, A. F. Wagner and M. Minkoff, J. Chem. Phys., 2007, 

127, 214106. 
63 J. D. Bender, S. Doraiswamy, D. G. Truhlar and G. Candler, J. Chem. Phys., 2014, 140, 

054302. 
64 K. R. Yang, X. Xu and D. G. Truhlar, J. Chem. Theory Comput., 2014, 10, 924. 
65 B. Wang, K. R. Yang, X. Xu, M. Isegawa, H. R. Leverentz, and D. G. Truhlar, Accounts of 

Chemical Research, online as Article ASAP. dx.doi.org/10.1021/ar500068a 
66 S. Dasgupta and W. A. Goddard III, J. Chem. Phys. ,1989, 90, 7207. 
67 V. Barone, I. Cacelli, N. De Mitri, D. Licari, S. Monti and G. Prampolini, Phys. Chem. Chem. 

Phys., 2013,15, 3736. 
68 H. Nakano, J. Chem. Phys., 1993, 99, 7983; H. Nakano, Chem. Phys. Lett., 1993, 207, 372. 
69 E. Papajak and D. G. Truhlar, J. Chem. Theory Comput., 2011, 7, 10. 
70 P. Siegbahn, A. Heiberg, B. O. Roos and B. A. Levy, Phys. Scr., 1980, 21, 323; B. O. Roos, P. 

R. Taylor and P. E. M. Siegbahn, Chem. Phys., 1980, 48, 157; K. Ruedenberg, M. W. 
Schmidt, G. M. Gillbert and S. T. Elbert, Chem. Phys., 1982, 71, 41. 

71 T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007; R. A. Kendall and T. H. Dunning, Jr.,J. 

Chem. Phys., 1992, 96, 6796. 
72 Y. P. Varshni, Rev. Mod. Phys., 1957, 29, 664; erratum: 1959, 31, 839. 
73 P. M. Morse, Phys. Rev., 1929, 34, 1957. 
74 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215. 
75 M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439. 
76 R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218. 
77 G. Simons, R. G. Parr and J. M. Finlan, J. Chem. Phys., 1973, 84, 891. 
78 S. Gupta, K. Dharamvir and V. K. Jindal, Int. J. Mod. Phys. B 2004, 18, 1021. 
79 G. Pongor, G. Fogarasi, J. E. Boggs and P. Pulay, J. Mol. Spectrosc. 1985, 114, 445. 

Page 59 of 63 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t



 60

                                                                                                                                                             
80 See supplemental material at [URL will be inserted by RSC] for additional details of the 

fitting of the potential energy surfaces and the full set of final parameters. 
81 R. J. Duchovic, Y. L. Volobuev, G. C. Lynch, T. C. Allison, J. C. Corchado, D. G. Truhlar, A. 

F. Wagner and B. C. Garrett, Comput. Phys. Commun. 2002, 144, 169–187; Erratum: 2004, 
156, 319–322. 

82 See http://comp.chem.umn.edu/potlib/ for the latest version of POTLIB that includes the 
phenol potential energy surface matrix presented in this paper. 

83 H. Nakamura, J. D. Xidos, A. C. Chamberlin, C. P. Kelly, R. Valero, K. R. Yang, J. D. 
Thompson, J. Li, G. D. Hawkins, T. Zhu, B. J. Lynch, Y. Volobuev, D. Rinaldi, D. A. 
Liotard, C. J. Cramer and D. G. Truhlar, HONDOPLUS-v5.2, University of Minnesota, 
Minneapolis, MN, 2013. 

84 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. 
Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. 
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. 
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. 
Vreven, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, 
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. 
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. 
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. 
Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. 
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. 
Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01, 
Gaussian, Inc. Wallingford CT, 2009. 

85 J. Zheng, S. Zhang, B. J. Lynch, J. C. Corchado, Y.-Y. Chuang, P. L. Fast, W.-P. Hu, Y.-P. 
Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez Ramos, B. A. Ellingson, V. S. 
Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. V. Albu, R. Steckler, B. C. Garrett, A. D. 
Isaacson and D. G. Truhlar, POLYRATE–version 2010, University of Minnesota, 
Minneapolis, 2010. 

86 J. Zheng, Z. H. Li, A. W. Jasper, D. A. Bonhommeau, R. Valero, R. Meana-Pañeda and D. G. 
Truhlar, ANT–version 2014, University of Minnesota, Minneapolis, MN, 2014. 
http://comp.chem.umn.edu/ant (accessed May 26, 2014) 

87 N. W. Larsen J. Mol. Struct. 1979, 51, 175. 
88 G. Portalone, G. Schultz, A. Domenicano and I. Hargittai, Chem. Phys. Lett., 1992, 197, 482. 

89  D. Spangenberg, P. Imhof and K. Kleinermanns, Phys. Chem. Chem. Phys. 2003, 5, 2505. 
90 C.-W. Cheng, Y.-P. Lee and H. A. Witek, J. Phys. Chem. A, 2008, 112, 2648. 

91  F. van Bolhuis and C. T. Kiers, Acta Cryst. 1978, B34, 1015. 
92 G. Keresztury, F. Billes, M. Kubinyi and T. Sundius, J. Phys. Chem. A, 1998, 102, 1371. 
93 J. Spanget-Larsen, M. Gil, A. Gorski, D. M. Blake, J. Waluk and J. G. Radziszewski, J. Am. 

Chem. Soc. 2003, 123, 11253. 
94 I. M. Alecu, J. Zheng, Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 2010, 6, 2872. 

Page 60 of 63Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t



 61

                                                                                                                                                             
95 R. C. Fuh, Oregon Medical Laser Center, Portland, OR, 1995; 

http://omlc.ogi.edu/spectra/PhotochemCAD/html/072.html. (accessed May 17, 2014). 
96 R. F. Gunion, M. K. Gilles, M. L. Polak and W. C. Lineberger, Int. J. Mass Spectrom. Ion 

Proc. 1992, 117, 602. 
97 J. G. Radziszewski, M. Gil, A. Gorski, J. Spanger-Larsen, J. Waluk and B. J. Mróz, J. Chem. 

Phys., 2001, 115, 9733. 
98 Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds (University of 

Science and Technology of China: Hefei, 2006), p. 182. 
99 H. D Bist, J. C. D. Brand and D. R. Williams, J. Mol. Spectrosc., 1966, 21, 76; H. D Bist, J. C. 

D. Brand and D. R. Williams, J. Mol. Spectrosc., 1967, 24, 402; H. D Bist, J. C. D. Brand 
and D. R. Williams, J. Mol. Spectrosc., 1967, 24, 413. 

100 O. Tishchenko, D. G. Truhlar, A. Ceulemans and M. T. Nguyen, J. Am. Chem. Soc., 2008, 
130, 7000. 

101 D. G. Truhlar and A. Kuppermann, J. Am. Chem. Soc., 1971, 93, 1840. 
102 A. D. Isaacson and D. G. Truhlar, J. Chem. Phys., 1981, 75, 4090. 
103 M. Page and J. W. McIver, Jr. J. Chem. Phys., 1988, 88, 922. 
104 J. O. Hirschfelder and E. Wigner, J. Chem. Phys., 1939, 7, 616. 
105 M. A. Eliason and J. O. Hirschfelder, J. Chem. Phys., 1959, 30, 1426. 
106 R. A. Marcus, J. Chem. Phys., 1967, 46, 959. 
107 R. T. Skodje, D. G. Truhlar and B. C. Garrett, J. Chem. Phys., 1982, 77, 5955. 
108 Y.-P. Liu, G. C. Lynch, T. N. Truong, D.-h. Lu, D. G. Truhlar and B. C. Garrett, J. Am. 

Chem. Soc., 1993, 115, 2408. 
109 D. C. Chatfield, R. S. Friedman, D. G. Truhlar, B. C. Garrett and D. W. Schwenke, J. Am. 

Chem. Soc., 1991, 113, 486. 
110 A. Tachibana and K. Fukui, Theor. Chen. Acta, 1979, 51,189.  
111 G. C. Hancock, P. Rejto, R. Steckler, F. B. Brown, D. W. Schwenke and D. G. Truhlar, J. 

Chem. Phys., 1986, 85, 4997. 
112 D. G. Truhlar, A. D. Isaacson, R. T. Skodje and B. C. Garrett, J. Phys. Chem., 1982, 86, 2252. 
113 D. G. Truhlar, A. D. Isaacson and B. C. Garrett, in The Theory of Chemical Reaction 

Dynamics, Vol. 4, edited by M. Baer (CRC Press, Boca Raton, FL, 1985), p. 65-137. 
114 A. Fernandez-Ramos, B. A. Ellingson, B. C. Garrett and D. G. Truhlar, Rev. Comput. Chem., 

2007, 23, 125. 
115 B. C. Garrett, D. G. Truhlar, A. F. Wagner and T. H. Dunning, Jr., J. Chem. Phys., 1983, 78, 

4400. 
116 A. Fernandez-Ramos and D. G. Truhlar, J. Chem. Phys., 2001, 114, 1491.  
117 Y.-P. Liu, D.-h. Lu, A. Gonzàlez-Lafont, D. G. Truhlar and B. C. Garrett, J. Am. Chem. Soc., 

1993, 115, 7806. 
118 B. C. Garrett and D. G. Truhlar, J. Chem. Phys., 1983, 79, 4931. 

Page 61 of 63 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t



 62

                                                                                                                                                             
119 R. Meana-Pañeda, D. G. Truhlar and A. Fernández-Ramos, J. Chem. Theory Comput., 2010, 

6, 6. 
120 J. G. Lauderdale and D. G. Truhlar, Surf. Sci., 1985, 164, 558. 
121 S. E. Wonchoba, W.-P. Hu and D. G. Truhlar, in Theoretical and Computational Approaches 

to Interface Phenomena, edited by H. L. Sellers and J. T. Golab (Plenum, New York, 1994), 
p. 7. 

122 A. J. C. Varandas, F. B. Brown, C. A. Mead, D. G. Truhlar and N. C. Blais, J. Chem. Phys.,  
1987, 86, 6258. 

123 E. B. Wilson, Phys. Rev., 1934, 45, 706. 
124 Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101. 
125 H.-D. Meyer and W. H. Miller, J. Chem. Phys. ,1979, 70, 1334. 
126 A. D. Micha, J. Chem. Phys. 1983, 78, 7138. 
127 M. Amarouche, F. X. Gadea and J. Durup, Chem. Phys. 1989, 130, 145. 
128 M. D. Hack and D. G. Truhlar, J. Chem. Phys., 2001, 114, 9305. 
129 M. J. Bearpark, M. A. Robb and H. B. Schlegel, Chem. Phys. Lett., 1994, 223, 269. 
130 M. Dallos, H. Lischka, R. Shepard, D. R. Yarkony and P. G. Szalay, J. Chem. Phys., 2004, 

120, 7330. 
131 S. Nangia and D. G. Truhlar, J. Chem. Phys., 2006, 124, 124309. 
132 Z. H. Li, R. Valero and D. G. Truhlar, Theor. Chem. Acc., 2007, 118, 9. 

Page 62 of 63Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t



 63

For Table of Contents: 

 

Textual abstract: 

Full dimensional potentials and state couplings were developed for the photodissociation 

of phenol. Multidimensional tunneling calculations on transition states on the shoulder of conical 

intersection of the S1 and S2 states suggest the adiabatic nature of the early dynamics of phenol 

photodissociation.  

Figure abstract: 
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