Chemical Science

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemicalscience

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Activation of group 15 based cage compounds by $[Cp^{BIG}Fe(CO)_2]$ radicals

Sebastian Heinl and Manfred Scheer*^a

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

The sterically encumbered dimer $[Cp^{BIG}Fe(CO)_2]_2$ (1) $(Cp^{BIG} = C_5(4-nBuC_6H_4)_5)$ is able to activate small tetrahedral molecules like P₄ and As₄ as well as the less reactive cage compounds P₄S₃ and P₄Se₃ at room temperature to give the products $[\{Cp^{BIG}Fe(CO)_2\}_2(\mu,\eta^{1:1}\text{-}cage)]$ (cage = P₄ (2a), As₄ (2b), P₄S₃ (2c), P₄Se₃ (2d) in a quantitative manner. The reaction proceeds via selective cleavage of one E–E bond (E = P,

 $_{10}$ As) of the starting material. Complex 1 also reacts with CS₂ forming the binuclear compound

 $[\{Cp^{BIG}Fe(CO)_2\}\{Cp^{BIG}FeCO)(\mu,\eta^{1:2}\text{-}CS_2)] (\textbf{3}).$

Introduction

The activation of white phosphorus with transition metal complexes¹ and main group elements² is of current research ¹⁵ interest. In recent decades, a large variety of transition-metal complexes with P_n units have been synthesized. In general, the reactions are thermolytically or photolytically induced to generate reactive complex fragments. Under these rather severe conditions, a substantial fragmentation and reaggregation of the

- $_{20}$ P₄ tetrahedron is typically found, which often is accompanied with mixtures of products. Exemplifying the situation for P₄, Scherer et al. reacted [Cp'''Fe(CO)₂]₂ with white phosphorus for a short thermolysis (5 min) in toluene,³ and detected the butterfly complex [{Cp'''Fe(CO)₂}₂(μ , η ^{1:1}-P₄)] as the main product.
- ²⁵ However, due to the high temperatures further decarbonylation takes place leading to by-products, which had to be removed by low temperature column chromatography that led to reduced isolated yields. The situation for the mixed cage compounds P₄S₃ and P₄Se₃, is even more problematic.⁴ The presence of two ³⁰ different types of atoms complicated the separation and
- characterization of the obtained products. Thus, e.g. Wachter et al. described the reaction of P_4S_3 with $[Cp*Mo(CO)_2]_2$ in boiling toluene to give triple-decker sandwich complexes with five-membered rings as a middle deck. Both products,
- $_{35}$ [(Cp*Mo)₂(P₂S₃)] and [(Cp*Mo)₂(P₄S)], have almost the same molecular structure, only the middle deck is different (P₄S vs. P₂S₃).⁵ The separation was only possible after the coordination of M(CO)₅ fragments (M = Cr, W) to these products.

To avoid high temperatures or UV irradiation for triggering a ⁴⁰ reaction, isolable complexes with reactive metal centers are needed. The dimeric compounds $[(Cp^{Aryl})Fe(CO)_2]_2$ $(Cp^{Aryl} = C_5Ph_5, C_5Ph_4(p-tolyl))$ readily dissociate in solution into two 17-VE radical fragments at room temperature and, therefore, should be capable for this mission.⁶ However, their low solubility is a

⁴⁵ disadvantage for reactivity studies. Therefore, we synthesized the analogous complex $[Cp^{BIG}Fe(CO)_2]_2$ (1) $(Cp^{BIG} = pentakis(4-n-$

butylphenyl)cyclopentadienyl),⁷ whose additional n-butyl groups lead to a good solubility. The general goal of **1** is to activate small molecules under mild condition in a selective and complete ⁵⁰ manner.

In the following, we report the room temperature activation of P_4 , As_4 , P_4S_3 or P_4Se_3 by $[Cp^{BIG}Fe(CO)_2]_2$ (1) resulting in a selective E-E bond cleavage to give exclusively the corresponding cage complexes in high yields. In addition, this ⁵⁵ complex also activates small organic molecule like CS₂. Note, some examples for the functionalization of P_4 by main group-based radicals have been reported.⁸

Results and discussion

Addition of **1** to toluene solutions of P_4 , As_4 , P_4S_3 or P_4Se_3 , ⁶⁰ respectively, gives an immediate color change from green to intensive orange (P_4 , As_4) or pink (P_4S_3 , P_4Se_3), respectively. The IR spectra indicate a complete conversion of the starting material by showing two new CO stretching frequencies (Table 1, 4 CO bands for **1**). Also, the NMR spectra of the reaction mixtures ⁶⁵ illustrate a clean and complete reaction. The products [{Cp^{BIG}Fe(CO)₂}₂(μ , $\eta^{1:1}$ -cage)] (cage = P_4 (2a), As_4 (2b), P_4S_3 (2c), P_4Se_3 (2d)) are isolated in almost quantitative yields (Eqs. 1 and 2) and reveal that selectively only one homolytic E-E bond (E = P, As) was cleaved.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Fig. 1 Molecular structures of 2a-d in the crystal (a: 2a; b: 2b; c: 2c; d 2d). Ellipsoids are drawn at 50% probability level. In case of 2c only one of the two molecules of the asymmetric unit is depicted. In case of disorder only the main part is shown. For clarity H atoms and solvent molecules are omitted. Cp^{BIG} ligands are drawn in 'wires or sticks' model. Selected bond distances [Å] and angles [°] in 2a: P1-P2 2.2343(5), P1-P2' 2.2094(6), P1...P1' 5 2.7749(4), P2-P2' 2.1717(7), Fe1-P1 2.3397(4), P1-P2-P1' 77.28(2), P1-P2-P2' 60.17(2), P2-P2'-P1 61.32(2), P2-P1-P2' 58.51(2). Selected bond distances [Å] and angles [°] in 2b: As1-As2 2.4639(6), As1-As2' 2.4357(7), As1-As1' 2.9958(4), As2-As2' 2.3976(9), Fe1-As1 2.4315(7), As1-As2-As1' 75.39(2), As1-As2-As2' 60.12(2), As2-As2'-As1 61.29(2), As2-As1-As2' 58.59(2). Selected bond distances [Å] and angles [°] in 2c from both molecules in the asymmetric unit: P1-P2/P6-P7 2.227(2)/2.190(1), P2-P3/P5-P6 2.185(1)/2.194(1), P1-P3/P5-P7 3.268(1)/3.318(1), P1-S1/P7-S6 2.156(1)/2.172(1), P2-S2/P6-S5 2.108(2)/2.114(1), P3-S3/P5-S4 2.157(1)/2.161(1), P4-S1/P8-S6 2.074(2)/2.099(2), P4-S2/P8-S5 2.107(2)/2.100(1), 10 P4-S3/P8-S4 2.097(2)/2.094(2), Fe1-P1/Fe4-P7 2.314(1)/2.313(1), Fe2-P3/Fe3-P5 2.309(1)/2.314(1), P1-P2-P3/P5-P6-P7 95.60(5)/98.38(5), P1-P2-P3/P5-P7 95.60(5)/98.38(5), P1-P2-P3(5)/98.38(5), P1-P2-P3/P5-P7 95.60(5)/98.38(5), P1-P2-P3/P5-P7 95.60(5), P1-P2-P7 95.60(5), P1-P2-P3/P5-P7 95.60(5), P1-P2-P7 95.60(5), P1-P2-P7 95.60(5), P1-P2-P7 95.60(5), P1-P2-P7 95.60(5), P1-P2-P7P1-S1-P4/P7-S6-P8 105.34(6)/107.52(5), P2-S2-P4/P6-S5-P8 97.51(7)/97.46(5), P3-S3-P4/P5-S4-P8 108.02(6)/106.27(6). Selected bond distances [Å] and angles [°] in 2d (in case of disordered atoms both values are given, signed by postfixes A and B): P1-P2A/P1-P2B 2.12(1)/2.247(8), P2A-P3/P2B-P3 2.18(1)/2.148(10), P1...P3 3.260(3), P1-Se1 2.299(2), P2A-Se2A/P2B-Se2B 2.32(2)/2.14(1), P3-Se3 2.304(2), P4A-Se1/P4B-Se1 2.25(2)/2.23(1), P4A-Se2A/P4B-Se2B 2.09(2)/2.36(2), P4A-Se3/P4B-Se3 2.30(1)/2.23(1), Fe1-P1 2.321(2), Fe2-P3 2.298(2), P1-P2A-P3/P1-P2B-P3 98.6(5)/95.7(3), 15 P1-Se1-P4A/P1-Se1-P4B 96.1(3)/104.4(4), P2A-Se2A-P4A/P2B-Se2B-P4B 93.5(5)/97.1(5), P3-Se3-P4A/P3-Se3-P4B 98.9(3)/110.0(4).

Table 1 IR and ³¹P{¹H} NMR data of **2a**, **2c** in C₆D₆, **2d** in CD₂Cl₂ and ν_{CO} in toluene of **2a-d**. For P labeling cf. Figure 1. (δ in ppm, J_{PP} in Hz, ν_{CO} in cm⁻¹)

Complex	δ (P _A)	$\delta\left(\mathbf{P}_{\mathrm{M/B}}\right)$	δ (P _C)	J_{PP}	v _{co}
2a	-53.9	-317.1	-	$187 (P_A P_M)$	2002, 1955
2b	-	-	-	-	1993, 1948
2c	169.4	153.5	91.5	296 (P _A P _C), 63 (P _B P _C),	2011, 1967
				$45 (P_A P_B)$	
2d	181.3	123.5	101.8	$305 (P_A P_C), 66 (P_B P_C),$	2011, 1967
				$45 (P_A P_B)$	

²⁰ Compounds **2a-d** are soluble in CH₂Cl₂, toluene, thf, and hexane but insoluble in CH₃CN. The ESI mass spectra of **2a** and **2b** show the molecular ion peaks. In the case of **2c** and **2d** characteristic fragments could be detected. The ³¹P{¹H} NMR spectrum of **2a** show two triplets at $\delta = -54.0$ ppm and $\delta = -317.1$ ²⁵ ppm (¹*J*_{PP} = 187 Hz), which is typical for P₄ butterfly complexes.⁹ For **2c** and **2d** the ³¹P{¹H} NMR spectra show A₂BC spin systems (Table 1), which clearly indicate the suggested molecular structures.

Single crystal X-ray structure analyses of **2a-d** (Fig. 1) reveal ³⁰ the selective cleavage of one single E–E bond (E = P, As) and two {Cp^{BIG}Fe(CO)₂} fragments are now coordinated at these atoms. Compounds **2a** and **2b** show a central tetraphospha/tetraarsa-bicyclo[1.1.0]butane (butterfly) structural motif, whereas for **2c** and **2d** a tetraphospha-trithio/triseleno-³⁵ bicyclo[2.2.1]heptane core is found. The P₄ butterfly complex **2a** follow the same trend for P–P bond lengths like other derivatives, e.g. [{Cp'''Fe(CO)₂}₂(μ , $\eta^{1:1}$ -P₄)].³ The bond between P1 and P2/P2' (2.2094(6) Å and 2.2343(5) Å) are similar to a single bond like in P₄ (2.21 Å)^{2a,10}, however the bond P2-P2' is slightly ⁴⁰ shortened (2.1717(7) Å).

While for P_4 ligands the butterfly structural motif is known, it is particularly rare for As_4 ligands. The only structurally

characterized compound in literature is $[Cp^*Co(CO)(\eta^{1:1}-As_4)]$ in which the As₄ unit is bound to only one metal atom.¹¹ Recently in our group, two other arsenic containing butterfly complexes were obtained, $[\{Cp^{''}Fe(CO)_2\}_2(\mu,\eta^{1:1}-As_4)]$ and

 $_{5}$ [{Cp*Cr(CO)₃}₂(μ , $\eta^{1:1}$ -As₄)].^[12] In **2b** the bonds between the coordinated atom As1 and the non-coordinated As2 are also longer (2.4357(7) Å and 2.4639(6) Å) than the bridgehead bond (2.3976(9) Å) and agree well with the above mentioned examples. In addition, **2b** shows the same distortion after 10 conversion as compared with As₄ (As–As 2.44 Å),¹³ as with **2a** and P₄.

For the cleavage of one P–P bond of the P₃ ring in P₄S₃ only three examples are known. They all reveal an oligomeric metal bridged structure; dimeric for the iridium complexes *cis/trans*-¹⁵ [Ir(μ -P₄S₃)(PPh₃)Cl(CO)]₂¹⁴ and trimeric for [Pt(μ -P₄S₃)(PPh₃)]₃.¹⁵ In contrast for **2c-d**, a monomeric structural motif is observed without an oligomerization because of the steric protection of the {Cp^{BIG}Fe(CO)₂} fragments compared to PPh₃ ligands in the complexes mentioned above. Despite the different ²⁰ structures, the distances in the P₄S₃ core in **2c** are similar except

of the average P–P bond length of 2.20 Å which is about 0.05-0.10 Å shorter than those of the Ir and Pt complexes, respectively. Compound **2d** represents the unprecedented example, in which the first step of the degradation of the P₄Se₃ cage is observed. The

²⁵ P–P bond lengths are (average of 2.17 Å) shorter than in the P_4Se_3 molecule (2.22 Å – 2.26 Å),¹⁶ while the other bonds of the cage are rather unaffected.

The activation of a second bond of the cages in **2a-d** by **1** was not observed regardless of the stoichiometry used and increased ³⁰ reaction times. However, if solutions of **2a** are heated, formation

- or reaction times. However, if solutions of **2a** are heated, formation of $[Cp^{BIG}Fe(\eta^5-P_5)]$ and $[(Cp^{BIG}Fe)_2(\mu,\eta^{4;4}-P_4)]$ is observed. We recently reported on the thermolysis of **1** with P₄, resulting in complete degradation of the tetrahedral structure of P₄ resulting in the two products $[Cp^{BIG}Fe(\eta^5-P_5)]$ and $[(Cp^{BIG}Fe)_2(\mu,\eta^{4;4}-P_4)]$.⁷
- ³⁵ Furthermore, if white phosphorus is added to **2a** before heating, the same ratio of products and yields are obtained as was found before.⁷ This indicates that **2a** is the initial activation step for the complete conversion of P₄ by Cp^RFe fragments. A higher grade of degradation at elevate temperatures can also be assumed for ⁴⁰ **2b-d**, which will be in the focus of future reactivity studies.

$$[Cp^{BIG}Fe(CO)_2]_2 + CS_2 \xrightarrow{toluene, r.t.} Co \xrightarrow{Cp^{BIG}} S \xrightarrow{Fe} Co^{BIG} (3)$$

In addition, the reaction of 1 with an excess of CS_2 at ambient temperature results in the quantitative formation of the binuclear $[\{Cp^{BIG}Fe(CO)_2\}\{Cp^{BIG}Fe(CO)\}(\mu,\eta^{1:2}\text{-}CS_2)]$ complex (3)45 accompanied by instant change of color from green to brown (Eq. 3). Three new CO absorption bands for 3 are observed in both, solution (CH₂Cl₂: 2023 cm⁻¹, 1979 cm⁻¹, 1928 cm⁻¹) and solid state (KBr: 2022 cm⁻¹, 1979 cm⁻¹, 1936 cm⁻¹). The ¹H NMR and the ¹³C NMR spectra of **3** in CH_2Cl_2 show multiple superimposed 50 signals, indicating magnetic different CpBIG ligands due to the hindered rotation.^{9,17} The X-ray structure analysis of **3** (Fig. 2) shows two different iron fragments are bridged by a CS₂ ligand. The molecule can be described as a ferradithiocarboxylate [Cp^{BIG}(CO)₂Fe-CS₂]⁻ coordinating as a chelate ligand to a 55 {Cp^{BIG}FeCO}⁺ fragment. The bond lengths within the dithiocarboxylate ligand show large differences. The C99-S1 bond is with 1.762(6) Å by about 0.1 Å longer than the one between C99 and S2 (1.660(6) Å), indicating localized single and double bonds. Also the IR spectrum of **3** is consistent with the ⁶⁰ observation of a non-symmetric CS₂ ligand, where two bands in the appropriate region can be found at 1082 cm⁻¹ and 1030 cm⁻¹. These values are in a comparable range with other CS₂ complexes.¹⁸

A possible reaction pathway starts from the addition of two 65 [Cp^{BIG}Fe(CO)₂] units onto a CS₂ molecule, one on the carbon atom the other on one S atom. The not to iron bound S atom than attacks the iron fragment bound to sulfur with CO elimination and formation of **3**.

⁷⁰ Fig. 2 Molecular structure of 3 in the crystal. Ellipsoids are drawn at a 50% probability level. For clarity H atoms are omitted and Cp^{BIG} ligands are drawn in 'wires or sticks' model. Selected bond distances [Å] and angles [°] in 3: Fe1-C99 1.893(5), C99-S1 1.762(6), C99-S2 1.660(6), S1-Fe1' 2.396(2), S2-Fe1' 2.302(2), S1-C99-S2 104.9(3), Fe1'-S1-C99 75 89.4(2), Fe1'-S2-C99 95.3(3), S1-Fe1'-S2 70.51(5).

Conclusions

The spontaneous formation of metal centred radicals from the sterically encumbered complex **1** enables the selective cleavage of a single E–E bond (E = P, As) in the cage molecules P₄, As₄, 80 P₄S₃ and P₄Se₃, respectively, already at room temperature. The quantitatively obtained products [{Cp^{BIG}Fe(CO)₂}₂(μ , $\eta^{1:1}$ -**cage**)] (**cage** = P₄ (**2a**), As₄ (**2b**), P₄S₃ (**2c**), P₄Se₃ (**2d**)) exhibit bicyclic structural motifs. Regardless of stoichiometry and reaction time applied, no further degradation of the molecules could be sobserved. Thermolysis of **2a** leads to *cyclo*-P₅ and P₄-butadiene containing products, which are also formed by the direct reaction of **1** with P₄ under elevated temperatures. Furthermore we have shown that **1** readily reacts with CS₂ to form a binuclear complex with a dithiocarboxylate ligand.

Further studies will be focus on the use of the dimeric complex
 1 to activate other small (organic) molecules, also in a catalytically manner.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft. S. Heinl is grateful to the Fonds der Chemischen Industrie for a PhD fellowship.

Experimental details

General remarks

All experiments were carried out under an atmosphere of dry argon or nitrogen using glovebox and Schlenk techniques. 5 Solvents were purified, dried, and degassed prior to use. P₄, P₄S₃

- s Solvents were purified, and degassed prior to use. P_4 , P_4S_3 and P_4Se_3 were available and solutions of As_4^{19} and $[Cp^{BIG}Fe(CO)_2]_2$ (1)7 were prepared according to literature procedures. The NMR spectra were measured on a Bruker Avance 300, 400, or 600 MHz spectrometer. ESI-MS spectra
- ¹⁰ were measured on a ThermoQuest Finnigan TSG 7000 mass spectrometer and FD-MS spectra on a Finnigan MAT 95 mass spectrometer. The elemental analyses were determined on a Vario EL III apparatus. The IR spectra were measured on a VARIAN FTS-800 FT-IR spectrometer.
- ¹⁵ **Preparation of** [{**Cp**^{BIG}**Fe**(**CO**)₂}₂(μ , η ^{1:1}-**P**₄)] (**2a**). A solution of [**Cp**^{BIG}**Fe**(**CO**)₂]₂ (**1**) (1.3 g, 0.78 mmol) in 100 mL toluene is added to a solution of **P**₄ (96 mg, 0.78 mmol) in 50 mL toluene. The orange solution is stirred for 30 min, and the solvent is removed in vacuum. The residue is dissolved in ca. 15 mL
- $_{20}$ CH₂Cl₂, transferred into a Schlenk-tube and 50 mL CH₃CN is layered over it. After complete diffusion, red crystals of **2a** are obtained. Yield: 1.30 g (94%).

 $[C_{114}H_{130}Fe_2O_4P_4]$ calc.: C, 76.08; H, 7.28. found: C, 75.82; H, 7.13. m/z (ESI, toluene/CH₃CN/CH₂Cl₂) 1884.7 (65%,

- ²⁵ [M+CH₂Cl₂]⁺), 1718.7 (20%, [Cp^{BIG}₂Fe₂P₅]⁺), 1508.3 (20%, [Cp^{BIG}₂Fe₂]⁺), 1718.7 (100%, [Cp^{BIG}Fe(toluene)]⁺), 741.5 (80%, [Cp^{BIG}OH]⁺). IR (toluene, cm⁻¹): v_{CO} 2002 (s), 1955 (s). ¹H NMR (C₆D₆): δ 0.81 (t, ³J_{HH} = 7.3 Hz, 30H, CH₃), 1.16 (m, 10H, CH₂), 1.35 (m, 10H, CH₂), 2.29 (t, ³J_{HH} = 7.7 Hz, 10H, CH₂), 6.73 (d,
- ³⁰ ${}^{3}J_{\text{HH}} = 7.9 \text{ Hz}, 10\text{H}, \text{ C}_{6}\text{H}_{4}), 7.34 \text{ (d, } {}^{3}J_{\text{HH}} = 7.9 \text{ Hz}, 10\text{H}, \text{ C}_{6}\text{H}_{4}).$ ³¹P{¹H} NMR (C₆D₆): δ -317.1 (t, ${}^{1}J_{\text{PP}} = 187 \text{ Hz}, 2\text{P}, \text{P}_{\text{M}}), -53.9 \text{ (t, } {}^{1}J_{\text{PP}} = 187 \text{ Hz}, 2\text{P}, \text{P}_{\text{A}}).$

Preparation of $[{Cp^{BIG}Fe(CO)_2}_2(\mu,\eta^{1:1}-As_4)]$ (2b). A solution of $[Cp^{BIG}Fe(CO)_2]_2$ (1) (0.75 g, 0.44 mmol) in 50 mL toluene is

- ³⁵ added at room temperature to a freshly prepared solution of As₄ (from 5 g As_{gray} in 300 mL toluene). The orange solution is stirred for 30 min and the solvent is removed in vacuum. The residue is solved in ca. 10 mL CH₂Cl₂, filtered into a Schlenktube and 30 mL CH₃CN is layered over it. After complete ⁴⁰ diffusion, red crystals of **2b** are obtained. Yield: 0.73 g (84%).
- [C₁₁₄H₁₃₀Fe₂O₄As₄*CH₂Cl₂] calc.: C, 67.03; H, 6.46. found: C, 66.64; H, 6.44. m/z (ESI, CH₂Cl₂) 1976.2 (100%, [M]⁺). IR (toluene, cm⁻¹): v_{CO} 1993 (s), 1948 (s). ¹H NMR (C₆D₆): δ 0.80 (t, ³J_{HH} = 7.2 Hz, 30H, CH₃), 1.16 (m, 10H, CH₂), 1.34 (m, 10H, CH₂) = 2.27 (t⁻³J_H) =

⁴⁵ CH₂), 2.27 (t, ${}^{3}J_{\text{HH}} = 7.6$ Hz, 10H, CH₂), 6.72 (d, ${}^{3}J_{\text{HH}} = 8.0$ Hz, 10H, C₆H₄), 7.34 (d, ${}^{3}J_{\text{HH}} = 8.0$ Hz, 10H, C₆H₄).

- ⁵⁰ added to a solution of P_4Q_3 (P_4S_3 : 25 mg, 0.11 mmol; P_4Se_3 : 40 mg, 0.11 mmol) in 5 mL toluene. The pink solution is stirred for 30 min, filtered via cannula and the solvent is removed in vacuum. According to the NMR spectroscopy the isolated solids are pure. Yield: 100 mg (88%) of **2c**; 110 mg (91%) of **2d**.
- 55 2c: An analytically pure crystalline sample can be obtained by the diffusion of CH₃CN in CH₂Cl₂ solutions of 2c. Crystalline yield:

99 mg (47%). [$C_{114}H_{130}Fe_2O_4P_4S_3*CH_2CI_2$] calc.: C, 69.73; H, 6.72; S, 4.86. found: C, 70.03; H, 6.54; S, 4.86. *m/z* (ESI, toluene/CH₃OH) 1839.1 (100%, [M-2CO]⁺). IR (toluene, cm⁻¹): ⁶⁰ v_{CO} 2011 (s), 1967 (s). ¹H NMR (C₆D₆): δ 0.82 (t, ³J_{HH} = 7.3 Hz, 30H, CH₃), 1.18 (m, 10H, CH₂), 1.38 (m, 10H, CH₂), 2.32 (t, ³J_{HH} = 7.8 Hz, 10H, CH₂), 6.75 (d, ³J_{HH} = 8.2 Hz, 10H, C₆H₄), 7.30 (d, ³J_{HH} = 8.2 Hz, 10H, C₆H₄). ³¹P{¹H} NMR (C₆D₆): δ 91.5 (td, ¹J(P_AP_C) = 296 Hz, ²J(P_BP_C) = 63 Hz, 1P, P_C), 153.5 (dt, ²J(P_BP_C)

- ${}^{65} = 63 \text{ Hz}, {}^{2}J(P_{A}P_{B}) = 45 \text{ Hz}, 1P, P_{B}), 169.4 \text{ (dd}, {}^{2}J(P_{A}P_{B}) = 45 \text{ Hz}, \\ {}^{1}J(P_{A}P_{C}) = 296 \text{ Hz}, 2P, P_{A}). {}^{13}C\{{}^{1}H\} \text{ NMR (C}_{6}D_{6}): 14.1 \text{ (CH}_{3}), \\ 22.7 \text{ (CH}_{2}), 33.1 \text{ (CH}_{2}), 35.5 \text{ (CH}_{2}), 103.5 \text{ (Cp)}, 128.4 \text{ (C}_{6}H_{4}), \\ 133.1 \text{ (C}_{6}H_{4}), 142.6 \text{ (C}_{6}H_{4}), 215.0 \text{ (CO)}, \text{ one Ph C atom is obscured by solvent signal.}$
- ⁷⁰ **2d**: $[C_{114}H_{130}Fe_2O_4P_4S_3*CH_2Cl_2]$ calc.: C, 67.23; H, 6.43. found: C, 66.06; H, 6.47. *m/z* (FD, toluene) 1786.1 (100%, $[M-P_3Se_2]^+$). IR (toluene, cm⁻¹): v_{CO} 2011 (s), 1967 (s). ¹H NMR (CD₂Cl₂): δ 0.91 (t, ³*J*_{HH} = 7.2 Hz, 30H, CH₃), 1.30 (m, 10H, CH₂), 1.53 (m, 10H, CH₂), 2.49 (t, ³*J*_{HH} = 7.2 Hz, 10H, CH₂), 6.84 (d, ³*J*_{HH} = 7.7
- ⁷⁵ Hz, 10H, C₆H₄), 6.92 (d, ${}^{3}J_{HH} = 7.7$ Hz, 10H, C₆H₄). ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂): δ 101.8 (td, ${}^{1}J(P_{A}P_{C}) = 305$ Hz, ${}^{2}J(P_{B}P_{C}) = 66$ Hz, 1P, P_C), 123.5 (dt, ${}^{2}J(P_{B}P_{C}) = 66$ Hz, ${}^{2}J(P_{A}P_{B}) = 45$ Hz, 1P, P_B), 181.3 (dd, ${}^{2}J(P_{A}P_{B}) = 45$ Hz, ${}^{1}J(P_{A}P_{C}) = 305$ Hz, 2P, P_A). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂): 14.1 (CH₃), 22.7 (CH₂), 33.5 (CH₂),
- ⁸⁰ 35.6 (CH₂), 103.4 (Cp), 127.9 (C₆H₄), 127.9 (C₆H₄), 132.8 (C₆H₄), 143.0 (C₆H₄), 215.4 (CO). **Preparation of [{Cp^{BIG}Fe(CO)₂}{Cp^{BIG}Fe(CO)}(\mu,\eta^{1:2}-CS₂)] (3). To a solution of [Cp^{BIG}Fe(CO)₂]₂ (1) (100 mg, 0.06 mmol) in 5 mL toluene 1 mL CS₂ is added. The solution immediately ⁸⁵ becomes brown. The reaction mixture is stirred for 30 min, filtered, and the solvent is removed in vacuum. 3** is obtained as

brown powder. Yield: 93 mg (91%) To obtain single crystals, the residue is dissolved in ca. 5 mL CH₂Cl₂, transferred into a Schlenk-tube and 10 mL CH₃CN is ⁹⁰ layered over it. After complete diffusion, red needle shaped crystals of **2a** are obtained.

3: $[{Cp^{BIG}Fe(CO)_2} {Cp^{BIG}Fe(CO)}(\mu, \eta^{1:2}-CS_2)]: m/z$ (FD, toluene) 1724.0 (45%, [M]⁺), 1696.1 (100%, [M - CO]⁺), 1640.2 (55%, [M - 3CO]⁺). IR (CH₂Cl₂, cm⁻¹): v_{CO} 2023 (s), 1979 (s),

⁹⁵ 1928 (s). IR (KBr, cm⁻¹): v_{C0} 2022 (s), 1979 (s), 1936 (s). ¹H NMR (CD₂Cl₂): δ 0.91 (m, 30H, CH₃), 1.32 (m, 20H, CH₂), 1.53 (m, 20H, CH₂), 2.52 (m, 20H, CH₂), 6.7 – 7.0 (m, 40H, C₆H₄).
¹³C{¹H} NMR (CD₂Cl₂): 14.14, 14.17, 22.70, 22.76, 22.80, 22.84, 33.56, 33.59, 33.61, 33.72, 33.78, 35.68, 96.29, 98.27, 102.00, 102.50, 103.49, 103.60, 127.24. 127.44, 127.49, 127.58, 127.88, 127.96, 128.08, 128.12, 128.20, 128.24, 129.0, 131.69, 132.23, 132.43, 132.55, 132.92, 141.14, 141.64, 142.21, 142.91, 142.97, 143.59, 214.87, 216.10.

105 Notes and references

^a University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany. Fax: +49 941 943 4439; Tel: +49 941 943 4440; E-mail: manfred.scheer@chemie.uni-regensburg.de

† Electronic Supplementary Information (ESI) available: Full 110 crystallographic data, NMR spectra. See DOI: 10.1039/b00000x/

Page 4 of 5

- a) B. M. Cossairt, N. A. Piro, C. C. Cummins, *Chem. Rev.*, 2010, **110**, 4164-4177; b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, *Chem. Rev.*, 2010, **110**, 4178-4235.
- 2 a) M. Scheer, G. Balázs, A. Seitz, *Chem. Rev.*, 2010, **110**, 4236-4256.
 b) N. A. Giffin, J. D. Masuda, *Coord. Chem. Rev.*, 2011, **255**, 1342-1359.
- 3 O. J. Scherer, T. Hilt, G. Wolmershäuser, *Organometallics* 1998, **17**, 4110-4112.
- 4 a) J. Wachter, Angew. Chem., Int. Ed., 1998, 37, 751-768. b) M. Di Vaira, P. Stoppioni, Coord. Chem. Rev. 1992, 120, 259-279.
- 5 H. Brunner, U. Klement, W. Meier, J. Wachter, O. Serhadle, M. L. Ziegler, J. Organomet. Chem., 1987, **335**, 339-352.
- 6 a) I. Kuksis, M. C. Baird, Organometallics, 1994, 13, 1551-1553. b) I. Kuksis, M. C. Baird, Organometallics, 1996, 15, 4755-4762.
- 7 S. Heinl, G. Balázs, M. Scheer, *Phosphorus, Sulfur Silicon Relat. Elem.*, **2014**, accepted. http://dx.doi.org/10.1080/10426507.2014.903489
- 8 a) D. H. R. Barton, J. Zhu, J. Am. Chem. Soc. 1993, 115, 2071-2072. b)
 D. H. R. Barton, R. A. Vonder Embse, *Tetrahedron* 1998, 54, 12475-12496; c) B. M. Cossairt, C. C. Cummins, New J. Chem. 2010, 34, 1533-1536; d) J.-P. Bezombes, P. B. Hitchcock, M. F. Lappert, J. E. Nycz, *Dalton Trans.* 2004, 499-501.
- 9 S. Heinl, S. Reisinger, C. Schwarzmaier, M. Bodensteiner, M. Scheer, *Angew. Chem. Int. Ed.*, 2014, **53**, accepted. http://dx.do.org/10.1002/anie.201403295.
- 10 a) C. Schwarzmaier, A. Schindler, C. Heindl, S. Scheuermayer, E. V. Peresypkina, A. V. Virovets, M. Neumeier, R. Gschwind, M. Scheer, Angew. Chem., Int. Ed. 2013, 52, 10896-10899. b) A. Simon, H. Borrmann, H. Craubner, Phosphorus, Sulfur Silicon Relat. Elem., 1987, 30, 507-510. c) B. M. Cossairt, C. C. Cummins, A. R. Head, D. L. Lichtenberger, R. J. F. Berger, S. A. Hayes, N. W. Mitzel, G. Wu, J. Am. Chem. Soc., 2010, 132, 8459-8465.
- 11 O. J. Scherer, K. Pfeiffer, G. Wolmershäuser, Chem. Ber. 1992, 125, 2367-2372.
- 12 C. Schwarzmaier, PhD thesis, University of Regensburg (Regensburg, Germany), 2012.
- 13 a) Y. Morino, T. Ukaji, T. Ito, *Bull. Chem. Soc. Jpn.* **1966**, *39*, 64-71.b) H. A. Spinney, N. A. Piro, C. C. Cummins, *J. Am. Chem. Soc.* **2009**, *131*, 16233-16243.
- 14 a) C. A. Ghilardi, S. Midollini, A. Orlandini, Angew. Chem., Int. Ed., 1983, 22, 790-791. b) E. Kuwabara, R. Bau, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1994, 50, 64-67.
- 15 M. Di Vaira, M. Peruzzini, P. Stoppioni, J. Chem. Soc., Dalton Trans., 1985, 291-295.
- 16 E. Keulen, A. Vos, Acta Crystallogr., 1959, 12, 323-329.
- 17 a) S. Heinl, E. V. Peresypkina, A. Y. Timoshkin, P. Mastrorilli, V. Gallo, M. Scheer, *Angew. Chem., Int. Ed.*, 2013, **52**, 10887-10891. b) S. Heinl, E. V. Peresypkina, A. Y. Timoshkin, P. Mastrorilli, V. Gallo, M. Scheer, *Angew. Chem.*, 2013, **125**, 11087-11091.
- 18 a) W. Uhl, A. Vester, W. Hiller, J. Organomet. Chem. 1993, 443, 9-17.
 b) C. Bianchini, C. Mealli, A. Meli, A. Orlandini, L. Sacconi, Inorg. Chem. 1980, 19, 2968-2975. c) M. Herberhold, M. Süß-Fink, Chem. Ber. 1978, 111, 2273-2281. d) U. Ochmichen, T. G. Southern, H. Le Bozec, P. Dixneuf, J. Organomet. Chem. 1978, 156, C29-C32.
- 19 O. J. Scherer, H. Sitzmann, G. Wolmershäuser, J. Organomet. Chem., 1986, 309, 77-86.

Table of Contents entry:

The sterically encumbered complex $[Cp^{BIG}Fe(CO)_2]_2$ (1) $(Cp^{BIG} = pentakis(4-$ *n*-butylphenyl)cyclopentadienyl) forms in solution radicals, which enable the selective cleavage of a E–E single bond (E = P, As) in the cage molecules P₄, As₄, P₄S₃ and P₄Se₃, respectively, already at room temperature.