This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Transmethylation of a Four-Coordinate Nickel(I) Monocarbonyl Species with Methyl Iodide

Changho Yoo, Seohee Oh, Jin Kim and Yunho Lee*

Three distinct oxidation states of nickel carbonyl species, formally Ni(II), +1 and 0, (compound 1, 2 and 3) have been realized using the (PNP)Ni scaffold (PNP = N[2-PPr₂₄-Me-C₆H₄]₂). X-ray diffraction studies of these carbonyl complexes show a geometrical change about the nickel center from square planar (1) to pyramidal (2) and pseudotetrahedral (3). Interestingly, the Ni-C bond distance of 2 is longer than that of 1 and 3 due to the electron population of the antibonding dₓ₂₋₃ᵧ orbital. Different reactivity of these nickel carbonyl species was clearly observed. Reaction of the monovalent nickel carbonyl species (2) with CH₃I revealed the formation of (PNP)NiCOCH₃ (4) via C-C bond coupling while the zerovalent congener (3) showed the oxidative ligand substitution reaction.

Results and discussion

I. Syntheses of Nickel(I/0) Monocarbonyl Complexes

In order to establish the low-valent chemistry of a nickel monocarbonyl species, we decided to utilize a (PNP)Ni scaffold in which a four coordinate nickel center can be stabilized. We sought to investigate how the reactivity of the nickel monocarbonyl species can be controlled via the variation of the

Scheme 2 Synthesis of cationic {Ni-CO}⁺ (1), neutral Ni-CO (2) and anionic {Ni-CO}⁻ (3) species.

This journal is © The Royal Society of Chemistry 2013
number of d electrons resulting in geometric alteration from a square planar to pseudotetrahedral geometry. Square planar nickel(II) monocarbonyl species {PNP}NiCO·BF₄⁻ (1) was recently reported by our group. The corresponding monovalent nickel carbonyl species (2) was produced from the chemical reduction of 1, accomplished by addition of 1 equivalent of sodium naphthalide in THF (Scheme 2). This paramagnetic species (PNP)NiCO with one naphthalene molecule (2·C₈H₈) was synthesized in good yield (82%). Due to its paramagnetic nature, 2 does not show a ³¹P NMR spectroscopic signal (Fig. 1). According to the results of an Evans’ method for magnetic moment determination (μeff = 1.54 μB C₆D₆), together with X-band EPR data of a frozen solution of 2 (g = 2.08, 2.02, 2.02 in toluene at 20 K, Fig. 1), an S = ½ spin state for 2 is assured. Since there is a greater back-donating capacity for the monovalent nickel ion of 2, compared to Ni^II-CO (1), the C-O vibrational frequency for 2 is lower than that for 1 (ν_CO = 1927 cm⁻¹; Δν_CO = −144 cm⁻¹, Table 1).

Fig. 1 ³¹P NMR spectra of (a) {PNP}NiCO·BF₄⁻ (1, 79.65 ppm)³ (b) (PNP)NiCO (2, no signal) (c) {Na[12-C-4]₂}·{PNP}NiCO (3', 47.20 ppm). (d) X-band EPR spectrum of 2 (20 K, toluene).

Fig. 2 Cyclic voltammogram of (PNP)NiCO (2); scan rate = 100 mV/s. Ni^II-CO couple at −1.20 V and Ni^II-CO couple at −1.87 V vs. Fc/Fc⁺ were observed in THF with 0.1 M {n-Bu₄N} [PF₆].

The existence of an anionic species, ([PNP]NiCO)⁻ (3) was gleaned by cyclic voltammetric analysis carried out on (PNP)NiCO (2). Two reversible one-electron redox couples are observed at −1.20 and −1.87 V vs. Fc/Fc⁺ in THF solvent (Fig. 2). Based on these observations, we attempted a chemical generation of the anionic nickel carbonyl species by addition of 1 equivalent of sodium naphthalide to 2. A diamagnetic nickel carbonyl species (PNP)NiCO·Na (3) is produced, possessing a ³¹P NMR spectroscopic signal at 46.59 ppm in C₆D₆/THF solution. To eliminate the effect of a sodium cation, 2 equivalent of 12-crown-4 was added to the solution of 3 to yield {Na[12-C-4]₂}·{PNP}NiCO (3") which gives a new ³¹P-NMR signal at 47.20 ppm. Further, this complex displays a new carbonyl vibration, dramatically shifted from that for its precursor Ni(I) species 2 (Δν_CO = −108 cm⁻¹, Table 1 and Supporting Information). These data indicate that this new anionic species possesses a very electron rich zero-valent nickel ion, which displays a much higher back-donation capability. Regeneration of 2 from 3 was also accomplished by addition of 1 equivalent of silver trifluoromethanesulfonate (74% yield, Supporting Information).

![Fig. 3 Displacement ellipsoid (50%) representations of (a) (PNP)NiCO (2), (b) {Na[12-C-4]₂}·{PNP}NiCO (3'). Hydrogen atoms and molecules of co-crystallization are omitted for clarity. See Table 1 and Supporting Information for details.](image)

Table 1 (PNP)Ni carbonyl species (1, 2 and 3').

<table>
<thead>
<tr>
<th></th>
<th>ν_CO (cm⁻¹)</th>
<th>C-O (Å)</th>
<th>Ni-C (Å)</th>
<th>Ni-N (Å)</th>
<th>Ni-Ni-C (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>2071</td>
<td>1.133(2)</td>
<td>1.746(2)</td>
<td>1.866(1)</td>
<td>172.36(6)</td>
</tr>
<tr>
<td>2</td>
<td>1927</td>
<td>1.149(2)</td>
<td>1.776(2)</td>
<td>1.964(1)</td>
<td>153.25(8)</td>
</tr>
<tr>
<td>3'</td>
<td>1819</td>
<td>1.174(4)</td>
<td>1.719(3)</td>
<td>2.039(3)</td>
<td>128.7(1)</td>
</tr>
<tr>
<td>3&quot;</td>
<td>1819</td>
<td>1.173(4)</td>
<td>1.713(4)</td>
<td>2.066(3)</td>
<td>128.7(1)</td>
</tr>
</tbody>
</table>

While nickel monocarbonyl species are uncommon, structurally characterized monocarbonyl nickel(I) and nickel(0) complexes do exist. However, there is no report to-date showing a nickel monocarbonyl species stabilized and isolated in three distinct oxidation states. Here, solid-state structures were successfully obtained for all three of these carbonyl adducts 1, 2 and 3' (See Fig. 3, Table 1 and Supporting Information) which were further accompanied by physical/spectroscopic data. Inevitably, there is dramatic alteration in the CO vibrational frequency when comparing the (PNP)Ni compounds that exist in three distinct formal oxidation states (II, I and 0), C-O bond distances consistently increase from 1.133(2) to 1.149(2) and 1.174(4) Å, respectively. Interestingly, the Ni-C bond distance in 2, however, is slightly more elongated than that in 1 (1.776(2) vs. 1.746(2), 2012, 00, 1-3)
respectively). Of course, it is common for electron-rich metals to favor the formation of strong σ-backbonding into the antibonding orbital of the CO ligand, resulting in shorter metal-carbon bonds but longer C-O bonds. Yet, compensating for this behavior is the fact that nickel complex reduction places additional electrons in metal-orbitals with antibonding character leading to weaker Ni-C σ-bonding. 7b,10 Caulton and coworkers recently reported that reversible binding of CO occurs at a monovalent nickel ion supported by a ligand similar to the one employed here [PNP = (Bu3PCH2SiMe3)N].7b,10 Due to the antibonding character of the SOMO of the square planar nickel(II) ion, nickel reversibly binds CO in contrast to the planar d8 [PNP]NiII(CO)2 complex or [PNP]Co(CO)2.7b,10 DFT calculations with Mulliken population analysis determinations carried out on compound 2, show that ~71% of the unpaired spin is located on the nickel center (Fig. 4 and Supporting Information). However, a Ni(I) carbonyl or Ni(0) carbonyl species here does not allow for CO dissociation under vacuum. We do not have any evidence that our PNP-nickel complexes form overall three-coordinate species; such an entity was in fact detected in the case of Caulton’s PNP-Ni complex.7b,10 Mindiola group has also suggested a putative Ni(II) species in the generation of Ni(I) dimer [Ni(μ- PNP)2] but did not further investigate on producing a carbonyl species while its congener [Co(μ- PNP)2] does produce a [Co(CO)2]N species.11 According to our current investigation, (PNP)NiI or Ni0 does not form either three coordinate species or a dimer in the presence of its forth CO ligand.

Fig. 4 Mulliken atomic spin density plots derived from the single-point DFT calculation of (PNP)NiCO (2); Ni: 71.2%; P1: 2.8%; P2: 4.8%; N: 6.5%; C: 7.8%. Lobal representations correspond to the spin density by the number with 0.004 isocontours. Gaussian09; B3LYP, lanl2dz for nickel and 6-31+G** for all other atoms.

The geometry about the nickel center dramatically changes for the three complexes, viz: tetracoordinate Ni(II) complex 1 is nearly planar,2 Ni(I) compound 2 has a pyramidal geometry with the metal ion out of the ligand plane and Ni(0) complex 3 possesses pseudotetrahedral coordination (Fig. 3 and Table 1, see especially the N-Ni-C angle variations). Thus, with the PNP ligand we have employed and the various nickel complexes generated we present a notable system in which straightforward electron occupation affects the metal complex geometry and their reactivity, vide infra.

II. Reaction of Nickel Monocarbonyl Complexes with CH3I

In order to understand the reactivity of the nickel monocarbonyl species 1, 2 and 3, we employed a series of alkyl iodides. Due to the relevance of the C-C bond formation to the ACS chemistry, we examined which oxidation states of nickel carbonyl species can generate acyl products such as (PNP)Ni(O)COCH3 (4). While (PNP)Ni(CO)2[BF4] (1) does not show any reactivity toward iodomethane, (PNP)Ni(CO)Na (3) displays an instantaneous reaction with ~1.3 equivalent of iodomethane in THF at ~35 °C showing a color change from orange to red (Scheme 3 and Table 2). The resulting product reveals a methyl signal at ~0.30 ppm (t, J = 8.8 Hz) in 1H NMR spectrum, which is identified as (PNP)NiCH3 (6) previously reported by Ozorov and coworkers (Scheme 3 and Fig. 5).12

Scheme 3

The same reaction conducted with a monovalent nickel (PNP)NiCO (2), however, revealed favorable production of the acetyl moiety over ligand substitution (Scheme 3). Upon addition of 1.1 equivalent of iodomethane to the THF solution of 2 an immediate color change from green to greenish yellow occurred. The resulting solution possesses three diamagnetic species (PNP)NiI3COCH3 (4, 37%), (PNP)NiII1 (5, 50%) and (PNP)NiI2CH3 (6, 13%), confirmed by both 1H and 13C NMR data (Scheme 3 and Table 2). In a slow reaction (40 hrs at room temperature), the acyl product, 4 was independently synthesized from the reaction of (PNP)NiCH3 (6) with CO (g) in good yield (81%) (Supporting Information). The carbonyl vibration of 4 was detected at 1616 cm⁻¹, clearly shifted from the vibration of precursor 2 (1927 cm⁻¹, Supporting Information). The solid-state structure of 4 clearly shows an acetyl moiety bearing a C–O bond (1.225(2) Å) in a distorted-square-planar nickel complex (\( \angle N-Ni-C = 178.57(6)^\circ \)) and \( \angle P-Ni-P = 167.72(2)^\circ \) (Fig. 5).

Fig. 5 Displacement ellipsoid (50%) representations of (PNP)Ni(O)COCH3 (4) and (PNP)NiCH3 (6). Hydrogen atoms and molecules of co-crystallization are omitted for clarity. See Table 3 and Supporting Information for details.
Table 2 Reactions of 2 and 3 with iodoalkanes.\textsuperscript{14}

<table>
<thead>
<tr>
<th>Reagent</th>
<th>NiCOR</th>
<th>NiR</th>
<th>NiI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Mel</td>
<td>37%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>EtI</td>
<td>48%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>'PrI</td>
<td>49%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>'PrI</td>
<td>50%</td>
<td>Not detected</td>
</tr>
<tr>
<td></td>
<td>'BuI</td>
<td>45%</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Table 3 Physical parameters for the NiR and NiCOR species.

<table>
<thead>
<tr>
<th></th>
<th>(J) (ppm)</th>
<th>(\nu_{CO}) (cm(^{-1}))</th>
<th>C-O (Å)</th>
<th>Ni-C (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiMe (6)</td>
<td>35.47</td>
<td>–</td>
<td>–</td>
<td>1.963(5)</td>
</tr>
<tr>
<td>NiEt</td>
<td>32.03</td>
<td>–</td>
<td>–</td>
<td>1.980(8), 1.97(2)*</td>
</tr>
<tr>
<td>NiPr(_2)</td>
<td>32.26</td>
<td>–</td>
<td>–</td>
<td>1.980(8), 1.97(2)*</td>
</tr>
<tr>
<td>NiCOMe(4)</td>
<td>35.95</td>
<td>1616</td>
<td>1.225(2)</td>
<td>1.865(2)</td>
</tr>
<tr>
<td>NiCOEt</td>
<td>35.56</td>
<td>1616</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NiCO'Pr</td>
<td>35.11</td>
<td>1616</td>
<td>1.215(6)</td>
<td>1.869(4)</td>
</tr>
<tr>
<td>NiCO'Pr</td>
<td>33.97</td>
<td>1610</td>
<td>1.221(3)</td>
<td>1.873(2)</td>
</tr>
<tr>
<td>NiCO'Bu</td>
<td>31.36</td>
<td>1606</td>
<td>1.217(2)</td>
<td>1.886(1)</td>
</tr>
</tbody>
</table>

\(n\)-propyl group was disordered over two distinct positions.

III. Reaction of Nickel Monocarbonyl Complexes with RI

Interestingly, our results show that C-C bond formation between a nickel carbonyl and a methyl group selectively occurs at a nickel(I) center, while the nickel(0) version favors ligand substitution. In order to investigate the possible steric effects on the acylation, a series of iodoalkanes were treated with both nickel(0) and nickel(I) carbonyl species. Upon addition of 1.1–1.3 equivalent of RI (R = Me, Et, 'Pr, 'Pr and 'Bu) to (PNP)Ni(CO)Na (3) at \(-35^\circ C\), the reaction mixture revealed an immediate color change to brighter orange. The solution possesses two diagnostic species, NiCOR and NiR in different ratios depending on the R group (Table 2). The same reaction was conducted with (PNP)NiCO (2) revealing the product mixture of NiR and NiCOR in different ratios, along with a ~50% yield of (PNP)NiI (5) (Table 2). These results with both species, 2 and 3 show that a relatively bulky R group favors the formation of an acyl moiety (Table 2). According to the space filling models of 2 and 3, both nickel centers are sterically hindered by isopropyl groups and the backbone phenyl groups of a PNP ligand (Figure 6). This affects the reactivity of both nickel(I) and nickel(0) carbonyl species toward alkyl iodide. The formation of (PNP)NiCOR species is dominant when a relatively more bulky R group such as 'Pr and 'Bu are utilized, whereas smaller R-groups favor the formation of corresponding nickel alkyl species. Currently, our results clearly reveal that a smaller methyl iodide or a methyl radical species can possibly access the nickel center to generate (PNP)NiCH\(_3\) species; 13% in 2 and >99% in 3, in which the origin of the clear reactivity differences of 2 and 3 can be assured to be electronic and not steric. All NiR and NiCOR complexes were fully characterized by various spectroscopic methods and X-ray crystallography. Selected data are listed in Table 3.

According to our study, only acylation occurs with the nickel(I)-CO species (2) revealing a different reactivity compared with that for 3. One possible explanation for this difference involves the reaction of nickel(I) species with methyl iodide to produce Ni(II)-I through a radical-type reaction pathway. Organonickel cross-coupling of alkyl electrophiles may be possible whereas the nickel(I) species can react with alkyl iodide to produce a nickel-iodide and alkyl radical.\textsuperscript{3c,3d,17} This is in line with the observation when CH\(_2\)OTf was present and results in no reaction progress for the methylation of 2 (Scheme 4 and Supporting Information).\textsuperscript{17} This indicates the reaction with CH\(_3\)I follows the radical pathway.\textsuperscript{3c,3d,17} Consequently, once a methyl radical is generated, it would react with 2 to yield a mixture of products (Scheme 4). The nickel-acyl product could be generated from the migratory insertion of CO with Ni(II)-Me. However, it seems that 2 does not follow this route since migratory insertion of CO with (PNP)NiCH\(_3\) is much slower (40 hrs) than that of the methylation reaction (<1 min) for the nickel(I)-CO species (2) under the same conditions (Supporting Information). If binding of a methyl radical occurs at the nickel(I) center of 2 through a radical pathway, the formation of the five-coordinate (PNP)Ni(CO)(CH\(_3\)) intermediate is expected. The same species can be generated from the reaction between 3 and CH\(_3\)I. However, we believe that 2 follows a separate reaction pathway(s) because of the
product distributions from reactions involving 2 and 3 (Table 2).

To better understand this C-C bond formation, a new mechanism which involves the reaction of Ni(i)CO with a methyl radical to produce a known intermediate species, Ni(i)CO(CH₃) is proposed. A slight but significant calculated spin density (7.8%) on carbon atom at the CO ligand of 2 was found (DFT calculations, Supporting Information). Therefore, direct C-C bond formation might be an alternate possible reaction pathway. Mechanistic studies are currently under investigation to help explain such reactivity differences of nickel carbonyl species in +1 vs. 0 oxidation states.

![Scheme 4](image)

Conclusions

In summary, we have reported the synthesis and characterization of three different oxidation state of nickel carbonyl species, formally +2, +1 and 0. Although there is a dramatic change in CO vibrational frequency for three nickel monocarbonyl species, there is no significant effect on metal-ligand bond length in their solid state structures. This results from the occupation of an orbital with antibonding character which weakens the Ni-C σ-bonds. However, the nickel coordination geometry change was dramatic; NiCO is nearly square planar, Ni₂CO has a pyramidal and Ni₃CO possesses a pseudotetrahedral coordination environment in compensating for the electronic effects. These clearly support the presence of an additional electron occupying the dₓz²-y² orbital, which establishes a series of consecutive electron configurations from d⁸ to d¹⁰. The reactivity of these three nickel carbonyl species with iodomethane was examined to compare and contrast C-C bond formation. Interestingly, C-C coupling was observed only in a Ni₂CO species (2) from the reaction with Mel. This is the first case where the unique capability of a Ni₂CO species in C-C bond formation has been recognized, in comparison with a closely related zero-valent nickel species.

Acknowledgements

This work has been supported financially by a National Research Foundation (NRF) grant funded by the Korea Government (Ministry of Education, Science, and Technology, N01110580) and by KAIST Institute for the BioCentury. We thank Dr. Y. J. Park, Dr. M. S. Seo, and Prof. W. Nam at Ewha Womans University for the data collection on their mass facilities. We also thank Dr. S. H. Kim at Korea Basic Science Institute for the EPR data collection of 2 and its interpretation. Prof. David G. Churchill and Prof. Sukbok Chang are acknowledged for insightful discussions concerning the reaction mechanism mediated by nickel.

Notes and references

Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea Fax: +82 42 350 2810; Tel: +82 42 350 2814; E-mail: yunholee@kaist.ac.kr

Electronic Supplementary Information (ESI) available: Characterization data for 2–6, (PNP)NiR and (PNP)NiCOR; CCDC 198046 (2C(P_{r,r}), 918074 (3), 996897 (4), 996898 (6), 996901 (PNP)Ni(R), 996902 ((PNP)NiCOR), 996903 ((PNP)NiR), 996904 ((PNP)NiCOR), 996905 ((PNP)NiCOR); details of DFT calculations. See DOI: 10.1039/c000000x/

(c) W. Imhof, H. Görils and K. Halbauer, *Acta Cryst.*, 2008, **E64**, m1000.  
13 D. Adhikari, M. Pink and D. J. Mindiola, *Organometallics*, 2009, **28**, 2072-2077.  
14 The ratios of the species in the product mixture were determined by the integration of a corresponding signal in the $^{31}$P NMR spectrum. See Supporting Information for details.  
17 (a) F.-S. Han, *Chem. Soc. Rev.*, 2013, **42**, 5270-5298.  
A table of contents entry

Reaction of the nickel(I) carbonyl species with CH$_3$I revealed the formation of (PNP)NiCOCH$_3$ different from its zerovalent congener.