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Transition state or Kramers’ rate theory has been used to quantify the kinetic speed of many chemical, physical and biological
equilibrium processes successfully. For non-equilibriumsystems, the analytical quantification of the kinetic rate is still chal-
lenging. We developed a new transition state or Kramers’ rate theory for general non-equilibrium stochastic systems with finite
fluctuations. We illustrated that the non-equilibrium rateis mainly determined by the exponential factor as the weightaction
measured from the basin of attraction to the “saddle” or moreaccurately “global maximum” point on the optimal path rather
than the saddle point of the underlying landscape as in the conventional transition state or Kramers’ rate formula for equilibrium
systems. Furthermore, the pre-factor of the non-equilibrium rate is determined by the fluctuations around the basin of attraction
and “saddle” point along the optimal paths. We apply our theory for non-equilibrium rate to fate decisions in stem cell differenti-
ation. The dominant kinetic paths between stem and differentiated cell basins are irreversible and do not follow the gradient path
along the landscape. This reflects that the dynamics of non-equilibrium systems is not only determined by the landscape gradient
but also the curl flux, suggesting experiments to test theoretical predictions. We calculated the transition rate between cell fates.
The predictions are in good agreements with stochastic simulations. Our general rate and path formula can be applied to other
non-equilibrium systems.

1 Introduction

For complex chemical and biological systems, identifying the
most important dynamic flow and estimating the transition
rates from one stable state in a basin of attraction defining
an equilibrium or nonequilibrium chemical state under fluc-
tuations, to another is crucial in understanding the underlying
kinetic mechanisms and global robustness1,2. Furthermore,
the driving force of many dynamical systems in chemical and
physical world can not be written in terms of the pure gra-
dient of a potential, which is closely linked to the underly-
ing non-equilibrium natures3. For example, the setups for
the normal bulk enzyme kinetic experiments are sometimes
in non-equilibrium conditions such as constant flow. In sin-
gle molecule enzymatic experiments, the substrate concentra-
tion is high and can be thought of not changing significantly.
This often creates non-equilibrium yet steady conditions for
enzyme kinetic measurements4–11.
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P. R. China
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University, Changchun, Jilin, 130021, P. R. China.
‡E-mail: jin.wang.1@stonybrook.edu; Tel: +1-631-632-1185; Fax: +1-631-
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For the equilibrium systems, the global stability and robust-
ness of a complex stochastic system can be quantitatively stud-
ied if the underlying potential landscape is known a priori.
For instance, the dynamics and the dominant (the most prob-
able) kinetic transition paths between different states follow
the gradient ascending or descending on the potential land-
scape. Furthermore, the famous transition state or Kramers’
rate formula for kinetic speed is determined by the barrier be-
tween the basins of attraction (the barrier height is determined
by the difference in energy between the stable fixed point and
the saddle point on the underlying potential landscape) andthe
fluctuations around one basin and the saddle point between the
basins of attractions. This was proposed by Eyring in chem-
istry and Kramers in physics on thermally activated barrier
crossing more than 70 years ago12,13. It provides a good an-
alytical approximated formula of the transition rate from one
attractor to another for equilibrium systems with small fluc-
tuations. However, for general non-equilibrium dynamical
systems, such as gene regulatory networks or enzymatic re-
actions, transition state rate formula often fails becausethe
dominant dynamic paths are not reversible and do not follow
the gradient path of the underlying non-equilibrium potential
landscape14.

For non-equilibrium stochastic processes with constant dif-
fusions, several approaches have been proposed to identifythe
dominant (optimal) transition paths between arbitrary states,
especially between stable states14–22. Such formalism has
wide applications ranging from equilibrium dynamics such
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as protein folding to non-equilibrium systems such as gene
regulation networks14,20,23–26. However, many chemical and
biological systems have finite, non-constant, local diffusion
depending on the underlying variables, for example, concen-
trations. Such location dependent diffusion coefficients might
have significant impact on kinetic paths as well as transition
rates. Therefore, a complete theoretical formalism of non-
equilibrium paths accounting for the non-constant diffusion
will be natural and necessary.

More importantly, the equilibrium transition state rate can
be estimated by the path integral formalism27. However,
an analytical formalism of the transition state rate in non-
equilibrium systems, which measures the capability of com-
municating between stable states and therefore the global ro-
bustness, is still challenging. It was argued that, in the zero
noise limit, the dominant path will go through the saddle point
between the basins of attraction and an analytic approxima-
tion of the escape rate from the basin can be derived15,17,18.
However, in general non-equilibrium systems, small but finite
fluctuations often emerge, and the dominant kinetic paths do
not necessary go through the saddle points14.

In this work, we developed a new analytical transition state
theory for kinetic rate of general non-equilibrium systems. In
this formula (theory), (i) we first obtain the most probable path
according to the path integral by minimizing the action. Here
the starting point and the ending point for the path integralare
the two stable fixed pointsS andS′. (ii) Because of the non-
zero flux, this most probable path will not follow the gradient
path of the landscape. In addition, under finite fluctuationsthis
most probable path may not even go through the original sad-
dle pointŜ. (iii) Then, on the most probable path, we search
for Ŝ′, the new “saddle” or more accurately “global maximum
along the dominant path”. For general non-equilibrium sys-
tems under finite noise,̂S′ will not likely to be at the origi-
nal saddle point̂S of the driving force. (iv) The action of the
path integral fromSto S′ obtained in (i), which is the minimal
among all paths, is smaller than the action through the origi-
nal saddlêSor the action along the gradient path of landscape.
This action calculated along the dominant path from the sta-
ble fixed point to the “global maximum along the dominant
path” will give the exponential term in our new transition state
rate theory. As the comparison, in conventional transitionstate
theory for equilibrium systems, the kinetic rate is only deter-
mined by the barrier from the saddle point between the basins
of attraction on the underlying landscape. Furthermore, the
pre-factor part reflects the fluctuations around the basin and
the local curvature around the new saddle along the optimal
path.

As an application, we will study an important example
of cell developmental circuit composed of a pair of self-
activating and mutually inhibiting genes. In various tissues,
this gene regulatory motif has been considered to control bi-

Fig. 1 (Color online) The potential barrier∆U for calculating the
transition state or Kramers’ escaping rate. The basins of attractions
are localized atSandS′. Ŝ is the saddle point.

nary cell fate decisions in pluri/multipotent stem cells28–34.
For example, the multipotent common myeloic progenitor cell
(CMP) faces the binary cell fate decision between the myeloid
and the erythroid fate. Such fate commitments are deter-
mined by transcription factors (TF), PU.1, and GATA1. The
relative expression levels A (PU.1) and B (GATA1) of these
two reciprocal TFs can promote the decision towards either
lineage31,33. For this system, we show that kinetic domi-
nant paths for the differentiation and reprogramming are ir-
reversible and do not pass through the saddle points of the
underlying potential landscape. Using our newly developed
transition state theory for kinetic rate of non-equilibrium sys-
tems, we also estimate the transition rates of the differentiation
from our new formula (theory), which agree with the stochas-
tic simulation results within the same order of magnitude. This
framework can be applied to other general non-equilibrium
chemical systems such as enzymatic kinetics, whose reaction
rate can be easily measured by enzyme assays35, networks and
dynamical systems.

2 Results and Discussions

2.1 Equilibrium Transition State Rate

In this section, we will first review the equilibrium transition
state or Kramer’s rate theory. The stochastic dynamics can
be quantified in continuous spaces by theLangevinequations
(in Ito’s form): ẋµ = Fµ(~x) + ∑aBa

µ(~x)ξ a(t), where~x rep-
resents the dynamical variables of the system.Fµ(~x) is the
driving force. ξa(t) represents the Gaussian distributed white
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noise unit fluctuations.Ba
µ(~x) represents the strength or mag-

nitude of the variable dependent fluctuations:〈ξ a(t)ξ b(t ′)〉 =
δ abδ (t−t ′). In addition, rather than each individual trajectory,
the corresponding probabilityP(~x, t) obeys theFokker-Planck
equation36:

dP
dt

= ∑
µ

∂µ(−FµP)+ ∑
µ,ν

1
2

∂µ∂ν(εµν P) (1)

with the diffusion coefficientεµν (~x) = ∑a,bBa
µ(~x)Bb

µ(~x)δ ab.

Here, we use the notation∂µ ≡ ∂
∂xµ

. For convenience, we

also useP(~x) ≡ P(~x,t) to represent the time dependent proba-
bility distribution andPSS(~x) to indicate the time independent
steady state probability distribution. When considering specif-
ically the intrinsic noise from molecular number fluctuations,
the resulting theFokker-Planckequation, whose diffusion co-
efficients depend on the location~x (concentrations), can be de-
rived from the second order Taylor expansion of the underly-
ing chemical master equations (CME) describing the intrinsic
fluctuations37.

The Fokker-Planck equationcan be rewritten in the for-
mat of probability conservation where the local probability
change is equal to the net in or out flux:dP(~x,t)

dt = −∂ · j. The
system is considered to be in detailed balance if the steady
state flux: Fµ(~x)PSS(~x) − ∑ν

1
2∂ν [εµν (~x)PSS(~x)] = jSS

µ (~x) is

zero: ~jSS = 0. In this case, the system is in equilibrium
state. The equilibrium probability distribution is closely re-
lated to the underlying potential and the driving force is de-
termined by the gradient of the equilibrium potential:U =
−lnPeq andFµ(~x) = − 1

2∂µ [U(~x)]+ ∑ν
1
2∂ν [εµν (~x)]. For gen-

eral non-equilibrium systems without detailed balance, the
flux is not zero,~jSS 6= 0, the steady state flux is a divergence
free vector with~∂ ·~jSS= 0 reflecting its rotational curl na-
ture. The flux quantifies the degree of how far the system
is away from the equilibrium. For non-equilibrium dynam-
ical systems, the dynamics determined by the driving force
(Fµ(~x) = − 1

2∂µ [U(~x)] + ∑ν
1
2∂ν [εµν(~x)] + ~jSS/Pss ) and the

global nature are quantified by both the steady state probabil-
ity distribution which defines the non-equilibrium landscape
U = −lnPss and the curl probability flux:jSS

µ (~x).
For one dimensional systems, which are integrable with de-

tailed balancejSS= 0 under nature boundary conditions, tran-
sition state theory for the escaping rate from one basin to an-
other basin gives

req
K =

√

U ′′(S))|U ′′(Ŝ)|

2π
e−2[U(Ŝ)−U(S)]/ε (2)

Here,U(x) is the potential function in the equilibrium system
and the driving force is a gradient of the potential:F(x) =
−U ′(x), as shown in Fig. 1. The attractor is located atSand
the saddle point of the potential landscape is atŜ where the

barrier is. In the small noise limitε → 0, the transition state
rate in equation (2) can also be rewritten as38

req
K = (2π)−1

√

−
dF
dx

(S)
dF
dx

(Ŝ)e−SDOM
HJ (3)

in which SDOM
HJ =

∫ Ŝ
S p · dx is the HJ weight actionor work

(Hamilton-Jacobi weight action) along the dominant path
from S to Ŝ14,27 where p is the canonical momentum and
dx is the variable displacement of the system. The physi-
cal meaning is clear. The transition state rate for equilibrium
process is determined by two factors. The dominant factor
is determined by the exponential of the weight action. The
other is the prefactor determined by the fluctuations around
stable point and saddle or transition state of the underlying
equilibrium potential landscape. The 1 dimensional transition
state rate as in equation (2) can be generalized into the N di-
mensional form13,39,40for equilibrium systems. However, for
general non-equilibrium systems, the driving force can notbe
written as a pure gradient and there is no well defined poten-
tial U to give the driving force as a gradient of a potential,
Fµ(~x) = −∂µU(~x). In addition, without the detailed balance,
the curl current flux~jss is not zero, which can lead the transi-
tion path to deviate from the gradient one and theHJ weight
action SDOM

HJ becomes path dependent14. The dominant or op-
timal paths may not pass through the saddle points or tran-
sition states. Therefore, new transition state rate for general
non-equilibrium systems is needed. We have to specify the
transition path as well as the complete form of the weight ac-
tion in order to quantify the rates from transition states might
be path dependent in contrast to the equilibrium case where
they are fixed.

2.2 Exponential Factor of Non-equilibrium Transition
State Rate

For a 2 (or N) dimensional non-equilibrium system, we need
to develop a new transition state theory for kinetic rates be-
yond the equilibrium one dictated by equation (3). The gen-
eralized weight action for non-equilibrium systems can be
derived as (for details see supporting information): S =
∫ t f
ti dtL with theLagrangian

L = ∑
µν

ε−1
µν

2
(ẋµ −Fµ)(ẋν −Fν)+ ∑

µνχ

1
2

εµχ ∂χ(Fνε−1
µν ) (4)

In the zero fluctuation limitε → 0, the actionS=
∫ t f
ti dtL

leads to the exponential part of the Freidlin-Wentzell’s the-
ory15. In addition, in the zero fluctuation limit, the ratio of
e−Sl1/e−Sl2 between the two smooth pathsl1 and l2 agrees
with Onsager-Machlup function16.

The optimal path which contributes most to the path weight
by taking the functional variations of the weight actionSwith
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Fig. 2 (Color online) 2D illustration of non-equilibrium landscape
with the irreversible dominant transition paths between basinsSand
S′ (green lines with arrows) and the gradient path (white line). Here,
Ŝ is the saddle point and̂S′ is the “global maximum along the
dominant path”.
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Fig. 3 (Color online) 3D illustration of non-equilibrium landscape
with the irreversible dominant transition paths between basinsSand
S′ (purple lines with arrows) and the gradient path (white line)).
Here,Ŝ is the saddle point and̂S′ is the “global maximum along the
dominant path”.

respect to the pathsxµ(t)’s, we obtain the equation of motion
for the dominant path which satisfies theEuler-Lagrangian
equationd

dt
∂L

∂ ẋα
= ∂L

∂xα
. The dominant path approach gives the

lowest order approximation of the full path integral weightac-
tion14.

Instead of solving theEuler-Lagrangianequation of mo-
tion directly, the dominant kinetic path can also be evaluated
by minimizing the weight actionS in path integral formalism.
Define canonical momentumpµ = ∂L

∂ ẋµ
= ∑ν ε−1

µν (ẋν −Fν), the
total energy

−E = −H = L − pµ ẋµ (5)

conserves along the dominant kinetic path. Then, theHJ
weight action41, which should be minimized to find the domi-
nant path, can be written as (for details see supporting infor-
mation):

SHJ(xi ,xf ) =

∫ xf

xi

√

2(E−Ve f f)dl−
∫ xf

xi
∑
µν

ε−1
µν Fνdxµ (6)

which is simplified to a line integral along the dominant path

dl =
√

∑µν ε−1
µν dxµdxν in a curved space with distance mea-

sureε−1
µν where theεµν characterize the fluctuation or diffu-

sion strengths.

2.3 New Transition State Rate for Non-equilibrium Sys-
tems

We found the forward and backward dominant paths (lines
with arrows) are irreversible and do not go through the saddle
point Ŝon the gradient path (white lines) along the landscape.
However, using the effective driving forceFe f f

µ = ∑ν ε−1
µν Fν

in the 2nd term on the right side of equation (6), we can al-
ways find the “global maximum along the dominant path”Ŝ′

with the componentFe f f
l (S′) along the path is zero, as shown

in in Fig. 2 (2D) and Fig. 3 (3D)! This is becauseFe f f
l always

changes its sign from the neighborhood ofS (pointing toS)
to the neighborhoodS′ (pointing toS′). Normally, there will
be only one “global maximum along the dominant path” (or
one new saddle point along the path), since the new saddle is
between one basin or the other. Multiple new “saddles” along
the path will introduce additional basin of attractions between
them. In the extreme case when there are multiple new “sad-
dles” along the path, we choose the last one before reaching
the ending stable fixed point S asŜ′. Therefore, by replac-
ing the saddle point̂S for equilibrium systems by the “global
maximum along the dominant path”Ŝ′ for the non-equilibrium
system, we can derive a new analytical transition state theory
for kinetic rates of non-equilibrium systems (details in sup-
porting information) as

rnoneq
K = (Eτ)−1 =

λu(Ŝ′)
2π

√

detM(S)

|detM(Ŝ′)|
e−SDOM

HJ (7)
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where theHJ weight action SDOM
HJ =

∫ Ŝ′

S p · dx is integrated
along the dominant path from the fixed point (basin) atS to
the “global maximum along the dominant path” atŜ′.

For the pre-factor, we follow the similar derivation as the
case of zero noise limit18 (details reviewed in supporting
information). Here,λu(Ŝ′) is the positive eigenvalue of force

matrix Fµ,ν(Ŝ′) =
∂Fµ
∂xν

(Ŝ′) at the “global maximum along the

dominant path”Ŝ′, which represents the fluctuations along the
dominant path at̂S′. At the stable stateS, we have the sta-
tionary solution for theFokker-Planckequation and the matrix
M(S) satisfy the algebra equation (8) at the stable stateS:

∑
ξ χ

εξ χM,µξ M,νχ +∑
ξ

M,µξ Fν,ξ +∑
ξ

M,νξ Fµ,ξ = 0 (8)

At the “global maximum along the dominant path”Ŝ′, since it
is not a fixed point (forceF 6= 0), we do not have a stationary
solution for theFokker-Planckequation atŜ′ and the matrix
M(Ŝ′) satisfies the dynamic equation atŜ′:

dMµν(x)

dt
=

∂ 2H
∂ pξ ∂ pξ ′

Mµξ Mνξ ′ −
∂ 2H

∂xµ∂xν

−
∂ 2H

∂xν∂ pξ
Mµξ −

∂ 2H
∂xµ ∂ pξ

Mνξ (9)

The
√

detM(S)

|detM(Ŝ′)|
represents the ratio of the curvature around

saddle along the dominant path and stable basin state
(detM(S) represents the second order fluctuations around sta-
ble basin state in all directions, whiledetM(S′) represents the
second order fluctuations around the “saddle point”Ŝ′ in all
directions). In other words,λu(Ŝ′) measures the frequency or
fluctuations of the single unstable mode at the saddle-pointŜ′,
detM(S) measures the fluctuations in terms of frequencies of
all stable modes atS, anddetM(S′) measures the fluctuations
in terms of frequencies of all stable modes and unstable modes
atŜ′. For the exponential factor, the weight actionSDOM

HJ repre-
sents the weight actionSHJ, as defined in equation (6), calcu-
lated along the one dimensional dominant pathl from the sta-
ble basinS to the “global maximum along the dominant path”
Ŝ′. In this rate expression for non-equilibrium dynamical sys-
tems, the major contribution comes from the exponential term
with the weight action from stable basin state to the saddle
point on the dominant path (based on the path integral formal-
ism in a curved length space). While the non-exponential pre-
factor gives the second order correction or fluctuations deter-
mined locally at the stable pointS and the “global maximum
along the dominant path”̂S′.

On the one hand, in conventional transition state theory for
equilibrium systems, the kinetic rate is determined by the sad-
dle point on the underlying landscape or more explicitly the
potential barrier between the basins of attraction (potential

difference between the saddle point and stable basin on the
landscape). On the other hand, in our kinetic rate formula
(theory) for non-equilibrium systems, the kinetic rate is deter-
mined by the weight action along the dominant path from the
basin to the “global maximum along the dominant path” . We
see the non-equilibrium ‘saddle point’ is path and directional
dependent (the forward and backward paths do not share the
same ‘saddle point’ as in the conventional equilibrium caseas
shown in Fig. 5). In addition, although equation (7) is derived
in 2 dimensional space, it can be generalized to any dimension
with the same final form.

2.4 Compare with Transition State Rate of Zero Noise
approximation

With the zero fluctuation approximations15,17,18, Transition
State Rate can be written as

rnoneq
K = (Eτ)−1 =

λu(Ŝ)

2π

√

detM(S)

|detM(Ŝ)|
K(Ŝ)e−

∫ Ŝ
S ∑µ pµdxµ (10)

Here, because the possibility of crossing the separatrix inei-
ther directions equals 1/2, the total escape rate (rnoneq

K with
the factor 1/2π) is half of the transition rate to the separa-
trix 18. Matrix M satisfies the equation (8) and the frequency
factorK(Ŝ′), multiplied by the frequency of excursions in the
vicinity of Ŝ′ in contributing to the pre-factor, satisfies the dy-
namics

dK
dt

= −
[

∑
µ

∂ 2H
∂xµ∂ pµ

+∑
µν

1
2

∂ 2S
∂xµxν

∂ 2H
∂ pµ ∂ pν

]

K (11)

There are two major differences in equation (7) and equa-
tion (10). (i) In equation (7), the dominant path doesn’t nec-
essary go through the saddle of the forceŜ, while in equation
(10), the dominant path always go through the saddle of the
force Ŝ, which is a right assumption only under zero noise
limit. (ii) We derived the path dependent terme−SDOM

HJ from
pure path integral formalism, which is an exact solution of
Fokker-Plank equation. While in equation (10), the path de-

pendent termK(Ŝ)e−
∫ Ŝ
S ∑µ pµ dxµ is derived through WKB for-

malism, which is just a lowest order approximated solution of
Fokker-Plank equation. In zero noise approximation, the fre-
quency factorK(Ŝ) 6= 1 is from WKB approximation, which is
already included ine−SDOM

HJ from our path integral formalism.
Therefore, it can be expected our new transition state rate will
give better estimations than transition state rate of zero noise
limit, especially when the fluctuation is large.

3 Application: Cell Fate

In this section, we will apply our new dominant path for-
malism and non-equilibrium transition state theory for kinetic
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Fig. 4 (Color online) Network diagram of canonical gene regulatory
circuit of two mutually opposing proteins that positively
self-regulate themselves.

Fig. 5 (Color online) Dominant forward (S′ → S for differentiation)
and backward (S′ → S for reprogramming) transition paths (black
lines with arrows) between differentiated statesSand the
multipotent stateS′ on two dimensional illustration of the
underlying landscape.̂S is the saddle point on the landscape andŜ′s
are “the saddle points on the dominant paths”. The yellow line is the
gradient path along the landscape. Three blue regions represent 3
attractive basins: 2 differentiated states atSand one multipotent
state atS′. Black arrows represent the gradient force, while red
arrows represent the flux.

rates to a specific example of non-equilibrium network sys-
tem: a gene regulatory motif for binary cell fate decisions in
stem cells. In this biological system, we found two differen-
tiated attractors and one undifferentiated attractor. Thegene
regulatory circuit, as shown in Fig. 4, consists of mutual regu-
lation of two opposing fate determining types of genes,A and
B, which can be translated into proteinsA andB respectively.
It has been shown that this module controls developmental
cell fate decision (i.e. GATA1 and PU.1) in several instances
of multipotent stem or progenitor cells32,33. The synthesis of
proteinA(B) is controlled by the concentrations of proteinA
andB. The proteinsA(B) can bind to the promoter of gene
A(B) to activate the synthesis rate ofA(B), which makes a self-
activation feedback loop. In the meantime, proteinA(B) can
bind to the geneB(A) to repress the synthesis rate ofB(A),
which makes a mutual repression loop.

In the adiabatic limit, the binding/unbinding processes are
much faster than the synthesis/degradation, and the model can
be expressed by the following chemical reactions representing
the synthesis, degradation and mutual interactions of the gene
products (proteins) (supporting information).:

OA
gA

−→ A, OB
gB

−→ B, A
kA−→ /0 B

kB−→ /0 (12)

in which gA(x1,x2) (kA ) andgB(x1,x2) (kB) are the effective
synthesis (degradation) rate of the proteinA and B respec-
tively. Here,gA(x1,x2) andgB(x1,x2) depend on the concen-
trations of the proteinA andB (x1 = NA/V,x2 = NB/V) as:

gA(x1,x2) = gA
0 +

a1x4
1

S4 +x4
1

+
b1S4

S4 +x4
2

(13)

gB(x1,x2) = gB
0 +

a2x4
2

S4 +x4
2

+
b2S4

S4 +x4
1

(14)

NA andNB are molecule numbers of proteinA andB, respec-
tively. V is the cell volume.a1,a2,b1,b2,kA,kB are positive
parameters that denote the strength of the following interac-
tions or processes: The first term represents basal level expres-
sion when there is no regulations, the second term represents
a self activation (of strengtha1,a2) that obeys a sigmoidal
transfer function, the third term represents mutual inhibition
(of strengthb1,b2). Both second and third terms are deter-
mined by the thresholds and Hill coefficients characterizing
the degree of cooperativity (here power 4 represents tetramer
binding of regulators to the genes). Finally, the degradation of
either factor is represented by the ratekA,kB. The correspond-
ing deterministic rate equation can be given as:

dx1

dt
= gA(x1,x2)−kAx1,

dx2

dt
= gB(x1,x2)−kBx2 (15)

At molecular number is finite, the intrinsic fluctuations
are unavoidable. The deterministic equation above is inade-
quate and should be modified to the corresponding stochas-
tic equation under fluctuations. When the number of the
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molecules becomes large, the Taylor expansion to the second
order leads to the Fokker-Planck equation (1) with the driving
force~F = 1

V (gA− kAx1,gB− kBx2) and diffusion coefficients
ε11 = 1

V2 (gA+kAx1),ε22 = 1
V2 (gB+kBx2),ε12 = ε21 = 0 where

V is the cell volume. However, here we do not attempt to use
Fokker-Planck equation to approximate a CME. In general, no
diffusion process can accurately capture both the pre-factor
and the exponents of the transitions asymptotically for a CME
in its limit of infinite molecule population, which is connected
to Keizer’s paradox. Therefore, here we only consider a dif-
fusion process with the above driving force and the diffusion
coefficients as the start of our transition state rate theory. For
the comparison, we only use the Langevin dynamical simu-
lations for diffusions instead of the Gillespie simulations for
CME.

For simplicity, we consider a symmetric case for parame-
ters of self activation, mutural repressions and degradations:
a = a1 = a2;b = b1 = b2;k = kA = kB. When the parameters
are set asa = 1,b = 1,k = 1,S= 0.5,n = 4,gA

0 = gB
0 = 0.1, it

is found that there are three fixed points of the deterministic
equations: two differentiated statesS1 = (2.09481,0.10519),
S2 = (0.10519,2.09481) and one undifferentiated stateS0 =
(1.1,1.1). On the potential landscape, the locations of the
attractors correspond to the fixed point of the averaged rate
equations, as shown in Fig. 5 forV = 25. The two asymmet-
ric attractorsS represent the differentiated states with almost
mutually excluding expression of proteinA (i.e. GATA1) and
B (i.e. PU.1). On the other side, the central symmetric attrac-
tor S′, characterized by approximately equal expression levels
of proteinA and proteinB, represents the multipotent state that
exhibits the characteristic balanced or promiscuous expression
of the two opposing, fate-determining concentrations-a hall-
mark of the indeterminacy of the undecided multipotent stem
cell. We also show the steady state probability flux (red ar-
rows) on the landscape in addition to the gradient of poten-
tial landscape (black arrows). It is expected that the curl cur-
rent flux component of the driving force leads to the deviation
of the actual path from the one of the landscape gradient as
shown in Fig. 5. Numerically, the optimal path and its weight
action can be obtained by minimizing the discretized target
function (details in supporting information).

Therefore, we can quantitatively uncover the dominant dif-
ferentiation paths from the undifferentiated stateS′ to the dif-
ferentiated states atS, and the dominant reprogramming paths
from Sback toS′, as shown in Fig. 5. It is easy to notice that
the forward and backward transition paths are irreversible. In
addition, neither dominant paths follow the gradient path (yel-
low line) on the landscape nor go through the saddle point, in
contrast to what is expected from the gradient dynamics of the
equilibrium systems. In a non-equilibrium system, the resid-
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Fig. 6 (Color online) The mean first passage time (MFPT) of the
differentiation (S′ → S) from our theoretical predictions
(Nonequilibrium TST), Langevin dynamics simulations, zero noise
approximations and equilibrium transition state theory, for different
cell volumeV (different fluctuation levels).

ual curl flux

Fµ(~x)PSS(~x)−∑
ν

1
2

∂ν [εµν (~x)PSS(~x)] = jSS
µ (~x) (16)

breaks the detailed balance and contributes to the weight ac-
tion or the weight of the paths in a path dependent manner. The
non-zero flux is contributed by the non-gradient force as the
first term in equation (16). It leads to the deviation of the dom-
inant kinetic paths from the naively expected steepest descent
gradient paths and the irreversibility between the forwardand
the backward paths. It is worthwhile to point out that the
Gaussian position dependent and non-Gaussian fluctuations
can also shift the saddle and the path from passing through
the original saddle. However, the forward and backward paths
are reversible for these fluctuations with zero flux. For non-
zero flux, the forward and backward paths are irreversible. In
our example of double negative feedback network as in Fig.
4, even for the Gaussian noise with constant diffusion coeffi-
cients, the flux as defined in equation (16) is still non-zero and
the system is still out-of equilibrium with irreversible paths
not passing through the landscape saddle. Our double negative
feedback network as in Fig. 4 provides a good example of non-
equilibrium system with the non-gradient force, in which the
equilibrium dominant path is inadequate and the irreversible
non-equilibrium dominant paths contribute at leading order to
the out-of-equilibrium kinetics.

In particular, following equation (7), since the dominant
paths for the non-equilibrium systems do not pass through the
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Fig. 7 (Color online) The mean first passage time (MFPT) of the
reprogramming (S→ S′) from our theoretical predictions
(Nonequilibrium TST), Langevin dynamics simulations, zero noise
approximations and equilibrium transition state theory, for different
cell volumeV (different fluctuation levels).

transition state or the saddle pointŜ, as discussed in this study,
the Kramer’s formula doesn’t hold any more and the kinetic
transition state rate is determined by the new “saddle point” Ŝ′

on the dominant path (not the saddle point on the landscape).
We then predicted accordingly the differentiation rate from

the central basin of stem cell state to the side basin of differ-
entiated cellrnoneq

K from S′ to S, (see Fig. 6), as well as the re-
programming rate from the side basin of differentiated cellto
the central basin of stem cell staternoneq

K from Sto S′ (see Fig.
7). The results of the kinetic transition ratesrnoneq

K = 1/MFPT
from equation (7), quantifying the Nonequilibrium TST (Tran-
sition State Theory), are compared with the predictions from
the Langevin dynamics simulations, the equilibrium transition
state theory (Kramers’ rate), as well as the zero fluctuation
approximations15,17,18. Our theoretical predictions according
to equation (7) agree with the direct stochastic simulations
within the same order of magnitude for different fluctuation
levels (on average, 26% larger for differentiation fromS′ to S
and 3% smaller for reprogramming fromSto S′), which is bet-
ter than the predictions according to the zero noise approxima-
tion (on average, 49% smaller for differentiation fromS′ to S
and 55% smaller for reprogramming fromSto S′) and the pre-
diction according to equilibrium transition state or Kramers’
theory (on average, 88% smaller for differentiation fromS′

to S and 82% smaller for reprogramming fromS to S′) as
shown in equation (3). As expected, zero noise approxima-
tion is worse in the small volume limit and becomes better in
the large volume limit, especially for differentiation (S′ to S).

Detail values can be found in tables at the end ofsupport-
ing information. For real complex physical and biological
systems in practice, the analytical rate formula presentedhere
provides a direct and good estimation of the transition rates
between different stable states.

4 Conclusions

In this work, we developed a new transition state or Kramers’
theory and associated analytical formula for the kinetic rates
from one attractor to another for general non-equilibrium dy-
namical systems with small but finite fluctuations. Using the
weight action from the path integral, we quantify the opti-
mal(dominant) paths. We found the optimal(dominant) paths
for general non-equilibrium systems do not necessarily go
through the saddle points. Importantly, we found that if we
replace the saddle point by the “the saddle point on the opti-
mal(dominant) path”, the complete expression of the kinetic
rate can be approximated from matching asymptotic expan-
sions.

As a result, our new transition state theory in terms of the
analytical rate formula for non-equilibrium stochastic dynam-
ical systems is determined by the difference in weight action
from the basin of attraction to the “saddle point” of the dom-
inant kinetic paths between the two basins of the attractions
in the exponential on the one hand, and by the fluctuations
around the basin of attractions and the “saddle” point of the
dominant kinetic path between the two basins of the attrac-
tions in the pre-factor on the other hand.

As an example, we applied our path integral formalism to
a gene regulatory motif for binary cell fate decisions in stem
cells. We found that the optimal paths often deviated from the
gradient paths and irreversible due to the presence of the curl
flux in addition to gradient force in non-equilibrium systems.
Furthermore the dominant kinetic paths do not go through the
saddle or transition state point on the landscape. We calculated
the dynamical time scale of transition for the differentiation as
an example. Our new transition state analytical rate formula
is in good agreements with the stochastic simulations. Our
new transition state theory and associate analytical formula for
kinetic rates (or Kramers’ rates) and kinetic path method are
general and can be applied to other non-equilibrium biological
and physical systems.
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