This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
On the Factors That Control the Reactivity of meta–Benzynes

Jinshan Gao, Bartłomiej J. Jankiewicz, Jennifer Reece, Huaming Sheng, Christopher J. Cramer, John J. Nash,* Hilkka I. Kenttämaa*

The reactivities of eleven 3,5–didehydropyridinium and six 2,4–didehydropyridinium cations toward cyclohexane were examined in the gas phase by using Fourier–transform ion cyclotron resonance (FT–ICR) mass spectrometry as well as high–level quantum chemical calculations. The results unequivocally demonstrate that the reactivity of meta–benzyne analogs can be “tuned” from more radical–like to less radical–like by changing the type and position of substituents. For example, σ–acceptor substituents at the 4–position and π–donor substituents at the 2–position in 3,5–didehydropyridinium cations partially decouple the biradical electrons, which results in lower energy transition states, and faster radical reactions. In contrast, σ–acceptors at the 2–position and π–donors at the 4–position in 3,5–didehydropyridinium cations cause stronger coupling between the biradical electrons, which results in lower radical reactivity. Three main factors are found to control the reactivity of these biradicals: (1) the energy required to distort the minimum energy dehydrocarbon atom separation to the separation of the transition state, (2) the S–T splitting at the separation of the transition state, and (3) the electron affinity at the separation of the transition state.
Introduction

Arynes1-2 play a pivotal role in the biological activity of enediyne cytostatics,3,4 combustion reactions,5,6 heterogeneous catalysis,7,8 as well as nuclophilic addition and cycloaddition reactions in organic synthesis.9-14 Hence, they have been the subject of many experimental and computational studies for the last few decades. In these studies, much effort has been dedicated to the elucidation of the thermodynamic properties,15-17 structures,18-28 and reactivity29-38 of arynes with the benzene skeleton (benzenes) and to the improvement of the understanding of substituent effects19,43 and ring heteroatom50-51 on the properties of these systems.

The ortho−benzene 1 (Chart 1) and its analogs are popular reagents in organic and organometallic synthesis procedures.11,12,14, 54, 55 The existence of ortho−benzene was firmly corroborated in 1942 and 1953 by Wittig56 and Roberts,57 respectively, although their existence as intermediates in various reactions had been hypothesized as early as 1870.58 They have been thoroughly studied computationally and experimentally due to the relative ease with which they can be generated in solution, compared to the other benzenes. These studies have resulted in the measurement of the IR spectrum of ortho−benzene isolated in low-temperature matrices,6,59 NMR spectra of ortho−benzene trapped in a hemiacetal20 and a microwave spectrum of ortho−benzene in the gas phase.60 The heat of formation of ortho−benzene (106.6 kcal mol−1) has been determined by threshold collision−activated dissociation (CAD) experiments35 and its singlet−triplet (S−T) splitting (−37.5 kcal mol−1; S−T splitting is defined as the energy difference between the lowest energy singlet state and the lowest energy triplet state) has been measured using negative ion photoelectron spectroscopy (NIPES).12 The ortho−benzene has a large S−T splitting7 due to a strong through−space coupling between the radical sites. Hence, a large amount of energy is required to uncouple the biradical electrons, which is the reason for the nonradical−type reactivity observed for ortho−benzene and its analogs.26

The para−benzene 3, was generated for the first time by Jones and Bergman by pyrolysis of cis−3−hexyne−1,5−diyne and verified through isotope−labeling and product trapping experiments in 1972.67 Although para−benzene and its analogs have been studied ever since, the most significant interest in para−benzene was piqued by the discovery in the 1990s of the naturally−occurring anticancer antibiotics (calicheamicins, esperamicins and dynemicins) that contain an enediyne group and whose bioactivity is associated with the in vivo formation of para−benzene derivatives.3,4,68-71 These intermediates are formed in cycloaromatization reactions of enediyne derivatives, now referred to as Bergman cyclizations.27-29 Unlike ortho−benzene analogs, para−benzene derivatives can undergo radical reactions. When interacting with DNA, they abstract a hydrogen atom from deoxyribose in both strands of double−stranded DNA, causing irreversible DNA cleavage (Figure 1). Unfortunately, the delayed high cytotoxicity of these antibiotics hinders their clinical use.78

Sander and co−workers have generated para−benzene (3) in an argon matrix by flash photolysis and measured its infrared spectrum.25 The para−benzene has been measured to have a heat of formation of 137.3 kcal mol−1 and a S−T splitting of −3.8 kcal mol−1 by Wenthold et al.4,17 The magnitude of the S−T splitting has been proposed to be the main factor controlling the reactivity of para−benzene and other related singlet biradicals by Chen et al.79,80 Since para−benzene has a much smaller S−T splitting17 than ortho−benzene due to the weak interaction between the radical sites via through−bond coupling, para−benzene and its analogs are expected to react exclusively via radical pathways.79,80 However, the through−bond coupling significantly reduces their reaction rates compared to those of related monoradicals.79,83 The partial uncoupling of the two biradical electrons in the transition state increases its energy by some amount that has been presumed to be related to the magnitude of the S−T splitting.79,83

meta−Benzene (2) and its derivatives have not received the same degree of attention that has been lavished upon the ortho− and para−benzenes and their analogs. In 1975, meta−benzene was first generated by dehydrohalogeneration of exo,exo−2,6−dibromobicyclo[3.1.0]hex−2−ene by Washburn.82 Since then, several methods, including pyrolysis, flash vacuum pyrolysis, and photolysis, have been developed to generate meta−benzene and its analogs.83-86 IR spectra of substituted meta−benzines in low temperature matrices have been measured.99,40,45,88,87,88 meta−Benzene has been determined15 to have a heat of formation of 122.0 kcal mol−1 and a S−T splitting of −21.0 kcal mol−1,17 which is smaller than that of ortho−benzene but larger than that of para−benzene. The two radical sites in meta−benzene interact not only via through−space overlap of the nonbonding orbitals but also via through−bond overlap with the intervening C−H bond.99 Early trapping experiments in solution suggested that both bicyclic85,86 and biradical19,92 structures are possible for meta−benzene. Recently, meta−benzene was conclusively shown to have a biradical rather than a bicyclic structure via computational studies and measurement of an IR spectrum for matrix isolated meta−benzene.40,45,48,85,86

Given that meta−benzene analogs have strong coupling between the radical sites, which reduces their radical reactivity, they might make a more selective “warhead” for antitumor agents than para−benzene analogs. Therefore, an improved understanding of the factors that control the reactivity of meta−benzene and its analogs could be beneficial for the rational design of synthetic DNA cleaving agents. Unfortunately, solution reactivity studies of the benzenes, with the exception of ortho−benzene and its analogs, are a challenge due to their high reactivities and the difficulty in generating them cleanly in condensed phases.1,2 Many of the problems associated with studies of reactive intermediates in solution become irrelevant in the gas phase. Indeed, many exceedingly reactive ionic species have been investigated in great detail by mass spectrometric techniques.2,91,92 These techniques can be extended to reactive neutral molecules via ions that contain the reactive group of interest and a chemically inert charged group for mass spectrometric manipulation (“distonic ion approach”).68 One benefit associated with such experiments is that intrinsic (solvent free) properties can be explored, which provides information that is crucial for the understanding of reactivity in any environment.

Compared to the parent meta−benzene, 1,3−didehydrobenzene, related heteroaromatic meta−benzene analogs, such as pyridynes, are much less studied. Protonated pyridynes have been used as surrogates to explore the reactivity of a few meta−benzene analogs in the gas phase.30-34 However, they also are interesting because their reactivity can be influenced by not just the S−T splitting but also by their polarity (protonated vs. unprotonated biradicals). As expected, based on their large S−T splittings, most of these...
positively charged meta–benzyne analogs were found to react as electrophiles rather than as radicals. Further, just like for polar monoradicals, the (calculated) vertical electron affinity (EA) of their radical site(s) was found to be the main factor for controlling their reactivity by influencing the polarization of the transition state. Vertical electron affinity (EA) is defined here as the energy released upon abstraction of an electron by the radical site(s) with no geometry change (consideration of the adiabatic values leads to the same conclusions). The greater the EA, the more polar the transition state, the lower its energy and the faster the reaction. This can be rationalized by employing the ionic avoided curve crossing model developed by Anderson et al. for monoradicals.

Later, the dehydrocarbon atom separation (DAS) was found to be another important reactivity controlling factor for meta–benzyne analogs when it was discovered that some meta–benzyne analogs with unusually large DAS actually underwent radical reactions in spite of their large S–T splittings. This reactivity controlling parameter is best understood by considering the zwitterionic resonance structure of meta–benzyne proposed earlier by Cramer and Johnson (Figure 2) to explain computational results on the structures of substituted meta–benzenes. These studies have shown that different types of substituents on different positions in meta–benzyne may stabilize or destabilize the bicyclic zwiterionic resonance structure (Figure 2), resulting in an increase or decrease in DAS. However, the reasons why DAS influences the reactivity of meta–benzyne analogs were still unclear.

![Fig. 3 Substituent effects on the stability of a bicyclic zwiterionic resonance structure of meta–benzyne.](image-url)

Here, results obtained in a kinetic reactivity study on seventeen positively charged meta–benzyne analogs (Chart 2) toward a hydrogen atom donor, cyclohexane, are discussed. Cyclohexane was chosen as the substrate since the abstraction of two hydrogen atoms from this reagent usually occurs via a radical mechanism. The biradicals studied include eleven 3,5-diiodopyridinium cations (4–cyano – 4), 4–fluoro – (5), 4–chloro – (6), 4–amino – (7), and 4–hydroxy–3,5-diiodopyridinium cations (8), 3,5-diiodopyridinium cation (9), and 2–cyano– (10), 2–fluoro– (11), 2–chloro– (12), 2–amino– (13), and 2–hydroxy–3,5-diiodopyridinium cations (14), as well as six 2,4–didehydropyridinium cations (2,4-didehydropyridinium cation (15) and 3–hydroxy– (16), 3–fluoro– (17), 3–cyano– (18), 5–hydroxy– (19), and 5–cyano–2,4–didehydropyridinium cations (20)). The experimental and computational results provide insights into substituent effects on the chemical properties of these meta–benzyne analogs.

![Fig. 4 Structures of the didehydropyridinium cations studied.](image-url)

Experimental Section

Radical precursors and FT–ICR

Cyclohexane was purchased from Sigma–Aldrich and used as received. The biradical precursors (4–cyano–4, 4–fluoro–4, 4–chloro–4, 4–amino–4, 4–hydroxy–2, 2–cyano–, and 2–fluoro–3,5–didehydropyridines for 4–8, 10, and 11, respectively, and 3–cyano–5–hydroxy–, and 5–cyano–2,4–didehydropyridines for 18–20, respectively) were synthesized according to literature procedures. The 4–cyano–, 4–fluoro–, 2–cyano–, and 2–fluoro–3,5–didehydropyridines and the 3–cyano– and 5–cyano–2,4–didehydropyridines were synthesized here for the first time. The characterization of these compounds by 1H, 13C NMR, HRMS (high resolution mass spectrometry) and IR is discussed in detail in the Supporting Information. Two precursors (2–chloro– and 2–amino–3,5–didehydropyridine for biradicals 12 and 13, respectively) were purchased from Alda Aesar. The precursor for biradical 14, 2–hydroxy–3–iodo–5–nitropyridine, was purchased from Sigma–Aldrich. Three precursors (3,5–, 2–, and 3–hydroxy–2,4–didehydropyridine for biradicals 9, 15, and 16, respectively) were purchased from SynChem OHG. The precursor for biradical 17, 3–fluoro–2,4–didehydropyridine, was purchased from Frontier Scientific.

All experiments were carried out in a Finnigan FTMS 2001 dual–cell FT–ICR mass spectrometer equipped with an Odyssey data station and a SWIFT (Stored Waveform Inverse Fourier Transform) cell controller as described previously, with details given in Supporting Information. Briefly, the biradical precursors were ionized by chemical ionization in the source cell of the dual–cell FT–ICR mass spectrometer to generate protonated biradical precursors. These ions were transferred into the analyzer cell by changing the voltages of the trapping plates. The radical sites were generated by sustained off–resonance irradiated collision–activated dissociation. The charged biradicals of interest were isolated and allowed to react with cyclohexane. The efficiency of each reaction (i.e., the fraction of collisions that leads to reaction) is given by k_reaction/k_total, wherein the k_reaction represents the experimental reaction rate constant while k_total represents the theoretical collision rate constant calculated using a parameterized trajectory theory. The relative abundances of the primary products are reported as branching ratios, which are given as the ratio of the abundance of a primary product ion to the sum of the abundance of all primary products.

Computational methods

Geometries for all species were computed by using density functional theory (DFT) with the correlation–consistent polarized valence–triple–ξ (cc–pVTZ) basis set. These DFT calculations use the gradient–corrected exchange functional of Becke 1988, which is combined with the gradient–corrected correlation functional of Lee, Yang and Parr 1988 (B3LYP). B3LYP, like many early generation functionals, is known to do poorly for the calculation of medium–range correlation effects that strongly influence non–bonded interaction energies. However, for the analyses herein, such interactions are expected to be unimportant. All DFT geometries were verified to be local minima by computation of analytic vibrational frequencies, and these (unscaled) frequencies were used to compute zero–point vibrational energies (ZPVE) and 298 K thermal contributions (H298 – E0) for all species. DFT calculations for triplet states of the biradicals employed an unrestricted formalism. Total spin expectation values for Slater determinants formed from the optimized Kohn–Sham orbitals did not exceed 2.03. For singlet biradicals, the DFT “wave function” was allowed to break spin symmetry by using an unrestricted formalism. Total spin expectation values for Slater determinants formed from the optimized Kohn–Sham orbitals in these cases ranged widely between 0.0 and 1.0. Geometry optimization using the unrestricted formalism has been shown to give more accurate geometries for a number of relevant aromatic biradicals.
Coupled–cluster calculations for single–configuration, restricted Hartree–Fock, reference wave functions were performed for all species. These calculations were of the single–point variety and included all single and double excitations and a perturbative estimate for triple excitations (i.e., RHFW–UCCSD(T)/cc–pVTZ/B3LYP/cc–pVTZ). For the lowest energy triplet and singlet states of the biradicals, the T1 diagnostic did not exceed 0.018 Å except for the singlet states of 19 and 20 (0.027 and 0.030, respectively). For the zwitterionic doublet states (see below), the T1 diagnostic ranged from 0.013 to 0.038.

Molecular geometries for biradicals 4–20 and methane, as well as the hydrogen–atom abstraction transition states for each of the biradicals with methane, were also optimized at the MPW1K level of theory, 13,14 by using the 6–31+G(d,p) basis set. 13,14 The MPW1K functional is a modification of the Perdew–Wang gradient–corrected exchange functional, with one parameter optimized to give the best fit to kinetic data for forty radical reactions. 13 All MPW1K geometries were verified to be local minima (or transition states) by computation of analytical vibrational frequencies, and these (unscaled) frequencies were used to compute zero–point vibrational energies (ZPVE) and 298 K thermal contributions (Hr298 – E0) for all species. “Activation enthalpies” for the biradicals were computed as the difference in enthalpy between the transition state and the separated reactants (i.e., biradical and methane). MPW1K calculations for the biradicals and the transition states employed an unrestricted formalism.

For the singlet state of each biradical, the geometry was optimized (B3LYP/cc–pVTZ) at varying dehydrocarbon atom separations (ranging from 1.30 Å to 2.30 Å) by holding the dehydrocarbon atom separation constant and optimizing all other geometric parameters. Single–point calculations (RHFW–UCCSD(T)/cc–pVTZ) were then performed for each (partially) optimized structure in order to determine the relative energies (i.e., with respect to the minimum energy structure) as a function of dehydrocarbon atom separation. The potential energy surfaces obtained at the RHFW–UCCSD(T)/cc–pVTZ/B3LYP/cc–pVTZ level of theory are quite different from those obtained at the UB3LYP/cc–pVTZ/UB3LYP/cc–pVTZ level (see Supporting Information). The poor performance of hybrid DFT methods (such as B3LYP), and much better performance of coupled–cluster methods, for the calculation of such potential energy surfaces has been noted previously for meta–benzene. 120

In order to compute vertical electron affinities for the biradicals at a dehydrocarbon atom separation of 2.30 Å, single–point calculations (RHFW–UCCSD(T)/cc–pVTZ) using the B3LYP/cc–pVTZ partially optimized geometries were also carried out for the states that are produced when a single electron is added to one of the nonbonding σ orbitals of the biradical (singlet ground state). 121 Thus, these calculations were carried out for (zwitterionic) doublet states. 122 The vertical electron affinities of the biradicals were computed as [E0(biradical; singlet state)] – [E0(biradical + electron; doublet state)] Note that because these are vertical electron affinities, zero–point vibrational energies (ZPVEs) and 298 K thermal contributions to the enthalpy are not included.

Quantum chemical calculations were carried out with the Gaussian 03 123 and Molpro 124 electronic structure program suites.

Results and Discussion

Experimental disquisition

The reactions and their efficiencies, as well as the branching ratios for the primary products, are given in Table 1 for reactions of biradicals 4–20 with cyclohexane. The table also shows calculated S–T splittings (ΔE ST), electron affinities at a dehydrocarbon atom separation of 2.30 Å (Ea230), dehydrocarbon atom separations for the minimum energy ground–state geometries, and the energy needed for each biradical to achieve the dehydrocarbon atom separation of 2.30 Å characteristic of their transition states for hydrogen atom abstraction (ΔE230, discussed in detail below). Biradicals 4–14 with the 3,5–didehydropropyridinium cation structure will be discussed first.

As mentioned above, Chen and co–workers have suggested that the magnitude of the S–T splitting influences the reactivity of parabenzyne and its analogs. 20 Since the S–T splittings for the meta–benzene analogs studied here are much larger (16.6 to 36.0 kcal mol−1) than those of parabenzyne, 13,17 and its analogs (all ca. 4 kcal mol−1), it has been suggested that they should not show radical reactivity. 20 However, some meta–benzene analogs with large DASs were later shown to undergo radical reactions. 20 This finding was confirmed in the present study, as discussed below.

Three of the eleven 3,5–didehydropropyridinium cations (6–8) were found to be unreactive toward cyclohexane, as expected based on their relatively large S–T splittings (ΔE ST=−27.9 to −32.8 kcal mol−1, Table 1). However, the other eight biradicals with somewhat smaller but still substantial S–T splittings (ΔE ST=−16.6 to −26.8 kcal mol−1, Table 1) did react with cyclohexane. The predominant reaction is abstraction of two hydrogen atoms, presumably via a radical mechanism (evidence in support of this statement is provided below). Although the biradicals with the largest S–T splittings are unreactive, suggesting that the reactivity is predominantly controlled by the magnitude of ΔE ST, the reactivity of the reactive biradicals does not correlate with the magnitude of their S–T splitting. For example, based on the S–T splitting, 4–cyano–3,5–didehydropropyridinium cation (4; ΔE ST=−22.1 kcal mol−1) should show lower radical reactivity than 9 (ΔE ST=−21.7 kcal mol−1) and 11–14 (ΔE ST=−18.2–20.0, −16.7–16.6 kcal mol−1, respectively; Table 1). However, the experimental results show that 4 reacts with cyclohexane (by abstraction of two hydrogen atoms) much faster than any of these molecules (Eff. = 22%, 0.1%, 4%, 0.2%, 1% and 4% for 4, 5, 6–11 and 14, respectively; Table 1). Moreover, 4–fluoro–3,5–didehydropropyridinium cation (10; ΔE ST=−16.6 kcal mol−1) reacts with cyclohexane (by abstraction of two hydrogen atoms) much faster than any of the reactive biradicals (ΔE ST=−26.8, −18.2 and −16.6 kcal mol−1 for 5, 11 and 14, respectively; Table 1). Clearly, the S–T splitting is not the only factor controlling the reactivity of the meta–benzene analogs, and additional reaction–controlling factors need to be considered.

As mentioned above, the electron affinity (EA) of the radical site(s) has been shown to be the main factor controlling the reactivity of polar monoradicals and some meta–benzenes. 20–25 Before discussing this issue further, the geometries of meta–benzenes need to be considered since the values of their EAs are very sensitive to their geometries. For all seventeen biradicals studied here, the minimum energy geometry of the (ground) singlet state is calculated (B3LYP/cc–pVTZ/B3LYP/cc–pVTZ) to be bicyclic (DAS: 1.43–1.57 Å, Table 1). MPW1K/6–31+G(d,p) calculations for the transition states for hydrogen atom abstraction from methane (as a model for cyclohexane) show (Fig. 5) that the dehydrocarbon atom separation (DAS) in the transition state is nearly the same (from 2.267 Å to 2.304 Å) 20 for all of the meta–benzene analogs studied here (note that we do not approximate the DASs for the transition states as 2.30 Å in order to simplify the subsequent analysis and discussion). This DAS is very different from the DASs for the minimum energy geometries. More importantly, calculated EAs for the minimum energy bicyclic structures are substantially lower (by several eV) than calculated EAs for “open” (e.g., large DAS, such as 2.30 Å), non–bicyclic structures resembling the transition state geometry. We believe that the EA at the transition state geometry for a meta–benzene is likely to be a much more important reactivity controlling factor than the EA at the minimum energy (ground state) geometry; thus, we focus the following discussion on the calculated EAs at a DAS of 2.50 Å (ΔE230).

The different reaction efficiencies of 2–hydroxy–3,5–didehydropropyridinium cation (14) and 2–amino–3,5–didehydropropyridinium cation (13) (Eff. = 4% and 1%, respectively; Table 1) with similar...
S–T splittings (ΔE_{S–T} = ΔE_{T} – 16.7 and –16.6 kcal mol\(^{-1}\)) for 13 and 14, respectively; Table 1) are likely due to the fact that 14 has a greater EA at the transition state geometry than 13 (EA\(_{2.30}\) = 5.99 and 6.42 eV for 13 and 14, respectively; Table 1). However, similar considerations do not explain why 4–cyano–3,5–didehydrodipyridinium cation (4) shows greater reactivity than 2-cyano–3,5-didehydrodipyridinium cation (10) (Eff. = 22% and 0.1%, respectively; Table 1) since they have similar EA\(_{2.30}\) and S–T splittings. Hence, additional reactivity controlling factors have to be considered.

As mentioned above, the dehydrocarbon atom separation (DAS) for meta–benzene analogs because radical reactions were observed for some meta–benzene analogs with large DAS.\(^{36}\) However, 4 and 10 (with similar S–T splittings and EA\(_{2.30}\); described above) have almost identical DAS (Table 1); hence, their very different reactivities cannot be rationalized based on this parameter. In order to better understand DAS as a reactivity controlling parameter, potential energy surfaces for varying DAS (i.e., DAS was held constant and all other geometric parameters were optimized) were calculated for the singlet (ground) states of biradicals 4–14. The calculated potential energy surfaces are all very flat (Fig. 6 and 7).

These potential energy surfaces show that (1) the DAS of the minimum energy structures are similar (ca. 1.5 Å (bicyclic structures)) with the exception of 13 and 14 (ca. 2.0 Å) and (2) very little energy is required to increase or decrease the DAS within 1.4–2.1 Å. A closer examination of the calculated potential energy surfaces for 4–14 reveals that the energy required for each biradical to “distort” from the minimum energy geometry to the DAS in the transition state (ca. 2.30 Å; see above) varies markedly (Fig. 6 and 7). These “distortion energies”\(^{48}\) (ΔE\(_{DAS}\)) are listed in Table 1. It is noteworthy that biradicals 13 and 14 have very small values for ΔE\(_{DAS}\) (3.7 and 3.6 kcal mol\(^{-1}\)), respectively, presumably because the DAS for the minimum energy structures (ca. 2.0 Å; Fig. 7) are relatively close to the DAS in the transition state (2.30 Å). However, biradicals with similar or identical DAS for the minimum energy structures still can have very different ΔE\(_{DAS}\) values. In particular, 4–cyano–3,5–didehydrodipyridinium cation (4) and 2-cyano–3,5–didehydrodipyridinium cation (10) (with the same EA\(_{2.30}\) (6.97 eV) and almost identical S–T splittings (–22.1 and –23.0 kcal mol\(^{-1}\), respectively) and DAS (1.52 and 1.50 Å, respectively) have quite different ΔE\(_{DAS}\) (8.5 and 5.0 kcal mol\(^{-1}\)) for 10 and 4, respectively; Table 1). Finally, this reactivity controlling parameter explains why 4 reacts with cyclohexane significantly faster than 10 (Eff. = 22%; 10: 0.1%; Table 1). However, rationalization of the reaction efficiencies between any two of the other biradicals is not as straightforward because the values of at least two of the reactivity controlling parameters, ΔE\(_{S–T}\), DAS, EA\(_{2.30}\) and ΔE\(_{DAS}\) differ. The influence of these four reactivity controlling parameters on the reactivity of the biradicals is considered below.

Table 1. Reaction Efficiencies\(^{a}\) and Product Branching Ratios\(^{b}\) for Reactions of Biradicals 4–20 With Cyclohexane, and Calculated S–T Splittings (ΔE_{S–T})\(^{c}\), Electron Affinities at 2.30 Å (EA\(_{2.30}\))\(^{d}\), \(^{e}\) Dehydrocarbon Atom Separations (DAS)\(^{f}\) and Relative Energies at DAS of 2.30 Å (ΔE_{DAS})\(^{g}\).

<table>
<thead>
<tr>
<th>Biradical</th>
<th>ΔE_{S–T}, kcal mol(^{-1})</th>
<th>EA(_{2.30}), eV</th>
<th>ΔE_{DAS}, kcal mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-22.1</td>
<td>6.97</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>-26.8</td>
<td>6.82</td>
<td>6.4</td>
</tr>
<tr>
<td>6</td>
<td>-27.9</td>
<td>6.63</td>
<td>9.7</td>
</tr>
<tr>
<td>7</td>
<td>-32.8</td>
<td>5.93</td>
<td>11.9</td>
</tr>
<tr>
<td>8</td>
<td>-30.8</td>
<td>6.42</td>
<td>9.7</td>
</tr>
<tr>
<td>9</td>
<td>-21.7</td>
<td>6.35</td>
<td>6.3</td>
</tr>
<tr>
<td>10</td>
<td>-23.0</td>
<td>6.97</td>
<td>8.5</td>
</tr>
<tr>
<td>11</td>
<td>-18.2</td>
<td>6.71</td>
<td>7.2</td>
</tr>
<tr>
<td>12</td>
<td>-20.0</td>
<td>6.59</td>
<td>9.7</td>
</tr>
<tr>
<td>13</td>
<td>-16.7</td>
<td>6.42</td>
<td>15.7</td>
</tr>
<tr>
<td>14</td>
<td>-16.6</td>
<td>6.42</td>
<td>1.57</td>
</tr>
<tr>
<td>15</td>
<td>-24.4</td>
<td>6.57</td>
<td>8.2</td>
</tr>
<tr>
<td>16</td>
<td>-38.0</td>
<td>6.64</td>
<td>14.3</td>
</tr>
<tr>
<td>17</td>
<td>-31.3</td>
<td>7.03</td>
<td>14.4</td>
</tr>
<tr>
<td>18</td>
<td>-24.9</td>
<td>7.21</td>
<td>1.46</td>
</tr>
<tr>
<td>19</td>
<td>-20.0</td>
<td>6.75</td>
<td>1.46</td>
</tr>
<tr>
<td>20</td>
<td>-25.6</td>
<td>7.20</td>
<td>1.43</td>
</tr>
</tbody>
</table>

\(^{a} \) Reaction efficiency (% of collisions leading to reaction) = kreaction/kcollision × 100; precision ±10%; accuracy ±50%. \(^{b} \) Abs. = abstraction, Add. = addition. \(^{c} \) Calculated at the RHF–UCCSD(T)/cc-pVTZ/B3LYP/cc-pVTZ level of theory. \(^{d} \) For the (ground) singlet states. \(^{e} \) B3LYP/cc-pVTZ optimized geometries.

Fig. 5 Transition state for hydrogen atom abstraction from methane by 14 calculated at the MPW1K/6–31+G(d,p)/MPW1K/6–31+G(d,p) level of theory.
Substituting 9 at the 2–position with a CN group (10) (Scheme 1) should stabilize the allyl anion part of the zwitterionic structure due to the strong electron withdrawing ability of the CN–substituent (a σ–acceptor group). Indeed, biradical 10 is calculated to have a similar DAS (Fig. 7), but a larger $\Delta E_{2,30}$ (8.5 kcal/mol; Table 1) and a slightly greater $\Delta E_{5,7}$ (–23.0 kcal mol$^{-1}$; Table 1) than 9. Hence, biradical 10 should react slower with cyclohexane than biradical 9. However, 10 has an $E_{A,2,30}$ of 6.97 eV, which is much greater than that of 9 (6.35 eV; Table 1). Taking all of the reactivity controlling factors into consideration, and especially the large difference in $E_{A,2,30}$, it is perhaps not surprising that biradical 10 reacts at the same rate as 9 with cyclohexane (Table 1). This comparison, as well as the one discussed above, highlight the need to consider differences in electron affinity when evaluating the reactivity of meta–benzene analogs.

Substituting 9 at the 4–position with a π–donor group (Scheme 1), such as NH$_2$ (7) or OH (8), should stabilize the cyclopropenium cation moiety (resonance structures 7a and 8a; Scheme 2) via delocalization of the charge to the oxygen or nitrogen atom to form the ionic resonance structures 7b and 8b. This stabilization is expected to produce a small DAS at the minimum energy geometry, and, consequently a relatively large $\Delta E_{2,30}$. Indeed, 4-amino–3,5–didehydropyridinium cation (7) and 4-hydroxy–3,5–didehydropyridinium cation (8) both have a large $\Delta E_{2,30}$ (11.9 and 9.7 kcal mol$^{-1}$, respectively; Table 1). This, coupled with the relatively large S–T splittings for these two biradicals (7: –32.8 kcal mol$^{-1}$; 8: –30.8 kcal mol$^{-1}$) and their relatively low electron affinities (7: 5.93 eV; 8: 6.42 eV; Table 1), explain why neither biradical reacts with cyclohexane.

Based on the above results, $\Delta E_{5,7}$, $\Delta E_{2,30}$ and $E_{A,2,30}$ are important reactivity controlling factors for the 3,5–didehydropyridinium cations 4–14. In order to test the generality of this finding, a series of substituted 2,4–didehydropyridinium cations (15–20) was also examined. The calculated potential energy surfaces for the (ground) singlet states of 15–20 (Fig. 8) are quite flat, although perhaps not quite as flat as those for the 3,5–didehydropyridinium cations (Figs. 6 and 7). The reaction efficiencies of hydrogen atom abstraction from cyclohexane (Table 1) by the 2,4–didehydropyridinium cations also appear to depend on the aforementioned reactivity controlling factors. For example, despite their relatively high $E_{A,2,30}$, the 3–hydroxy–, 3–fluoro–, and 5–cyano–2,4–didehydropyridinium cations (16, 17 and 20) do not react with cyclohexane due to their relatively large S–T splittings and $E_{A,2,30}$ (Table 1). An extreme example of the importance of $E_{A,2,30}$ is provided by 15 and 18, which have similar S–T splittings (–24.4 and –24.9 kcal mol$^{-1}$, respectively) and similar $\Delta E_{2,30}$ (6.2 and 5.4 kcal mol$^{-1}$, respectively), but very different $E_{A,2,30}$ (6.57 and 7.21 eV, respectively; Table 1). In this case, 18 is two orders of magnitude more reactive than 15 (3% and 0.03%, respectively; Table 1). A comparison of the reactivity of 18 and 19 yields a similar conclusion. For these two biradicals, $\Delta E_{5,7}$ is nearly the same (5.4 and 5.6 kcal mol$^{-1}$, respectively), and $\Delta E_{2,30}$ is smaller for 19 than for 18 (–20.0 and –24.9 kcal mol$^{-1}$, respectively; Table 1), which should make 19 more reactive than 18. However, $E_{A,2,30}$ for 18 is much larger than that for 19 (7.21 and 6.75 eV, respectively) and counterbalances the difference in $\Delta E_{5,7}$ making 18 an order of magnitude more reactive than 19 (3% and 0.3%, respectively; Table 1).

Based on the above results, $\Delta E_{5,7}$, $\Delta E_{2,30}$ and $E_{A,2,30}$ are important reactivity controlling factors for the 3,5–didehydropyridinium cations 4–14. In order to test the generality of this finding, a series of substituted 2,4–didehydropyridinium cations (15–20) was also examined. The calculated potential energy surfaces for the (ground) singlet states of 15–20 (Fig. 8) are quite flat, although perhaps not quite as flat as those for the 3,5–didehydropyridinium cations (Figs. 6 and 7). The reaction efficiencies of hydrogen atom abstraction from cyclohexane (Table 1) by the 2,4–didehydropyridinium cations also appear to depend on the aforementioned reactivity controlling factors. For example, despite their relatively high $E_{A,2,30}$, the 3–hydroxy–, 3–fluoro–, and 5–cyano–2,4–didehydropyridinium cations (16, 17 and 20) do not react with cyclohexane due to their relatively large S–T splittings and $E_{A,2,30}$ (Table 1). An extreme example of the importance of $E_{A,2,30}$ is provided by 15 and 18, which have similar S–T splittings (–24.4 and –24.9 kcal mol$^{-1}$, respectively) and similar $\Delta E_{2,30}$ (6.2 and 5.4 kcal mol$^{-1}$, respectively), but very different $E_{A,2,30}$ (6.57 and 7.21 eV, respectively; Table 1). In this case, 18 is two orders of magnitude more reactive than 15 (3% and 0.03%, respectively; Table 1). A comparison of the reactivity of 18 and 19 yields a similar conclusion. For these two biradicals, $\Delta E_{5,7}$ is nearly the same (5.4 and 5.6 kcal mol$^{-1}$, respectively), and $\Delta E_{2,30}$ is smaller for 19 than for 18 (–20.0 and –24.9 kcal mol$^{-1}$, respectively; Table 1), which should make 19 more reactive than 18. However, $E_{A,2,30}$ for 18 is much larger than that for 19 (7.21 and 6.75 eV, respectively) and counterbalances the difference in $\Delta E_{5,7}$ making 18 an order of magnitude more reactive than 19 (3% and 0.3%, respectively; Table 1).

Scheme 1. Resonance Structures of 13 and 14.

Scheme 2. Resonance Structures of 7 and 8.
Finally, the mechanism of abstraction of two hydrogen atoms from cyclohexane by the biradicals discussed above should be considered. We have assumed that these reactions occur by a radical mechanism. Some evidence in support of this hypothesis is obtained by considering the data in Table 1. If the two hydrogen atom abstractions involve an ionic mechanism (i.e., hydride abstraction followed by proton abstraction) rather than a radical mechanism, the most electrophilic biradicals (i.e., those with the greatest $EA_{2.30}$) should show enhanced reactivity (reaction efficiencies). This was found not to be the case. For example, biradical 10 reacts with cyclohexane more slowly than biradicals 11–14 even though it has the greatest $EA_{2.30}$ in this group (Table 1). Finally, the mechanism of abstraction of two hydrogen atoms from cyclohexane by the biradicals discussed above should be considered. We have assumed that these reactions occur by a radical mechanism. Some evidence in support of this hypothesis is obtained by considering the data in Table 1. If the two hydrogen atom abstractions involve an ionic mechanism (i.e., hydride abstraction followed by proton abstraction) rather than a radical mechanism, the most electrophilic biradicals (i.e., those with the greatest $EA_{2.30}$) should show enhanced reactivity (reaction efficiencies). This was found not to be the case. For example, biradical 10 reacts with cyclohexane more slowly than biradicals 11–14 even though it has the greatest $EA_{2.30}$ in this group (Table 1).

Theoretical disquisition

If $EA_{S,T}$, $EA_{2.30}$ and $EA_{12.5}$ are the main factors controlling the reactivity of meta–benzylene analogs in hydrogen atom abstraction reactions with cyclohexane, is it possible to determine how the barrier for hydrogen atom abstraction depends on all three factors simultaneously? The energy required to distort the DAS of a meta–benzylene from the minimum energy geometry to the geometry of the transition state (i.e., DAS: 2.30 Å, see above) increases the overall barrier height by some energy increment. In addition, as the DAS of the meta–benzylene distorts to the transition state geometry, the S–T splitting is reduced by an amount equal to $EA_{2.30}$ (the energy of the triplet state is unaffected because we are considering a distortion of the singlet (ground) state only). Thus, at the transition state geometry, the S–T splitting is reduced, but it is still nonzero since the two unpaired electrons are still coupled to some extent even at a DAS of 2.30 Å. Because the two unpaired electrons must further uncouple in the transition state for hydrogen atom abstraction, some portion of the energy associated with the S–T splitting at 2.30 Å also must increase the overall barrier height. Finally, a greater $EA_{2.30}$ would be expected to decrease the overall barrier height.

Taking into account these various energy contributions, and examining their relationships to the calculated (MPW1K/6-31+G(d,p)/MPW1K/6-31+G(d,p)) activation enthalpies for hydrogen atom abstraction from methane (Table 2), the following equation was identified from a best fit of the data using Solver in Microsoft Excel:27

$$\Delta H_{\text{act}} = \Delta E_{2.30} - x(EA_{2.30} \times 23.06) + y(EA_{S,T} - \Delta E_{2.30})$$ (1)

where $x = 0.04090$ and $y = -0.6154$. Thus, based on eq 1, the barrier height (i.e., activation enthalpy) increases by an energy increment equal to $EA_{2.30}$ decreases by an energy increment equal to the coefficient x multiplied by $EA_{2.30}$ (multiplied by 23.06 to convert eV to kcal mol$^{-1}$) and increases by an energy increment equal to the coefficient y multiplied by the S–T splitting at 2.30 Å (i.e., $(EA_{S,T} - \Delta E_{2.30})$). Note that the coefficient y indicates the percentage (ca. 62%) of the energy associated with the S–T splitting at 2.30 Å that is necessary to uncouple the unpaired electrons in the transition state. A plot of the calculated (MPW1K) activation enthalpies for the seventeen biradicals, 4–20, versus the calculated activation enthalpies using eq 1 is shown in Fig. 9. Note that the slope and y–intercept for the best fit line are nearly equal to one and zero, respectively.

By using the values for $EA_{S,T}$, $EA_{2.30}$ and $EA_{12.5}$ (Table 1), and the calculated activation enthalpies from eq 1 (Table 2), it is now possible to “dissect” and evaluate each of the various energy contributions to the barrier heights for hydrogen atom abstraction by biradicals 4–20. These contributions are shown in Table 3. As expected, $EA_{2.30}$ lowers the barrier height in all cases, the extent to which depends on its magnitude. More importantly, for the majority of the biradicals studied, the reactivity controlling factor that has the greatest influence on (increasing) the barrier height is the S–T splitting at 2.30 Å (i.e., $EA_{S,T} - \Delta E_{2.30}$), although in one case (biradical 16), it is $EA_{2.30}$ that has the greatest influence on (increasing) the barrier height.

Table 2. Calculated Activation Enthalpies (kcal mol$^{-1}$) for Hydrogen Atom Abstraction from Methane by Biradicals 4–20.

<table>
<thead>
<tr>
<th></th>
<th>ΔH_{act} (MPW1K)</th>
<th>ΔH_{act} (eq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.7</td>
<td>8.9</td>
</tr>
<tr>
<td>5</td>
<td>8.6</td>
<td>12.5</td>
</tr>
<tr>
<td>6</td>
<td>12.8</td>
<td>14.6</td>
</tr>
<tr>
<td>7</td>
<td>20.0</td>
<td>19.2</td>
</tr>
<tr>
<td>8</td>
<td>14.3</td>
<td>16.6</td>
</tr>
<tr>
<td>9</td>
<td>9.8</td>
<td>9.8</td>
</tr>
<tr>
<td>10</td>
<td>10.7</td>
<td>10.8</td>
</tr>
<tr>
<td>11</td>
<td>5.7</td>
<td>6.6</td>
</tr>
<tr>
<td>12</td>
<td>8.4</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Activation enthalpy is the difference in enthalpy between the separated reactants and the transition state.
Conclusion

Perturbation of the structure of meta-benzyne analogs by changing the position and type of a substituent is demonstrated to influence their reactivity and to be able to convert their reactivity from less radical-like to more radical-like. Quantum chemical calculations show that the key reactivity controlling parameters are: (1) the energy required to distort the dehydrocarbon atom separation for the minimum energy geometry to the geometry of the transition state (i.e., DAS: 2.30 Å), (2) the S–T splitting at the geometry of the transition state, and (3) the electron affinity at the geometry of the transition state. By varying the substituents attached to a meta-benzyne analog, these three main reactivity controlling parameters can be changed such that the hydrogen atom abstraction efficiencies with cyclohexane can be "tuned" from 0% to about 20%. For polar hydrogen atom donors (such as methanol), additional reactivity controlling factors (such as hydrogen bonding) would likely need to be considered.

Acknowledgements

The authors thank the National Science Foundation for financial support of this work.

Notes and references

* Department of Chemistry, Purdue University
560 Oval Drive, West Lafayette, IN 47907-2084, USA
Fax: (+1)-765-494-0359
E-mail: hilikka@purdue.edu
jnash@purdue.edu

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

vertical electron affinity of the radical site, not the vertical

Because the biradicals studied here contain a formal

Note that Solver did not find a solution for equation 1. This equation expresses the best fit of the data.
Novelty of the work: The key reactivity controlling parameters of meta-benzynes have been identified and demonstrated to have a major influence on their reactivity.