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Graphical Abstract 

 

The KNIME Based Classification Models for Yellow Fever Virus Inhibition 

 

N.S. Hari Narayana Moorthy 
§* 

and
 
Vasanthanathan Poongavanam¶ 

 

The Naïve Bayes method as implemented in KNIME platform was used for the classification 

analysis of yellow fever inhibitors obtained from ChEMBL database. The best classification 

model is able to discriminate > 90% of inhibitors from non-inhibitors with an overall 

accuracy of >90%. 
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Abstract: 

Yellow fever is one of the virus-infected diseases spreading through mosquitos and kills more 

than thirty thousand people every year. Although there are a large number of compounds 

have been reported, none of the drugs have yet been approved for the clinical use. In the 

process of drug development against yellow fever virus (YFV), in the present investigation, 

we have developed efficient classification models based on a large dataset (309 compounds) 

compiled from the ChEMBL database. The Naïve Bayes method as implemented in KNIME 

platform was used for the classification analysis. The best models obtained using the 

combined dataset showing accuracy of >90% on the test set prediction (Matthew’s correlation 

coefficients of >0.7). All the models developed in this study could be applicable for virtual 

screening of yellow fever virus inhibition.  

 

Keywords: KNIME, classification, yellow fever virus, QSAR, virtual screening, ChEMBL. 

Introduction 

The yellow fever virus (YFV) is a member of Flaviviridae family and this family contains 

hepatitis C virus (HCV), Dengue virus (DENV), West Nile virus (WNV), Japanese 

encephalitis virus (JEV), Tick-borne encephalitis virus (TBEV) and bovine viral diarrhoea 

virus (BVDV)
1,2

. These viruses are classified into three genera: flavivirus, hepacivirus, and 

pestivirus. YFV is one of the mosquito-borne flavivirus causes the acute viral infection called 

yellow fever (YF). Flaviviruses are small, enveloped RNA viruses responsible for the above 

mentioned clinical diseases in humans. These viruses share similar genomic organization and 

replication strategy and those are transmitted by arthropods and mosquitos to humans and 

birds
2-4

. YFV majorly affects the tropical areas of South America and Africa and this virus 

causes nearly 200000 new infections and 30000 deaths every year
5,6

. Since 1980, number of 

cases for YFV infection has been increased, due to the frequent migration of people, less 

immune, most people living in cities and climate changes. According to WHO, severe cases 

of this infection may cause fatality which is more than 50%. Eventhough the YFV rate has 

been increased over the last 10 years, due to the reasons stated above
1,7

. YFV is an enveloped 

virus with polyprotein of over 350 kDa, encoded by a single and positive stranded RNA 

genome. The non-structural NS3 serine protease (non-structural protein part in flavivirade 

family) present in the virus is essentially acts for viral replication (maturation of the viral 

polyprotein) and an attractive target for antiviral drug discovery
1,2,8,9

.  

Presently, only common antiviral drugs are being used for the treatment of YFV infection and 

no specific chemotherapeutic agents are available for any of these flaviviral infections 
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including yellow fever. Still, there is single drug has not yet been approved for effective 

against YFV treatment; however anti-YFV vaccine (17D) is available to prevent this disease. 

However, this live-attenuated 17D vaccine has shown to cause wild-type disease and 

systemic infections in a subset of patients
1,10

. It reveals that the antiviral chemotherapeutics 

would be inexpensive, stable, safe and would have efficient when administered before and 

after virus infection and can be broadly active against a range of viruses
1
.  

In order to discover novel molecules, virtual screening of large database or knowledge based 

drug design like computational methods are appropriate. From extensive literature analysis on 

this target, revealed that there are only a limited number of in silico studies have been 

reported on flaviviridae family viruses (including YFV). A computational based screening 

analysis on NCI library has been reported to identify novel flaviviral inhibitors using n-octyl-

β-D-glucoside (β-OG) binding pocket of dengue E protein. The β-OG pocket is an ideal 

target for structure based design of potential antiviral agents, because the ligand complex 

could change the conformational equilibrium associated with the hinge angle (interferes with 

the fusion of the viral envelope with the host cell membrane) and inhibit virus maturation. 

They reported three compounds as significant hit for YFV inhibitory activity through 

structure based virtual screening and cell based assay methods. On account of these 

templates, a series of molecules were constructed by them as YFV inhibitors through 

structural modification
11-13

. The computational studies such as molecular docking and 3D-

comparative molecular similarity analysis-quantitative structure activity analysis (3D-

CoMSIA-QSAR) were applied on the ChEMBL database to identify significant N-substituted 

indole based HCV replication inhibitors. The relative field contributions of 27.6%, 42.1% and 

30.3% for steric, hydrophobic and H-bond acceptor fields, respectively were applied to the 

CoMSIA analysis. The QSAR model validation statistics such as R
2

test and R
2

m exhibited a 

value of 0.727 and 0.635 respectively. The docking studies of the molecules on HCV 

revealed that the indole moiety in the active compounds oriented to the binding site 

responsible for group of water molecules located (inactive compounds have different 

orientation). Interestingly, the active and the inactive compounds reported to possess equal 

docking scores
14

. The molecular modelling (homology modelling and docking) study was 

reported on the development of fusion inhibitors on ectodomain of TBEV E protein in virus. 

The β-OG pocket of the homology model (open state) was used for the virtual screening, 

which identified 89 compounds as hit from substituted 1,4-dihydropyridines and pyrido[2,1-

b][1,3,5]thiadiazines containing data set. Experimental results on the identified hits showed 

that 17 compounds had significant inhibition against different viruses (TBEV, Powassan 
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virus, or Omsk haemorrhagic fever virus)
15

. Docking and pharmacophore studies were 

reported for some flavivirus inhibitors by Tonelli et al. against BVD virus. The 

pharmacophore results showed that 98% chance for the best pharmacophore hypothesis to 

represent a true correlation in the training set activity. Docking and multiple alignments of 

RNA virus proteins showed that the active compounds target effectively the BVDV RNA-

dependent RNA-polymerase (RdRp), which shares some structural similarity with HCV 

RdRp
16-18

. On account of the above statements, in the present investigation, we have used a 

set of literature compounds that inhibit the YFV to develop the classification models using 

the Naïve Bayes method as implemented in the KNIME platform
19-21

.  

Computational Methods and Materials 

A data set of 379 YFV inhibitors was retrieved from the ChEMBL database 

(https://www.ebi.ac.uk/chembl/) (composed mainly from six journal literatures)
11,16-18,22,23

. 

Each dataset has different parent structures, which are provided in Figure 1. Before the 

datasets used for the classification study, each dataset was manually checked and curated, 

which includes removal of salts, generation of 3D structures, energy minimization using 

OPLS2005 force field. Subsequently, thirty 2D physicochemical descriptors of the 

compounds were calculated using the CDK tool as it is implemented in the KNIME an open 

source data analyzer and integrator
19-21

. Classification models were developed using the 

Weka data mining software
24

 as implemented in KNIME. The Weka provides a large 

collection of supervised and unsupervised machine learning algorithms, attribute selection 

and visualization methods
24,25

. The dataset was characterized using the SIMCA-P software 

(Version 10.5. Umetrics, Umea, Sweden).  

Naïve Bayesian theory 

Naïve Bayesian classification is a probabilistic supervised learning method utilizes the Bayes 

theorem to calculate how the degree of belief in a proposition changes in accordance to 

evidence. Briefly, the Bayesian learning works as follows: before any data has been observed, 

the expectation as to what the true relationship between those data can be expressed in a 

probability distribution over the assumptions that define this relationship. For example, a fruit 

may be considered to be an apple if it is red, round and about 3" in diameter. A Naive Bayes 

classifier considers each of these features to contribute independently to the probability that 

this fruit is an apple, regardless of the presence or absence of the other features
21,26,27

. 

The probability model (a conditional model) for a Naïve Bayesian classifier is  
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  ).......,|( ,1 nFFCp          … (1)  

C, a dependent class variable with a small number of outcomes or classes, conditional on 

several feature variables F1 through Fn. The conditional distribution over the class variable C 

under the independence assumption is: 
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Where the evidence Z = p(F1,…., Fn) is a scaling factor dependent only on F1,…., Fn, that is, 

a constant if the values of the feature variables are known. 

The Gaussian Naïve Bayes classifier is applied for a class of continuous data which are 

distributed according to a Gaussian distribution. When the training data contains a continuous 

attributes, x and µc, the mean of the values in x associated with class c, and let σc
2
 be the 

variance of the values in x associated with class c. The probability density of some value 

given a class, P(x = v/c), can be computed by plugging v into the equation for a normal 

distribution parameterized by µc, and σc
2
. That is, 
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Classification model development 

In total 16 classification models were developed, models from 1 to 12 represent individual 

datasets and models 13-16 were developed from the combined dataset (309 compounds). The 

workflows were constructed with KNIME platform containing the CDK nodes. The 

workflow charts used for the analysis are provided in supplementary material (Figure S1).  

Before the models development, the whole dataset was divided into a training (65%) and a 

test set (35%) according to the stratified sampling method, which divides the inhibitors and 

non-inhibitors equally in the test and training sets. The inhibitors and the non-inhibitors were 

defined according to different activity thresholds (e.g. IC50 <=10 µM is inhibitors; IC50 >10 

µM is non-inhibitors). In this study, we explored the quality of models from different activity 

thresholds, e.g. 10, 30, 50 and 100 µM. However, models developed from the activity 

thresholds 10 and 100 µM were not discussed due to unbalanced distribution of inhibitors and 

non-inhibitors in the datasets, which leads to insignificant predictions (results are provided in 
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the supplementary materials (Table S1)). Therefore, models from 30 and 50 µM are presented 

and discussed.  

Assessment of classification models 

Confusion matrix from each classification model was used to calculate various statistical 

parameters to assess the quality of models. Statistical parameters used in this study are 

sensitivity (true positive rate), specificity (true negative rate), G-mean, Matthew’s correlation 

coefficient (MCC) and overall accuracy.  

FNTP

TP
ySensitivit

+
=         … (4)

 

FPTN

TN
ySpecificit

+
=         … (5) 

ySpecificitySensitivitmeanG ×=−       … (6)
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×
=−
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Pr
      … (9)

 

Here, TP, TN, FP and FN denote true positive, true negative, false positive and false negative 

respectively. The accuracy is the proportion of correctly predicted positives and negatives. 

The F-measure is a measure of a test's accuracy. Sensitivity and specificity measure the 

proportion of actual positives and negatives which are correctly identified, respectively.  The 

geometric mean (G-mean) evaluates the degree of inductive bias in terms of a ratio of 

positive accuracy and negative accuracy and this term is used to check how well the model is 

able to predict two classes. Matthew’s correlation coefficient (MCC) indicates the degree of 

the correlation between the actual and predicted classes. It ranges from -1 to +1 and is 

generally regarded as a good measure of the quality of the binary classification
28-30

. 

Results and Discussion  

Characterization of dataset  
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A principal component analysis (PCA) was performed to check possible presence of clusters, 

outliers, similarities or dissimilarities, distribution of inhibitors and non-inhibitors in the 

training and test set in the physicochemical space. First two principal components from 24 

CDK 2D-descriptors explain 79% of variance in the data set. The score plot from PCA shows 

(Figure 2a) that the diversity of dataset is satisfactorily reflected in the training set and there 

are no distinct clusters in the dataset. There are some distinct outliers were observed (distance 

to model plot is provided in Figure 2b), however there is no structural similarity within this 

class of compounds. It was observed from the loading plot (Supplementary Figure S2) that 

most of the inhibitors are highly influenced by the topological polar surface area (TPSA) and 

polar bonds. This reveals that non-inhibitors are relatively more hydrophobic than inhibitors.  

Construction of classification models 

Naïve Bayes based classification models for YFV inhibition was developed using a set of 24 

descriptors. Descriptors used for the model development were selected from the BestFirst 

attribute selection method provided in the Weka software. The quality of the models for each 

dataset was compared in terms of MCC of test set. Overall KNIME based workflow is 

provided in Figure 3. In general, all 6 datasets (activity threshold 30 µM) perform equally 

well and an overall accuracy of the test set is > 75%.  

The quality of model was better for all the dataset in terms of MCC which found to be larger 

than 0.6, except for dataset 2, which performs very poor (-0.11). This poor performance was 

due to the fact that there were only two non-inhibitors, which were predicted as inhibitors 

because of not only sharing of common scaffolds as positive but also shares similar structural 

patterns. This is exemplified in the Figure 4. In addition, we developed models with activity 

threshold of 50 µM and this leads to overall improvements in the quality of the model in all 

datasets. Summary of the model quality is provided in the Table 1.  Models derived from all 

the datasets are statistically significant (MCC and G-mean values >0.7). In the same way, the 

F-score or F-measure also describes the significance of the analysed data set. It gives the 

values >0.8 for all the data set explain that the descriptors used in the models classified the 

data set significantly. The other statistical parameters such as sensitivity and specificity 

showed the values >0.75, except for the model 3 and 7 (provided the values little less than 

0.75). 

Models from the combined dataset 
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Although the models obtained from different datasets were significantly predictive, future 

prediction might be insignificant due to low diversity as each dataset contains unique series 

of compounds. Thus, it would be interesting to see the prediction ability by combining all the 

datasets into one. Out of 379 compounds, 70 compounds (mainly Krecmerová M et al.
 22

) 

was used as a test set and the remaining datasets were combined into one in order to train the 

model. Overall, the activity threshold 50 µM has yielded a relatively good accuracy. The 

models developed from other activity thresholds (10 and 30 µM) were efficient to predict 

inhibitors (>90%) compared to non-inhibitors (~65%). However, most of the models were 

suffered from an imbalanced class distribution which was reflected in the quality of the 

model. It is highly important to have models that are able to predict correctly both classes in a 

reasonably balanced manner and not only correctly predicts one of the classes with high 

accuracy.  

Therefore, new models were constructed based on a set of 309 compounds (Krecmerová et al 

dataset was excluded), in which 200 compounds were used as a training set and the remaining 

109 compounds were used as a test set. The models for each activity thresholds (10, 30, 50 

and 100 µM) were developed. These models provided the sensitivity and specificity values of 

>0.9, however the specificity values have significantly decreased for the models 13 and 14. 

Overall, the model 15 from activity threshold at 50 µM gives the better performance over the 

other thresholds. The model (15) predicts 92% of inhibitors and 78% of non-inhibitors 

correctly with good coefficient (MCC =0.71), and the quality is also reflected in the high G-

mean score (0.84) (Table 2).  

Open source KNIME workflow for YFV 

In order to provide the YFV inhibition model to the medicinal chemistry community, model 

15 is implemented into KNIME workflow as shown in Figure 5. The workflow can be 

directly downloaded into any workstation having KNIME software package installed. There 

is no prerequisite before running KNIME, as most of the cheminformatics nodes are already 

available in the KNIME suite. The KNIME workflow reads the molecules (2D or 3D 

conformation) in sdf file format (.sdf) and other procedures are automated. Subsequently, it 

produces output files (xls or csv) containing predictions with statistical significance. 

Conclusion 

The number of cases of YFV infection has significantly been increased in the recent years; 

although the vaccines are available for YFV infection, an inexpensive, safe and effective 
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chemotherapeutic agent is still needed for wide usability. In the present study, the KNIME 

based classification models were developed using the existing YFV inhibitors from the 

ChEMBL database. The best classification model is able to discriminate >90% of inhibitors 

from non-inhibitors with an overall accuracy of >90%. Subsequently, the best model is 

implemented in the KNIME workflow which could be used as a virtual screening workflow 

to screen novel molecules for the YFV inhibitory activity. 
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Figure 1: Parent structure of the compounds considered for the present investigation 
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Figure 2: a) Principal component analysis from first 2 PCs, (b) Distance to model plot. 

The compounds are colored as follows: training set and non-inhibitors as green dots, training 

set and inhibitors as blue dots, test set and non-inhibitor as brown diamonds, and test set and 

inhibitor as red circles. 
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Figure 3: Overall classification workflow is shown and various task nodes are 

highlighted, including the results output. 
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Figure 4: Examples of misclassified compounds in the test set. 
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Figure 5: Final KNIME workflow for the classification model of yellow fever inhibition 
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Table 1: Summary of models for individual dataset (Test set prediction) 

Dataset 

Models ActThrd 

Confusion Matrix 
Sens. Spec. 

ROC 

G-

mean 

F-

measure 
MCC Accu 

TP FN TN FP 

1 1 30  16 2 6 1 0.89 0.86 0.86 0.87 0.91 0.72 0.88 

 2 50  14 1 10 0 0.93 1.00 1.00 0.97 0.97 0.92 0.96 

2 3 30  11 1 0 2 0.92 0.00 0.91 0.00 0.88 -0.11 0.79 

 4 50  8 1 5 0 0.89 1.00 0.88 0.94 0.94 0.86 0.93 

3 5 30  22 0 1 0 1.00 1.00 0.52 1.00 1.00 1.00 1.00 

 6 50  19 2 1 1 0.90 0.50 0.92 0.67 0.93 0.34 0.87 

4 7 30  19 1 4 1 0.95 0.80 0.52 0.87 0.95 0.75 0.92 

 8 50  10 5 10 0 0.67 1.00 0.92 0.82 0.80 0.67 0.80 

5 9 30  18 1 4 0 0.95 1.00 0.88 0.97 0.97 0.87 0.96 

 10 50  16 1 6 0 0.94 1.00 0.83 0.97 0.97 0.90 0.96 

6 11 30  16 2 7 0 0.89 1.00 0.91 0.94 0.94 0.83 0.92 

 12 50  15 0 6 4 1.00 0.60 0.88 0.77 0.88 0.69 0.84 

 

ActThrd = Activity threshold; TP = True positive; FN = False negative; TN = True negative; 

FP = False positive; ROC = Receiver operating curve; Sens. = Sensitivity; Spec. = 

Specificity; MCC = Matthew’s correlation coefficient; Accu. = Accuracy; F = F-measure. 
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Table 2: Statistical parameters for the combined data set models 

 

TP = True Positive; FN = False Negative; TN = True Negative; FP = False Positive; ROC = 

Receiver operating curve; MCC = Matthew’s Correlation Coefficient; F = F-measure. 
a
 

model from activity threshold at 10 µM,  
b
 model from activity threshold at 30 µM,

 c
 model 

from activity threshold at 50 µM,
 d

 model from activity threshold at 100 µM. 

 

 

Models 

 

Confusion Matrix 
Sensitivity Specificity ROC G-mean 

F-

measure MCC Accuracy 
TP FN TN FP 

13
a
 101 0 5 3 1.00 0.63 0.81 0.79 

0.97 

0.78 0.99 

14
b
 85 2 12 10 0.98 0.55 0.76 0.73 

0.89 

0.63 0.93 

15
c
 67 6 28 8 0.92 0.78 0.85 0.84 

0.87 

0.71 0.91 

16
d
 47 1 61 0 0.98 1.00 0.99 0.99 

0.99 

0.98 0.99 
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