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We present a theoretical model to calculate the volume of non-wetting bubbles and droplets in segmented microflows from given
dimensions of the microchannel and measured lengths of bubbles and droplets. Despite the importance of these volumes in
interpreting experiments of reaction kinetics and transport phenomena, an accurate model like the one we present here did not
yet exist. The model has its theoretical basis in the principle of interfacial energy minimization and is set up such that volume
calculations are possible for a wide variety of channel geometries. We succesfully validated our model with the 3D numerical
energy minimization code SURFACE EVOLVER for the three most commonly used channel geometries in the field of microfluidics
and provide accurate user-friendly equations for these geometries.

Introduction

Many microfluidics applications rely on multiphase flow, typ-
ically in the form of elongated droplets in a continuous
phase1,2. These droplets can for example be used as small
reaction chambers for the synthesis of advanced materials3–7,
the growth and screening of cells8–12, bacteria13–15 and en-
zymes16, the study of mass transfer rates17–19, and even for
DNA sequencing20. For quantitative analysis it is important to
know the volume and surface area of the droplets. This, how-
ever, presents a problem as virtually all visualization is done
with optical microscopes that only provide a two-dimensional
top-view image of the droplets, leaving the three-dimensional
shape unknown21,22. A method to accurately determine the
volume based on microscope images is therefore of great use.

The simplest way to estimate the volume, V , of a con-
fined, non-wetting droplet such as the ones shown in Fig. 1
is to describe its shape as a block that has the length, L, of
the droplet and the cross sectional area Ach of the channel,
giving V = AchL. For a rectangular channel, with width W
and height H, this gives the estimate V = HWL. Many re-
searchers21–23 implicitly use this simple estimate when using
the dimensionless length L/W as a proxy for the dimension-
less volume V/HW 2. A more accurate estimation takes into
account the rounded caps at the front and back of the droplet
and the fact that the droplet does not invade the corners of the
channels. To account for the latter, the cross sectional shape
of a non-wetting droplet in rectangular channels is often as-
sumed to consist of two semi-circles with a diameter H, con-
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Fig. 1 (a) A non-wetting droplet of volume V and length L can be de-
scribed with a body of volume Vbd , length Lbd , and surface area Asurf
and two caps of volume Vcap and length Lcap. (b) Cross-sectional
view showing half of the generalized channel geometry, which is
characterized by a height H, width W , top corner angle β and rounded
bottom corner radius rc. (c) Rendered 3-D droplet shapes and corre-
sponding 2-D top-views for the three most commonly used channel
geometries in the field of microfluidics: a trapezoidal channel (left), a
rectangular channel with rounded corners (middle) and a rectangular
channel with straight corners (right).
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nected by straight lines of length W −H, thus replacing Ach
by πH2/4+H(W −H) in the estimate of the droplet volume.
This approximation, however, turns out to be accurate only for
shallow channels, where H�W . Moreover, this still does not
account for the rounded caps at the front and the back. Al-
though other approximations are reported18, there is currently
no physically sound model to calculate the volume of droplets
from two-dimensional micrographs. Additionally, while most
previous work focused on channels with a rectangular cross
section, no relations have been developed and systematically
tested for non-rectangular microchannels like those obtained
by isotropic or crystallographic etching.

In this paper, we fill this gap by developing a theoretical
model that enables the reader to accurately predict volumes of
confined non-wetting droplets (contact angle of π) from mea-
sured droplet lengths and known channel dimensions. We set
up the model such that this volume estimation is possible for
a wide variety of channel geometries by considering the gen-
eralized channel shape shown in Fig. 1b. This shape is char-
acterized by a channel width W , height H, top corner angle
β, and rounded bottom corner with radius rc. We develop
solutions of the form V = f (L,H,W,β,rc) for this general-
ized channel shape and work out simplified approximations
for the three most commonly used microchannel geometries
shown in Fig. 1c. For the reader who is mainly interested
in the final result, we structured the paper such that we di-
rectly provide these simplified approximations in Eq. 1, fol-
lowed by full solutions in Fig. 3. After that, we present all
the theoretical foundations and the numerical validation. We
base our model on quasi-static droplet shapes, which is a valid
approach for surface-tension dominated flows where the lubri-
cating film around droplets is much thinner than the height and
width of the channel, i.e. for sufficiently low values of the cap-
illary number Ca. 10−3. Readers interested in flows at higher
Ca can use the simple extension of our model presented in the
discussion section.

The results of this study provide a valuable tool to precisely
quantify the volume of droplets from top-view images. This
is for example useful to further improve our understanding of
the physics of droplet flows, because physical models are of-
ten based on volumetric quantities such as flow rates and vol-
umes. From an application point of view, our model enables
the precise monitoring of chemical and biotechnological pro-
cesses in segmented microflows. Mass transfer rates in liquid-
liquid extractions and gas-liquid dissolution experiments ben-
efit for example from an accurate method to determine droplet
or bubble volumes and surface areas. This information is also
important for the design of non-sperical particles for deliv-
ery purposes. Also in the field of biotechnology, where the
growth of microorganisms inside droplets is tracked by count-
ing the microorganisms in top-view images, accurate knowl-
edge on the volume of the droplets enables the precise calcu-

lation of the cell concentration. Lastly, we think that volume
calculations from simple length measurements might be useful
for point-of-care devices, where it is not possible to integrate
expensive measurement techniques like confocal microscopy
and absorbance imaging24 or include a collection chamber on
the chip where droplets can relax to a sphere such that their
volume is easily obtained from the measured diameter.

Summary of the main results

Approximate solutions for common channel geometries,
V = f (L,H,W )

As explained later, a good and simple calculation of the
droplet volume is

V =

[
HW − (4−π)

(
2
H

+
2

W

)−2

− cH2

](
L−W

3

)
(1)

where we have determined c for the three most commonly
used channel geometries shown in Fig. 1c: (i) channels with a
trapezoidal cross section obtained from anisotropic etching of
silicon along the 〈111〉 crystal plane (rc = 0, β = 54.7◦)25,
(ii) rectangular channels with circular lower corners from
isotropic etching (β= 90◦, rc =H), and (iii) rectangular chan-
nels with sharp corners from anisotropic etching or soft lithog-
raphy (rc = 0, β = 90◦).Throughout this paper, we focus on
channel geometries with an aspect ratio H/W ≤ 1, because
such aspect ratios are widely used in the field of microfluidics.

For the three geometries in Fig. 1c, we determined the con-
stant c by fitting Eq. 1 over the full range of channel aspect ra-
tios and droplet lengths studied in this work (0.1≤ H/W ≤ 1
and 2≤ L/W ≤ 9) against droplet volumes calculated with the
3D surface energy minimization of SURFACE EVOLVER 26”.
We find c= 0.77, c= 0.41, and c= 0, respectively. For droplet
lengths L ≥ 3W , volumes calculated by Eq. 1 are at least
within 5% of the volumes calculated by SURFACE EVOLVER
as shown in Fig. 2, and the error is up to an order of magni-
tude smaller than the error for the simple V =AchL approxima-
tion. More accurate solutions and solutions for the generalized
channel geometry in Fig. 1b, i.e. for other values of β or rc,
are given below.

Full solutions for generalized channel geometries, V =
f (L,H,W,β,rc)

The recipe to calculate droplet volumes from measured droplet
lengths and known channel geometry is given in Fig. 3. De-
pending on the channel geometry, different cross sectional
shapes are possible, resulting in different expressions for the
droplet volume. The different shapes can be classified based
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Fig. 2 Comparison of the exact droplet volume VSE calculated with SURFACE EVOLVER, with V from Eq. 1 (closed symbols) and V from the
simple estimate V = AchL (open symbols). The proposed approximation, Eq. 1, yields a volume estimate that is at least within 10% of the exact
droplet volumes, which is up to 1 order of magnitude better than the simple estimate V = AchL. The minimum in some of the curves of Eq. 1
originates from the overestimation of the cap volume and the underestimation of the body volume.The contribution of the body increases with
L/W such that for short droplets the total error is positive and for long droplets negative and hence the minimum.

on two questions: (Q1) “does the interface conform to the bot-
tom corners of the channel?” If the answer is “no” , the inter-
face is flattened at the side walls and the remaining question
is (Q2a) “is the interface also flattened at the bottom wall?”
Yet, if the answer to Q1 is “yes”, the interface is flattened at
the bottom wall and the remaining question is (Q2b) “is the
interface also flattened at the side walls?” This classification
hence leaves four possible interface shapes shown in Fig. 5,
with the corresponding expressions for the volume calculation
in the four panels of Fig. 3. Selecting which of the panels
to use hence starts with answering two questions. Using the
corresponding criteria at the top of Fig. 3, this is simply done
by filling in the known channel dimensions. Consider for ex-
ample a channel with a rectangular cross section with straight
corners. Then the answer to the first question is “no”, because
rc = 0 while the term on the left is always larger than zero. In
fact, this term is the radius of curvature, rb, of the interface in
the bottom corners of the channel for an unconformed inter-
face. Subsequently calculating the radius of curvature, rt , of
the interface in the top corners of the channel, it is straightfor-
ward to show that for rectangular channels the answer to Q2a
is “yes” irrespective of the values of H and W . This makes
sense, because non-wetting droplets in rectangular channels
with straight corners do no fill the corners and the curved parts
of the interface in the corners are separated by thin flat films
on the walls27. Hence, the expressions in panel (a) should be
used to calculate the droplet volume. Importantly, this panel
is not exclusive to rectangular channels with straight corners.
It, for example, also applies to trapezoidal channels that are
sufficiently wide such that the curved corners are separated by
flat films. Note that the shapes shown in the other panels are
only a few examples of the possible shapes belonging to these
panels. Hence, it is recommended to use the two criteria as a
guide to select the appropriate panel for the volume calcula-

tion.

Model validation

We validate our theoretical model with the 3D numerical en-
ergy minimization code SURFACE EVOLVER 26. We illustrate
the accuracy for the three most commonly used channel ge-
ometries shown in Fig. 1c for a wide range of channel aspect
ratios (0.1 ≤ H/W ≤ 1) and droplet lengths (2 ≤ L/W ≤ 9).
For this entire range, droplet volumes predicted by theory and
found in simulations agree within 5% as shown in Fig. 4.
The largest deviation is found for shallow channels and short
droplets, i.e. H/W = 0.1 and L/W = 2, whereas the difference
reduces with larger aspect ratios and droplet lengths to as little
as 0.5% for H/W ≥ 0.5 and L/W ≥ 6.

Uncertainty in calculated droplet volume due to experi-
mental inaccuracies

In this section, we briefly explain how to calculate the un-
certainty in droplet volume, u(V ), for a known uncertainty in
the droplet length u(L) and known uncertainties, u(W ), u(H),
u(β), u(rc), in channel dimensions. Assuming that these un-
certainties are independent we can write

(u(V ))2 =

(
∂V
∂W

u(W )

)2

+

(
∂V
∂H

u(H)

)2

+

(
∂V
∂β

u(β)
)2

+(
∂V
∂rc

u(rc)

)2

+

(
∂V
∂L

u(L)
)2

(2)

Applying Eq. 2 to the desired equation panel in Fig. 3 it is then
straightforward to calculate the uncertainty in V from fabrica-
tion tolerances and expected errors in droplet length.

To illustrate the use of Eq. 2 we work out a typical case
for a rectangular microchannel with straight corners with
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Fig. 3 Recipe to calculate the volume of a droplet from its measured length, L, and the known channel dimensions (W , H, β, rc). The criteria at
the top guide the reader to one of the four equation panels that contain all the equations needed to calculate the droplet volume from the droplet
length using the equation at the bottom.
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Fig. 4 Validation of the theoretical model in Fig. 3 was done by comparing the results from the model (lines) with simulations performed with
SURFACE EVOLVER (circles) for the three most commonly used channel geometries. The graphs show the non-dimensional droplet volume
V/W 3 as a function of the non-dimensional droplet length L/W for a wide range of channel aspect ratios, with some cross-sectional shapes
calculated by the model (lines) and SURFACE EVOLVER (circles) in the insets. The direct comparison of the error shown on the right shows
that our model agrees with the simulations within 5% (indicated by dashed line) for droplets of length L ≥ 3W , with a reduction in error for
larger droplets.
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H = 50±2 µm and W = 100±2 µm and a droplet with L =
500±10 µm, i.e. relative errors of 4%, 2% and 2%. Working
out the derivatives of V to W , H and L (not shown) and filling
in the numbers we find V = 2.21±0.11 nL or a relative error
of 4.9%.

Full model

Our model describes the shape of quasi-statically moving
droplets that do not wet the channel walls. This quasi-static
approach is valid for droplets moving at speeds that are suf-
ficiently low to neglect droplet deformation due to viscous
and inertial forces. The dimensionless numbers expressing
these contributions relative to surface tension are the capil-
lary number, Ca, and the Weber number, We = ReCa, with Re
the Reynolds number. For most microfluidic applications, Ca,
Re, and hence We are small such that the quasi-static approach
is valid. More quantitatively, the calculations of Bretherton 28

showed that deformations due to viscous forces are negligible
for Ca = µu/γ < 5 ·10−3, with µ the viscosity of the carrier
fluid, u the speed of the droplet, and γ the interfacial tension.
More recently, Kreutzer et al. 29 showed numerically that this
boundary can be put somewhat higher at Ca< 10−2. Addition-
ally, Bretherton 28 stated that inertial effects can be neglected
for We = ρu2W/γ < 1, with ρ the density of the carrier fluid.
The droplet shapes calculated in Kreutzer et al. 29 confirm that
at We∼ 1, the length of a droplet is appreciably different from
the value at We→ 0. As Re and Ca are both small in microflu-
idic flows, the condition We < 1 is met for most applications.

Besides droplet deformations due to viscous and inertial
forces, we also ignore deformations due to gravity. This is
justified, as gravity is generally small compared to surface ten-
sion. More quantitatively, the ratio of these forces captured by
the Bond number, Bo = ∆ρH2g/γ, is typically much smaller
than 0.1, where ∆ρ is the density difference between the fluids
and g is the gravitational acceleration.

Under the conditions that (i) surface tension forces are
much larger than viscous, inertial, and gravitational forces,
and (ii) droplets are surrounded by a thin lubricating film such
that there is no direct contact between the droplets and the
walls (often achieved by the use of surfactants or surface treat-
ment of the walls), droplets confined by the walls of a channel
take the shape for which the surface energy, i.e. surface area,
is minimum. This explains why the shape only depends on
the channel geometry and droplet volume, and not on fluid pa-
rameters. Although we use the word “droplet” throughout this
paper, our work hence is equally valid for gas bubbles.

We now derive a relation between the volume and length of
a droplet by describing the shape of a droplet with two curved
caps connected by a body that is confined by the channel walls
as illustrated in Fig. 1a. We first determine the volume of the
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Fig. 5 Geometric description of the four possible droplet shapes in-
side the generalized channel geometry considered in this work. These
shapes can be categorized based on the two questions shown at the
top and side. All shapes are fully characterized once the radius of
curvature at the top, rt , is known, which is found through energy
minimization. The resulting expression can be found in the corre-
sponding panels (a)-(d) in Fig. 3. Note that we only present the left
side of the channels for display purposes.

body based on energy minimization and then propose a de-
scription of the caps.

Volume of the body

Considering the droplet shown in Fig. 1a, we define its body
as the part that has sides of length Lbd parallel to the chan-
nel walls. Along this length, the cross sectional droplet shape
is constant and can be described by one of the four possible
shapes shown in Fig. 5. Comparing the shapes in (a,c) with
those in (b,d), the important difference is the conformation of
the interface to the bottom corner of the channel. The shapes
in Fig. 5(b,d) do conform such that the radius of the inter-
face at the bottom equals the radius of the rounded corner, i.e.
rb = rc. This leaves the radius at the top, rt , as the only un-
known in the description of the cross-sectional droplet shape.
By contrast, the bottom interface in Fig. 5(a,c) does not take
the shape of the channel. Because the interface is now free at
both the top and the bottom, the curvatures are equal27, i.e.
rb = rt . For all four cases, rt is thus the only unknown.

The general approach to find the cross-sectional shape, i.e.
rt , is to minimize the surface area of the entire body, Asurf, for a
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fixed body volume, Vbd = AbdLbd , with Abd the cross-sectional
area

Abd = 2∑ai (3)

The surface area of the body, Asurf, simply equals the circum-
ference of the cross section, lbd = 2∑ li, times the length of
the body, i.e. Asurf = 2Lbd ∑ li. Using elementary geometry,
it is straightforward to find expressions for the lengths li and
the areas ai for the four cases in Fig. 5. These can be subse-
quently used to find expressions for Abd , Vbd , and Asurf, which
only depend on the unknown radius rt . This radius is found
by minimizing the area Asurf for given Vbd , such that the cross-
sectional shape is known.

We now illustrate this general approach for the cross-
sectional shape shown in Fig. 5a. Using geometry to express
the lengths, li, and the area’s, ai, in terms of the radii rt and rb
and the channel dimensions W , H, β, and rc, we find

l1 =
W
2
− rt

tan(β/2)
, l2 = (π−β)rt

l3 =
H

sinβ
− rb tan(β/2)− rt

tan(β/2)

l4 = βrb, l5 =
W
2
− H

tanβ
− rb tan(β/2) (4)

and

a1 = l5H, a2 =
π−β

2
r2

t , a3 = l3rt

a4 =
β

2
r2

b, a5 =
rb− rt

2
l3

a6 =
l1− l5

2

((
W
2
− l5

)
tanβ− rb

cosβ
− rt

)
a7 = rt(l1− l5) (5)

where we have neglected the thickness of the wetting film be-
tween a droplet and the wall under the assumption of quasi-
static motion.

Using rb = rt for the case in Fig. 5a, we hence find the fol-
lowing expressions for the surface area

Asurf = 2Lbd

(
H tan

β

2
− 4rt

sinβ
+πrt +W

)
(6)

for the body area

Abd =

(
HW − H2

tanβ
− 4r2

t

sinβ
+πr2

t

)
(7)

and for the body volume

Vbd =Lbd

(
HW − H2

tanβ
− 4r2

t

sinβ
+πr2

t

)
(8)

This volume should remain constant when we minimize the
surface area. This is simply done by substituting Vbd into Asurf
through Lbd , resulting in

Asurf = 4Vbd
(W +πrt)sinβ−H cosβ−4rt +H
(HW +πr2

t )sinβ−H2 cosβ−4r2
t

(9)

Now minimizing Asurf with respect to the only unknown rt ,
dAsurf/drt = 0 , we find an expression for the radius rt in terms
of all known channel dimensions

rt =
H(1− cosβ)+W sinβ

4−πsinβ
−√

H2 +(H cosβ−W sinβ)(H(cosβ+2)− sinβ(πH +W ))

4−πsinβ

(10)

For a rectangular channel, β = 90◦, Eq. 10 reduces to

rt =
H +W −

√
H2 +(π−2)HW +W 2

4−π
, (11)

which is a well-known result27. Knowing rt fixes the entire
cross-sectional shape of the body in Fig. 5a. The volume of
the body can then be calculated using Eq. 8 once the body
length Lbd is known, which we address shortly.

For the other three cases shown in Fig. 5b-d, the analysis is
similar. In short, one uses rb = rc instead of rb = rt to obtain
the resulting expressions for the case in Fig. 5b, while l5 = 0
should be used in Eqs. (4) and (5) for the case in Fig. 5c.
The case in Fig. 5d needs special attention. For the special
case with rc = H shown in Fig. 5d, resulting expressions for rt
and Abd are found using rb = rc and l3 = 0. However, for the
more generic case where rc 6= H, finding the root of rt cannot
be done analytically and should be done using root finding.
For all four cases, the resulting expressions for rt and Abd are
summarized in Fig. 3.

Volume of the caps

Calculating the shape and volume of the caps could in princi-
ple be done using the same energy minimization approach.
It, however, involves solving the highly non-linear Young-
Laplace equation in 3D, such that it is not possible to obtain
an analytical expression for the generalized case. We there-
fore use a much simpler, but accurate method to reconstruct
the shape of the caps. Although this description of the droplet
caps is not exact, it is a fair estimate as evidenced by the
good match of the droplet volume prediction and the Surface
Evolver simulation shown in Fig. 4. This reconstruction is
illustrated in Fig. 6a. We require that the cross-section of the
droplet cap continuously and smoothly connects to the body at
y= 0 and monotonically decreases to A(y)= 0 at y= Lcap. Ad-
ditionally, we require A(y) to reproduce a hemispherical cap
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(a) (b)

y

Fig. 6 (a) Geometric reconstruction of the cap is done by extruding
the cross sectional shape of the body, Abd , along the length of the
cap Lcap, while decreasing the area quadratically according to A(y) =
Abd

(
1− y2/L2

cap
)
. (b) Resulting droplet shape.

when viewed from top or bottom, as is commonly found in ex-
periments. The function A(y) = Abd

(
1− y2/L2

cap
)

is the only
choice that allows this condition and the other ones. It may be
noted that this description results in a shape that looks ellipti-
cal from whatever angle the cap is viewed in a 2D projection,
thus closely approximating the physically realistic shape as
shown in Fig. 6b. The volume of the cap can then simply be
calculated as the integral

Vcap =
∫ Lcap

0
Abd

(
1− y2

L2
cap

)
dy =

2
3

LcapAbd (12)

We hereby assume that the length of the cap equals half of the
body of the droplet, Wbd/2, thus matching the requirement of a
hemispherical cap when viewed from top or bottom. As illus-
trated for the four shapes in Fig. 5, this width is simply defined
as the distance of the side of the droplet to the centerline such
that

Lcap =Wbd/2 = l1 + rt . (13)

With l1 and rt determined in the previous section, the cap
length can be determined and the resulting expressions are
summarized in Fig. 3.

Total droplet volume

The total droplet volume is just the sum of the body volume
and the volume of the caps

V = 2Vcap +Vbd =
4
3

LcapAbd +(L−2Lcap)Abd (14)

where we expressed the length of the body in terms of the mea-
sured droplet length, L, and the known cap length according
to Lbd = L−2Lcap. As mentioned before, the expressions for
Abd and Lcap are all summarized in Fig. 3. This figure hence
is a concise summary of this paper and all that is needed to
calculate drop volumes from measured drop lengths.

Approximate solutions

Returning to the approximation of the droplet volume postu-
lated in Eq. 1, we can now show the origin of this approxima-
tion. Substituting the approximation Lcap =W/2 in Eq. 14 we
obtain

V = Abd

(
L−W

3

)
(15)

Considering a rectangular channel, the cross sectional area
equals Abd = HW − (4− π)r2

t . The unknown radius of cur-
vature, rt , can be found by matching the curvature, 1/rt , of
the interface near the corners to the curvature at the front of
the droplet, which approximately equals 2/H + 2/W . Using
rt ≈ (2/H +2/W )−1 we find

V =

[
HW − (4−π)

(
2
H

+
2

W

)−2
](

L−W
3

)
(16)

The trapezoidal and round corner channels are clearly far from
rectangular such that a correction term is needed. We observe
that a simple quadratic correction term,−cH2, for the channel
height is sufficient, while higher order terms in W and L do
not change the approximation significantly and were left out
to keep the approximation as simple as possible. This yields
the volume approximation of Eq. 1.

Discussion

We now address the validity and implications of two important
assumptions used in our model. The first assumption is that
the droplet is sufficiently long such that it has a straight body.
We observed in SURFACE EVOLVER simulations that this as-
sumption breaks down for droplets shorter than L < 2W . De-
spite this fact, our model is accurate within 12% for droplets
with a length W < L < 2W . Shorter droplets either take the
shape of a pancake or a sphere, such that their volume is eas-
ily calculated using V = πHL2/4 or V = πL3/6 respectively.

The second assumption is that the lubricating film around
non-wetting droplets is negligibly thin, which is valid for static
and slowly moving droplets.30 However, for faster moving
droplets the thickness of the lubricating film, δ, should be
accounted for. Wong et al. 31 showed that this thickness is
a complex function of the distance to the droplet caps and
channel walls, but on average can be estimated as δ/2W =
0.643rt/W (3Ca)2/3. The assumption in our model that the
droplet is separated by an infinitely thin film can be easily
modified to take this finite thickness, δ, into account: instead
of using H and W , one should use W − 2δ and H− 2δ in the
recipe of Fig. 3. Although the righthand side of the expres-
sion for rt now depends on rt itself, its value is simply found
by solving the equation iteratively. We note that using rt for a
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Fig. 7 Effect of the capillary number on the difference in calculated
volume for moving and static droplets for a given droplet length of
L/W = 5 in rectangular channels with straight corners and an aspect
ratio H/W ≤ 1.

zero film thickness to calculate δ without subsequently recal-
culating rt (valid for small values of Ca for which δ� rt )32

results in a maximum deviation of 2% in the prediction of the
volume, which might be sufficiently accurate for some appli-
cations. We illustrate the influence of the finite film thickness
for rectangular channels with straight corners in Fig. 7. For
a measured droplet length of L = 5W , the graph shows the
relative difference between the volume of a moving droplet
and a static droplet. For the example considered here, the film
thickness can be safely neglected for Ca < 10−3, because the
2.5% difference likely falls within experimental error. For rel-
atively large values, the difference increases to a maximum of
12% for Ca = 10−2. For Ca > 10−3, the film thickness should
hence be taken into account as proposed.

Concluding remarks

We have developed a theoretical model to compute the vol-
ume of non-wetting bubbles and droplets in a microchannel
based on the principle of interfacial energy minimization.The
only input to the model is the geometry of the microchannel
and the length of the droplet, which can be determined easily
from top- or bottom view micrographs. Our model has been
validated by comparison with three-dimensional energy min-
imization calculations using Surface Evolver. We have illus-
trated the good agreement between theory and calculations for
three most commonly used channel geometries in the field of
microfluidics: a rectangular channel, an isotropically etched
channel, and a crystallographically etched channel. We ex-
pect that the simple theoretical model will be useful for the
droplet microfluidics community and aids quantitative analy-
sis and design of droplet microflows.
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Graphical abstract and one-liner for table of contents
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We present a theoretical model to calculate the volume of bubbles and droplets in

segmented microflows from given dimensions of the microchannel and measured

lengths of bubbles and droplets.
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