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Copper catalysed C-N bond formation via 

sequential acylation and deacylation process: a 

novel strategy for the synthesis of benzanilides 

Saurabh Kumar,a Rajeshwer Vanjari,a Tirumaleswararao Guntreddi,a and 
Krishna Nand Singha* 

An efficient and mild oxidative amidation of aldehydes by means of acetanildes as amine 

component has been developed for the first time using copper catalysis. The approach is 

versatile and proceeds through a sequential acylation and deacylation steps to afford 

benzanilides.  

Introduction 

    Transition metal-catalyzed selective C-H bond activation has 

attracted a great deal of current attention in organic synthesis.1 

The development of novel, atom-efficient, and catalytic 

methods for the preparation of amides under mild conditions is 

one of the most exciting themes in organic synthesis.2 Amide 

motifs are present in many natural products, pharmaceuticals, 

polymers, and biological systems. Amides are also valuable 

intermediates for the preparation of a variety of useful organic 

compounds.3 Traditional methods for the synthesis of amides 

involve the reaction of activated carboxylic acid derivatives and 

amines, although these methods suffer from disadvantages such 

as the lability of the acid derivatives and tedious procedures.4 

Consequently, a number of alternative amide preparation 

strategies have been pursued, such as Beckmann 

rearrangement,5 amino carbonylations,6 cross coupling 

reactions of formamides with alkyl/aryl halides,7 from alkynes,8 

and transamidation.9 In this perspective, the direct oxidative 

amidation of the aldehyde group with amines is of immense 

importance and has been achieved using transition metal 

catalysts such as Pd,10 Cu,11 Zn,12 Fe,13 Ru,14 and also under 

metal-free conditions.15 Recently our group has developed the 

amidation of  toluene derivatives using a C-H activation 

strategy.16 Yet, the development of fresh protocols for the 

preparation of amides by direct C–H bond activation is a 

demanding and challenging task. To the best of our knowledge, 

amidation of aldehydes with acetanilides as amine partner has 

not been explored so far. In view of the above and as a part of 

our research interest on amide bond formation,16,17a-c and other 

themes,17d-i we report herein a copper catalysed synthesis of 

benzanilides via sequential acylation and deacylation strategy 

involving the reaction of acetanilides as amine partner with 

aldehydes. A comparison of the pertinent previous and present 

strategies is illustrated in Figure 1. 

Results and discussion 

    The studies were commenced using acetanilide and 

benzaldehyde as model reactants employing NBS (catalytic) 

and TBHP (70% aq.) in acetonitrile at 100 °C. Surprisingly, 

benzanilide was obtained in 55% yield instead of the expected 

formation of imides (Table 1, entry 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An illustration of the previous and present reports 

    Having observed this interesting finding, the reaction 

conditions were further optimized by varying different 

parameters such as catalyst, oxidant, solvent and temperature. 

The findings are summarized in Table 1.  
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Table 1. Optimization of reaction conditionsa 

 

 

 

 

Entry Catalyst Oxidant Solvent 
Temperature 

(°C) 

Yield 

(%)b 

1 NBS TBHP CH3CN 100 55 

2 NBS TBHP DCE 100 70 

3 NBS TBHP toluene 100 0 

4 NBS TBHP DMSO 100 0 

5 NBS K2S2O8 DCE 100 0 

6 CuI TBHP DCE 100 20 

7 CuBr TBHP DCE 100 30 

8 CuCl2·2H2O TBHP DCE 100 75 

9 CuCl2·2H2O TBHP DCE 80 69 

10 CuCl2·2H2O TBHP DCE 120 75 

11 CuCl2·2H2O TBHP CCl4 100 74 

12 CuCl2·2H2O TBHP CH3CN 100 30 

13 CuCl2·2H2O TBHPc DCE 100 75 

aReaction conditions: acetanilide (0.5 mmol), benzaldehyde (1 mmol), 

oxidant (2 equiv.), catalyst (10 mol%), solvent (1 mL),  24 h. bIsolated yield. 
c4 equiv. 

    Employing NBS with TBHP in DCE gave rise to 70% 

product yield (entry 2). Changing solvents to toluene or DMSO, 

however, resulted in no product formation (entries 3 & 4). 

Further effort to change oxidant to K2S2O8 also remained futile 

(entry 5). Replacing NBS by CuI and CuBr ended with 

considerably low product yields (entries 6 & 7). Employing 

CuCl2·2H2O as catalyst with TBHP in DCE, however, resulted 

in a marked increase in the yield (75%, entry 8). The trial of 

other solvents such as CCl4 and acetonitrile afforded 74% and 

30% of the product respectively (entries 11 & 12). Lowering 

the temperature to 80 °C lowered the product yield (entry 9), 

whereas an increase in the temperature to 120 °C brought about 

no enhancement (entry 10). Increasing the stoichiometry of 

TBHP to 4 equiv. also could not improve the yield (entry 13). 

 

    Under the optimized set of conditions (entry 10), the scope 

and versatility of the reaction was examined using diversely 

substituted acetanilides 1 and aldehydes 2 to achieve the 

corresponding benzanilides 3. The outcome is given in Table 2. 

Acetanilides substituted with electron withdrawing (EWG) as 

well as electron donating groups (EDG) such as Me, Cl, CF3, 

Br, and NO2 were well tolerated during the course of reaction, 

giving rise to the corresponding benzanilides in good yields. 

Interestingly, the reaction could also tolerate acyl substituent 

and remained intact in the product. The reaction of 

heteroaromatic as well as alicyclic acetanilides such as N-

(pyridin-2-yl)acetamide and N-cyclohexylacetamide was also 

successful. Aromatic aldehydes bearing different electronic and 

steric substituents such as Cl, Me, Br, OMe and NO2 underwent 

the reaction smoothly. The reaction of aliphatic aldehydes such 

as heptanal and cinnamaldehyde, and heteroaromatic aldehyde 

such as thiophene-2-carboxaldehyde was also efficacious, 

although furfural (3w) and indole-3-carboxaldehyde (3x) 

showed no product formation due to their decomposition by 

TBHP.  

 

Table 2. Scope and versatility of the reactiona 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aReaction conditions: 1 (0.5 mmol), 2 (1 mmol), TBHP (2 equiv.), 

CuCl2·2H2O (10 mol%), DCE (1 mL), 100 °C, 24 h. b120 °C. 

   Based on the product formation and existing literature,18c a 

possible mechanism is outlined in Figure 3. The reaction is 

assumed to involve oxidative addition of acetanilide to 

aldehyde to form the imide, which is subsequently hydrolysed 
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to the corresponding benzanilide. The selective hydrolysis of 

COCH3 over COPh may be rationalized in terms of their 

relative stabilities. To validate the radical pathway, a control 

experiment using the radical scavenger BHT was carried out 

which completely inhibited the reaction. When the reaction was 

conducted in the absence of acetanilide using stoichiometric 

amount of Cu(II) chloride,  the formation of acid chloride 

intermediate was not observed at all.  

 
Figure 3. Proposed mechanism 

Conclusion 

In conclusion, we have developed a new and efficient oxidative 

amidation strategy for the synthesis of benzanilides using 

acetanilides and aldehydes as coupling partners. The method is 

versatile, and offers good functional group tolerance.  

Experimental 

General information 

All the reagents were purchased from Sigma-Aldrich, Merck, 

Alfa Aesar, and Sd-Fine and were used as received. All the 

reactions were monitored by thin-layer chromatography (TLC) 

and were visualized using UV light. The product purification 

was done using silica gel column chromatography. 1H- and 13C-

NMR spectra were recorded on a JEOL FT-NMR spectrometer 

at 300 and 75.45 MHz respectively using CDCl3 or DMSO-d6 

solution. Chemical shifts are given in ppm and are measured 

relative to tetramethylsilane (TMS) as an internal standard. 

General procedure for the synthesis of products 3a– 3u 

To a solution of acetanilide (0.5 mmol), aldehyde (1 mmol) and 

TBHP (2 equv.) in DCE (1 mL), was added CuCl2·2H2O (10 

mol%). The mixture was then heated under stirring at 100 °C 

for 24 h in an oil bath. After completion of the reaction, the 

contents were cooled to room temperature. To this was added 

an excess of water followed by extraction with ethyl acetate (3 

× 10 mL). The combined organic phase was dried over 

anhydrous Na2SO4, filtered and evaporated under reduced 

pressure to afford the crude product, which was finally purified 

by column chromatography using ethyl acetate/n-hexane as an 

eluent. 

 

N-Phenylbenzamide (3a)19  

White solid; 1H-NMR (CDCl3, 300 MHz): δ 7.97 (bs, 1H), 7.86 

(d, J = 7.2 Hz, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.52-7.25 (m, 6H), 

7.14 (t, J = 7.5 Hz, 1H); 13C-NMR (CDCl3, 75 MHz): δ 165.7, 

137.7, 134.8, 131.6, 128.9, 128.5, 126.8, 124.3, 120.1. 

 

N-(p-Tolyl)benzamide (3b)20 

White solid; 1H-NMR (CDCl3, 300 MHz): δ 7.96 (bs, 1H), 7.85 

(d, J = 6.9 Hz, 2H), 7.52-7.40 (m, 5H), 7.15 (d, J = 8.1 Hz, 2H), 

2.32 (s, 3H); 13C-NMR (CDCl3, 75 MHz): δ 166.0, 135.6, 

135.3, 134.4, 131.9, 129.7, 128.9, 127.2, 120.6, 20.9. 

 

N-(4-Chlorophenyl)benzamide (3c)20 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.87 (d, J = 7.2 

Hz, 2H), 7.62-7.47 (m, 5H), 7.35-7.32 (m, 2H), 7.26 (s, 1H); 
13C-NMR (CDCl3, 75 MHz): δ 165.5, 137.9, 137.6, 132.3, 

129.4, 129.1, 127.2, 127.0, 121.6. 

 

N-(3-(Trifluoromethyl)phenyl)benzamide (3d)21 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 8.13 (d, J = 7.5 

Hz, 1H), 7.87-7.95 (m, 2H), 7.51-7.42 (m, 5H), 7.3 (d, J = 

8.4 Hz, 2H); 13C-NMR (CDCl3, 75 MHz): δ 171.5, 138.7, 

134.0, 132.4, 130.4, 129.9, 129.1, 128.9, 128.8, 128.7, 127.3, 

127.1, 123.4, 121.3. 

 

N-(Pyridin-2-yl)benzamide (3e)22 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 9.56 (bs, 1H), 

8.45 (d, J = 8.4 Hz, 1H), 8.14-7.95 (m, 3H), 7.77-7.72 (m, 1H), 

7.57-7.44 (m, 3H), 7.05-7.01 (m, 1H); 13C-NMR (CDCl3, 75 

MHz): δ 166.4, 152.0, 147.6, 138.9, 134.5, 132.3, 128.9, 127.6, 

120.0, 114.8. 

 

4-Chloro-N-(pyridin-2-yl)benzamide (3f)22 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 9.73 (bs, 1H),  

8.36 (d, J = 8.1 Hz, 1H), 8.03-7.92 (m, 2H), 7.79-7.70 (m, 2H), 

7.47 (d, J = 8.1 Hz, 1H), 7.38-7.28 (m, 1H), 7.01 (t, J = 6.3 Hz, 

1H); 13C-NMR (CDCl3, 75 MHz): δ 165.5, 152.3, 148.3, 139.1, 

136.8, 135.5, 132.6, 130.5, 128.4, 126.0, 120.6, 115.2. 

 

N-(4-Acetylphenyl)-4-chlorobenzamide (3g) 

Light yellow solid; 1H-NMR (DMSO, 300 MHz): δ 10.57 (bs, 

1H), 7.98-7.89 (m, 5H), 7.60-7.51 (m, 3H), 2.51 (s, 3H); 13C-

NMR (DMSO, 75 MHz): δ 196.8, 165.0, 143.5, 133.4, 132.3, 

131.3, 129.9, 129.4, 128.9, 128.7, 119.6, 26.4; HRMS (ESI-): 

(M-H)+ calcd. For C15H12ClNO2: 272.0484; Found: 272.0476.  
 

N-(4-Nitrophenyl)benzamide (3h)23 

Yellow solid; 1H-NMR (CDCl3+DMSO, 300 MHz): δ 10.28 

(bs, 1H), 8.22 (d, J = 9.0 Hz, 2H), 8.07-7.97 (m, 4H), 7.60-7.47 

(m, 3H); 13C-NMR (CDCl3+DMSO, 75 MHz): δ 166.9, 145.3, 

142.9, 134.6, 131.9, 128.3, 127.9, 124.5, 119.7. 

 

2-Bromo-N-(3-chlorophenyl)benzamide (3i) 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.82-7.76 (m, 

2H), 7.63-7.60 (m, 2H), 7.47-7.26 (m, 4H), 7.15-7.13 (m, 1H); 
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13C-NMR (CDCl3, 75 MHz): δ 165.8, 138.8, 137.6, 135.0, 

133.8, 132.1, 130.3, 130.1, 128.0, 125.1, 120.4, 119.4, 118.2; 

HRMS (ESI+): (M+H)+ calcd. For C13H9ClNO: 309.9629; 

Found: 309.9608. 

 

N-Cyclohexylbenzamide (3j)24 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.78 (d, J = 7.2 

Hz, 2H), 7.44-7.33 (m, 3H), 6.48 (bs, 1H), 3.96 (bs, 1H), 2.00-

1.96 (m, 2H), 1.73-1.59 (m, 3H), 1.42-1.12 (m, 5H); 13C-NMR 

(CDCl3, 75 MHz): δ 167.0, 135.1, 131.2, 128.4, 127.0, 48.8, 

33.0, 25.4, 24.9. 

 

4-Methyl-N-phenylbenzamide (3k)25 

White solid; 1H-NMR (CDCl3, 300 MHz): δ 8.11 (bs, 1H), 7.74 

(d, J = 8.1 Hz, 2H), 7.64 (d, J = 7.8 Hz, 2H), 7.33-7.08 (m, 5H), 

2.37 (s, 3H); 13C-NMR (CDCl3, 75 MHz): δ 166.2, 142. 5, 

138.3, 132.3, 130.4, 129.2, 127.3, 124.6, 120.5, 21.5 

 

4-Chloro-N-phenylbenzamide (3l)19 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 9.43 (bs, 1H), 

7.93 (d, J = 8.1 Hz, 2H), 7.74-7.67 (m, 2H), 7.44-7.31 (m, 4H), 

7.14-7.10 (m, 1H); 13C-NMR (CDCl3, 75 MHz): δ 165.1, 138.5, 

137.5, 133.6, 129.1, 128.7, 128.5, 124.2, 120.7. 

 

3-Bromo-N-phenylbenzamide (3m)26 

White solid; 1H-NMR (CDCl3, 300 MHz): δ 8.12 (s, 1H), 7.95 

(s, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.61 (m, 3H), 7.35-7.25 (m, 

3H), 7.16-7.12 (m, 1H); 13C-NMR (CDCl3, 75 MHz): δ 164.4, 

137.4, 136.7, 134.5, 131.8, 130.1, 128.8, 125.4, 124.7, 122.6, 

120.3. 

 

N-(2-Bromophenyl)benzamide (3n)23 

White solid; 1H-NMR (CDCl3, 300 MHz): δ 8.28-8.25 (d, J = 

7.8 Hz, 1H), 8.11-8.08 (d, J = 7.5 Hz, 1H), 7.70 (s, 1H), 7.57-

7.41 (m, 3H), 7.35-7.25 (m, 2H), 7.04-6.93 (m, 2H); 13C-NMR 

(CDCl3, 75 MHz): δ 164.03, 137.61, 137.15, 133.84, 131.76, 

131.13, 130.24, 129.25, 127.66, 125.19, 120.47. 

 

4-Methoxy-N-phenylbenzamide (3o)19 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.78 (d, J = 8.7 

Hz, 3H), 7.57 (d, J = 7.8 Hz, 2H), 7.31-7.26 (m, 2H), 7.09-7.04 

(m, 1H), 6.90 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H); 13C-NMR 

(CDCl3, 75 MHz): δ 166.0, 163.2, 138.8, 129.7, 129.6, 127.8, 

125.0, 120.8, 116.7, 114.6, 56.0. 

 

2, 4-Dichloro-N-phenylbenzamide (3p)27 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 8.30 (bs, 1H), 

7.60-7.50 (m, 3H), 7.35-7.13 (m, 5H); 13C-NMR (CDCl3, 75 

MHz): δ 164.0, 137.6. 137.2, 133.8, 131.8, 131.1, 130.2, 129.3, 

127.7, 125.2, 120.5. 

 

N-Phenylthiophene-2-carboxamide (3q)28 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.91 (bs, 1H), 

7.64-7.59 (m, 3H), 7.52-7.50 (m, 1H), 7.35-7.30 (m, 2H), 7.15-

7.06 (m, 2H); 13C-NMR (CDCl3, 75 MHz): δ 160.3, 139.5, 

137.8, 131.0, 129.3, 128.7, 128.0, 124.8, 120.5. 

 

N-Phenylcinnamamide (3r)19 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 8.76 (bs, 1H), 

7.73-7.67 (m, 3H), 7.43-7.21 (m, 7H), 7.09-7.04 (m, 1H), 6.73 

(d, J = 15.6 Hz, 1H); 13C-NMR (CDCl3, 75 MHz): δ 165.0, 

142.2, 138.5, 134.8, 129.9, 129.1, 128.9, 128.7, 128.4, 128.1, 

124.7, 124.5, 121.4, 120.6, 120.3. 

 

N-Phenylheptanamide (3s)29 

Yellow liquid; 1H-NMR (CDCl3, 300 MHz): δ 7.61 (bs, 1H), 

7.53 (d, J = 7.8 Hz, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.11-7.06 (m, 

1H), 2.37-2.32 (m, 2H), 1.73-1.58 (m, 2H), 1.30 (s, 6H), 0.88-

0.86 (3H); 13C-NMR (CDCl3, 75 MHz): δ 180.1, 138.2, 129.1, 

124.4, 120.2, 34.2, 31.5, 28.8, 24.7, 22.5, 14.0. 

 

3-Chloro-N-(m-tolyl)benzamide (3t) 

Yellow solid; 1H-NMR (CDCl3, 300 MHz): δ 7.97-7.70 (m, 

3H), 7.50-7.38 (m, 4H), 7.35-6.96 (m, 2H), 2.34 (s, 3H); 13C-

NMR (CDCl3, 75 MHz): δ 164.7, 139.3, 137.7, 137.1, 135.1, 

134.4, 132.0, 130.2, 129.1, 125.9, 125.3, 121.2, 117.7, 21.5; 

HRMS (ESI+): (M+H)+ calcd. For C14H12ClNO: 246.0680; 

Found: 246.0681. 

 

4-Nitro-N-phenylbenzamide (3u)19 

Yellow solid; 1H-NMR (DMSO, 300 MHz): δ 10.53 (bs, 1H), 

8.36 (d, J = 8.7 Hz, 2H), 8.18 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 

7.8 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.12 (t, J = 7.5 Hz, 1H); 
13C-NMR (DMSO, 75 MHz): δ 164.1, 149.3, 140.8, 138.9, 

129.4, 128.9, 124.3, 123.7, 120.6. 

 

N-(4-cyanophenyl)benzamide (3v)30 

White solid; 1H-NMR (CDCl3, 400 MHz): δ 8.10 (bs, 1H), 7.91, 

7.89, 7.88, 7.84, 7.83, 7.82, 7.81 (m, 4H), 7.69, 7.68, 7.67, 7.66, 

7.64, 7.63, 7.63, 7.62, 7.62, 7.61, 7.60, 7.60, 7.59, 7.55, 7.55, 7.53, 

7.52, 7.51, 7.51 (m, 5H). 13C NMR (101 MHz, CDCl3): δ 165.65, 

141.83, 133.96, 133.19, 132.34, 128.83, 126.93, 119.74, 118.60, 

107.29, 77.16, 76.84, 76.53. 
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