

RSC Advances

Extraction and determination of polycyclic aromatic hydrocarbons in water samples using Stir bar sorptive extraction (SBSE) combined with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) followed by HPLC-UV.

Journal:	RSC Advances
Manuscript ID:	RA-ART-11-2014-014959.R3
Article Type:	Paper
Date Submitted by the Author:	20-Jan-2015
Complete List of Authors:	Hashemi, Beshare; Razi University, Analytical Chemistry shamsipur, mojtaba; Razi University, Chemistry

SCHOLARONE[™] Manuscripts

1	Extraction and determination of polycyclic aromatic hydrocarbons
2	in water samples using Stir bar sorptive extraction (SBSE)
3	combined with dispersive liquid–liquid microextraction based on
4	solidification of floating organic drop (DLLME-SFO) followed by
5	HPLC-UV
6	
7	Mojtaba Shamsipur* and Beshare Hashemi
8	Department of Chemistry, Razi University, Kermanshah, Iran
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	

^{*} Corresponding author: E-mail address: mshamsipur@yahoo.com

28 Abstract

30	Stir bar sorptive extraction (SBSE) combined with dispersive liquid-liquid microextraction
31	based on solidification of floating organic drop (DLLME-SFO) was developed for the extraction
32	and determination of some polycyclic aromatic hydrocarbons (PAHs) in different aqueous
33	samples. The extracted PAHs were separated and determined using high performance liquid
34	chromatography-ultraviolet detection (HPLC-UV). Some important extraction parameters were
35	studied and optimized. The new SBSE-DLLME-SFO method provided high enrichment factors
36	in the range of 1630-2637. The calibration graphs were linear in the range of 0.02-400 $\mu g \ L^{-1}$
37	and the limits of detection (LODs) were in the range of 0.0067-0.010 μ g L ⁻¹ for this technique.
38	The optimized method exhibited a good precision level with relative standard deviations
39	(RSDs%) values between 2.17% and 6.92%. The proposed method was successfully applied to
40	the extraction of three PAHs in different spiked water samples.
41	
42	Keywords: Dispersive liquid-liquid microextraction, Solidification of floating organic drop,
43	Stir bar sorptive extraction, Polycyclic aromatic hydrocarbons
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59 **1 Introduction**

60

Polycyclic aromatic hydrocarbons (PAHs) are an important class of organic compounds, which are formed during the incomplete burning of organic matters by natural processes such as carbonisation. These compounds, which can be found in the environment (atmosphere, soil and water), possess significant toxicity potency of carcinogenic and mutagenic effects and can cause endocrine disruption.¹⁻³ PAHs are listed as priority pollutants by the US Environmental Protection Agency (EPA).¹⁻⁵ Hence, determination of PAHs in environment is very important and essential for human health.

68 Several samples pretreatment techniques such as liquid–liquid extraction (LLE)⁶, solid-69 phase extraction (SPE),^{7,8} cloud-point extraction (CPE),⁹ hollow fiber liquid-phase 70 microextraction (HF-LPME),^{10,11} miniaturized homogeneous liquid–liquid extraction 71 (MHLLE)¹² and solid-phase microextraction (SPME) based on TiO₂ nanotube array¹³⁻¹⁶ and 72 multiwall carbon nanotubes¹⁷⁻¹⁹ have already been developed for the extraction of PAHs.

In recent years, Assadi and co-workers demonstrated a novel microextraction method called dispersive liquid–liquid microextraction (DLLME).²⁰⁻²³ DLLME is based on a ternary solvent system in which a mixture of extracting and dispersive solvent is rapidly injected into an aqueous sample containing the analytes of interest, which caused formation of a cloudy solution.

The main advantages of this technique are simplicity, rapidity of operation, high enrichment 77 factor and low consumption of extraction solvent. Moreover, not only DLLME is a suitable 78 sample preparation technique for a wide range of analytical instruments, but also it can be easily 79 combined with most other sample preparation methods. A novel dispersive liquid-liquid 80 microextraction method based on the solidification of floating organic drop (DLLME-SFO) was 81 introduced by Leong et al.²⁴ It is based on DLLME and the solidification of floating organic 82 drop.^{20,25} In this method solvents with the densities lower than water are used and the floated 83 84 extractant is solidified to be easily collected for analysis.

Recently, stir bar sorptive extraction (SBSE) has been proposed as a novel sample preparation method for the enrichment of priority organic compounds from food, environmental and biomedicinal aqueous matrices at trace level.²⁶⁻³⁰ In SBSE, the sorbent (a layer of polydimethylsiloxane, PDMS) is coated on a magnetic stir bar and the liquid sample is stirred with this bar. After extraction, the trapped analytes on the bar can be desorbed, either thermally

for gas chromatography or into a solvent for liquid chromatography.²⁸ The extraction mechanism and the advantages of SPME and SBSE are identical, whereas the enrichment factor of SBSE is ~ 100 times higher than that of SPME.

The aim of this work was the combination of stir bar sorptive extraction (SBSE) with dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for highly efficient extraction and determination of some polycyclic aromatic hydrocarbons (PAHs) using HPLC-UV. The influence of different experimental parameters on the performance of both steps were thoroughly investigated and discussed. Finally, the applicability of the proposed method was tested by the determination of PAHs in water samples.

99

100 **2 Experimental**

101

102 **2.1 Chemicals**

103

PAHs (fluorene, fluoranthene, benz[a]anthracene, pyrene and benzo[a]pyrene) were purchased from Sigma- Aldrich. HPLC grade solvents acetonitrile, acetone, methanol, 1-undecanol and 1decanol were obtained from Merck. Stock solutions of PAHs (1000 mg L⁻¹) were prepared in acetonitrile and stored in freezer at -10 °C. The working standards were prepared by subsequent dilution of stocks. Water samples were collected from Kermanshah (Iran) in glass bottles and stored in the dark at 4 °C before analysis.

110

111 2.2 Apparatus

112

113 Chromatographic analysis was carried out by a Knauer HPLC with Chromgate software version 114 3.1 having Smartline 1000-1 and Smartline 1000-2 binary pumps, Smartline UV 2500 variable 115 wavelength programmable detector (Berlin, Germany), on-line solvent vacuum degasser and 116 manual sample injection with a 20 μ L injection loop (model 7725i, Rheodyne, Cotati, CA, USA). 117 Separations were carried out on an H5-ODS C18 column (15 cm × 4.6 mm, with 5 μ m particle 118 size) from Anachem (Luton, UK). A mixture of water/acetonitrile (30:70 v/v) at a flow rate of 119 0.8 mL min⁻¹ was used as a mobile phase in isocratic elution mode and the detection was

performed at the wavelength of 270 nm. A centrifuge (Hettich, EBA 20, Tuttlingen, Germany)was used for centrifugation.

122

123 **2.3 Stir bar sorptive extraction device**

124

Stir bars coated with a 0.5 mm film thickness layer (24 μ L) of PDMS (Twister TM: the magnetic 125 126 stirring rod is incorporated in a glass jacket and coated with PDMS) were obtained from Gerstel (Gerstel GmbH, Mulheiman der Ruhr, Germany). New stir bars were conditioned as follows: the 127 stir bar was placed into a vial containing an acetonitrile:methanol solution (80:20, v/v) and 128 conditioned for 24 h under agitation. Between successive extractions, the used stir bar was 129 cleaned twice in methanol for 15 min at 35 °C, under magnetic stirring rate of 800 rpm, followed 130 by a drying step using a lint-free tissue. The analysis of desorption solvent of two steps confirmed an 131 insignificant carryover. 132

133

134 2.4 SBSE-DLLME-SFO procedure

135

Prior to use, new or used stir bars were conditioned as described in section 2.3. At the extraction 136 step, 100 mL of water sample containing 15 μ g L⁻¹ of analytes was stirred with the stir bar for 40 137 min at 300 rpm. After extraction, the stir bar was removed using a clean tweezers and dried with 138 lint free-tissue. Then the stir bar was placed into a 2 mL glass vial containing 0.5 mL of 139 methanol (as disperser solvent). After 15 min, the stir bar was removed and 30 µL of 1-140 141 undecanol (as extraction solvent) was added to this solution and injected rapidly into the 5 mL of aqueous solution containing 1% (w/v) potassium chloride (for improvement of the formation of 142 floated drop) which was placed in a screw cap glass test tube with conical bottomed. A cloudy 143 solution, resulting from the dispersion of the fine 1-undecanol droplets in the aqueous solution 144 was formed in the test tube. In this step, the PAHs in the methanol were extracted into the fine 145 droplets of 1-undecanol within few seconds. Then the mixture was centrifuged for 5 min at 5000 146 rpm. After centrifugation, the glass tube was transferred into the ice bath and then the solidified 147 organic solvent was transferred into the conical vial where it started to melt at room temperature. 148 Finally 10 µL of acetonitrile was added to melt and 30 µL of the resulting solution was injected 149 into the HPLC system for analysis. 150

151 **3 Results and discussion**

152

In the present study, a SBSE-DLLME-SFO method combined with HPLC-UV was developed 153 and applied to simultaneous preconcentration and determination of the PAHs fluorene (Flu.), 154 155 fluoranthene (Flut.), pyrene (Pyr.), benz[a]anthracene (BaA) and benzo[a]pyrene (BaP) from different water samples. To reach a high extraction recovery and enrichment factor, the SBSE 156 and DLLME conditions were optimized. The enrichment factor (EF) was defined as the ratio of 157 the analyte concentration in the floated phase (C_{flo}) to the initial concentration of analyte (C_0) 158 within the sample (i.e., $EF = C_{flo}/C_0$), where the analyte concentration in the collected phase was 159 calculated from the direct calibration graph (0.2-10 mg L^{-1}) of PAHs in acetonitrile. 160

161

162 **3.1 Optimization of the DLLME parameters**

163

164 **3.1.1 Effect of type and volume of extraction solvent**

165

The selection of an appropriate extraction solvent is very important in DLLME 166 procedure, in order to obtain an efficient extraction. In the selection of extraction solvent some 167 factors such as low solubility in water, extraction capability of interested compounds, having 168 melting point near room temperature (in the range of 10-30 °C) and lower density than water 169 should be considered. According to these considerations, 1-undecanol (d=0.83 g/ml, mp=19 °C) 170 and 1-decanol (d=0.83 g/ml, mp=6.4 °C) were studied as extraction solvent. The results revealed 171 that 1-undecanol has better extraction efficiency than 1-decanol. Therefore, 1-undecanol was 172 selected as the extraction solvent for subsequent experiments. 173

To examine the effect of extraction solvent volume, a series of experiments were performed by using 0.5 mL of methanol containing different volumes of 1-undecanol (10, 20, 30, 40 and 50 µL). According to Fig.1, the extraction efficiency of analytes decreases with the increase of extractant volume, while the concentration of analytes in the floating phase decreases slightly due to the dilution effect. Subsequently, at an intermediate volume of extraction solvent, high enrichment factor and good recovery are obtained. Therefore, 30 µL of 1-undecanol was selected as the volume of extraction solvent.

182	(Fig. 1)					
183						
184						
185	3.1.2 Effect of type and volume of disperser solvent					
186						
187	The miscibility of disperser solvent in the extraction solvent and aqueous phase is the most					
188	important factor for selection of disperser solvent. Several disperser solvents including methanol,					
189	acetonitrile, ethanol and acetone were examined and the effect of these solvents on the					
190	performance of DLLME was investigated. The results showed that methanol gives the best					
191	extraction efficiency and, thus, it was chosen as disperser solvent (Fig.2), and the effect of its					
192	volume was investigated in the range of 250-2000 $\mu L.$ According to the results in Fig.3, the					
193	extraction efficiency increased by increasing the volume of methanol up to 0.5 mL and decreased					
194	thereafter. At low volume of methanol, the cloudy state could not be formed completely;					
195	therefore the extraction efficiency was low. On the other hand, increasing of the disperser solvent					
196	volume leads to decreased extraction efficiency due to the enhanced solubility of analytes in					
197	aqueous solution. As a result, 0.5 mL was used as the optimal volume of methanol for further					
198	studies.					
199						
200	(Fig. 2) and (Fig.3)					
201						
202	3.2 Optimization of the SBSE parameters					
203						
204	3.2.1 Effects of extraction and desorption time					
205						
206	The extraction time is a very important factor because it influences the partition of the solutes					
207	between the matrix and the polymer. ³⁰ Fig.4 shows the extraction efficiency of PAHs during					
208	different times. As shown in Fig.4, the equilibrium time was achieved after 40 min. After this					
209	time, no substantial increase was obtained with additional extraction time. Therefore, based on					
210	these results, 40 min was chosen as the optimal adsorption time. The effect of desorption time					
211	was also evaluated for the target analytes by studying different times. The results indicated that a					
212	desorption time period of 15 min is sufficient for complete desorption (Fig.5).					

213	Also, the effect of number of desorption steps on the extraction efficiency was studied by			
214	using three consecutive desorption procedures. The results revealed that the majority of the			
215	analytes are desorbed in the first step.			
216				
217	(Fig. 4) and (Fig. 5)			
218				
219	3.2.2 Effect of salt addition			
220				
221	The influence of salt concentration on the extraction of PAHs was studied by adding different			
222	amounts of KCl (0-5% w/v). Generally the increasing ionic strength of solution can improve the			
223	extraction efficiency through reducing the solubility of analytes in the aqueous sample. However,			
224	due to the non-polarity of the PAHs compounds used, salt addition resulted in reduced extraction			
225	efficiency. This fact was also reported by other authors. ^{31,32} This phenomenon could be			
226	explained by helping to move PAHs to the water surface (oil effect) by minimizing their			
227	interaction with the PDMS stir bar and, subsequently, minimizing the PAHs extraction.			
228	Therefore, no salt was added in further experiments.			
229				
230	3.3. Analytical characteristics			
231				
232	The method showed a good linearity over the calibration range 0.02–400 $\mu g\ m L^{-1}$ with the			
233	square of correlation coefficients (r ²) of larger than 0.991. The limit of detections (LODs), based			
234	on signal- to- noise ratio (S/N) of 3 were in the range of 0.0067-0.01 $\mu g \ m L^{\text{-1}}$ for the proposed			
235	method. The enrichment factors of PAHs were quite high from 1630 to 2637. The relative			
236	standard deviations (RSDs) for five replicates varied from 2.17 to 6.92%. The obtained results			
237	are summarized in Table 1.			
238				
239	(Table 1)			
240				
241	3.4. Real samples analysis			
242				

Since polycyclic aromatic hydrocarbons (PAHs) are mainly considered as common environmental				
pollutants, which are carried into rivers, lakes and other water sources, different water samples are mainly				
tested for their presence. Thus, in this work the applicability of the proposed extraction method				
was investigated in four different water samples (i.e., tap, well, ground and lake waters). The				
results showed that all samples were free from PAHs. Thus, they were spiked with PAHs				
standard solutions at different levels to assess matrix effects (Table 2). Fig.6 shows typical				
chromatograms for the tap water samples before and after spiking with standard concentration of				
PAHs.				
(Table 2) and (Fig. 6)				
3.5. Comparison of SBSE-DLLME-SFO with other methods				
Characteristics of the proposed method have been also compared with other methods which were				
used for the extraction and determination of PAHs in Table 3. As it can be seen, the proposed				
method shows limit of detections (LODs) comparable with those of most previously reported				
methods, while, the EF of this method is higher than those of previously published methods. The				
RSDs for the proposed method are lower than those of the mentioned methods. These results				
reveal that the presented method is sensitive and simple technique and can be used for the PAHs				
preconcentration and determination from aqueous samples.				
(Table 3)				
4 Conclusions				
In this work SBSE combined with DLLME-SFO technique for highly efficient extraction and				
HPLC-UV determination of PAHs from different water samples. It should be noted that UV				
detection is the most usual and widespread detection technique in high performance chromatography and				
the instrument is the most available one. The results of this study revealed that the proposed				
technique gives high extraction efficiency and low LODs. Compared to the other methods, this				

technique uses small volume of organic solvents and has a good linearity over a wide range of

274	concentration. The most important advantage of this technique is that the use of large sample volumes						
275	and toxic organic solvents has been omitted.						
276							
277	Refe	rences					
278							
279	1	O. P. Heemken, N. Theobald and B. W. Wenclawiak, Analytical Chemistry, 1997, 69,					
280		2171-2180.					
281	2	Ra. Doong, Sm. Chang and Yc. Sun, Journal of Chromatography A, 2000, 879, 177-					
282		188.					
283	3	P. Wong and J. Wang, Environmental Pollution, 2001, 112, 407-415.					
284	4	D. Bai, J. Li, S. Chen and BH. Chen, Environmental Science & Technology, 2001, 35,					
285		3936-3940.					
286	5	F. Santos and M. Galceran, TrAC Trends in Analytical Chemistry, 2002, 21, 672-685.					
287	6	D. M. Brum, R. J. Cassella and A. D. Pereira Netto, Talanta, 2008, 74, 1392-1399.					
288	7	WD. Wang, YM. Huang, WQ. Shu and J. Cao, Journal of Chromatography A, 2007,					
289		1173, 27-36.					
290	8	J. Ma, R. Xiao, J. Li, J. Yu, Y. Zhang and L. Chen, Journal of Chromatography A, 2010,					
291		1217, 5462-5469.					
292	9	KC. Hung, BH. Chen and L. E. Yu, Separation and Purification Technology, 2007,					
293		57, 1-10.					
294	10	M. M. Sanagi, S. H. Loh, W. A. W. Ibrahim, M. N. Hasan and H. Y. A. Enein, Journal of					
295		Chromatographic Science, 2013, 51, 112-116.					
296	11	M. Charalabaki, E. Psillakis, D. Mantzavinos and N. Kalogerakis, Chemosphere, 2005,					
297		60 , 690-698.					
298	12	M. Shamsipur and J. Hassan, Journal of Chromatography A, 2010, 1217, 4877–4882.					
299	13	Q. Zhou and Z. Fang, Journal of Separation Science, 2014, 37, 1012–1017.					
300	14	Y. Huang, Q. Zhou and G. Xie, Journal of Hazardous Materials, 2011, 193, 82-89.					
301 302	15	D. Pan, C. Chen, F. Yang, Y. Long, Q. Cai and S. Yao, Analyst, 2011,136, 4774-4779.					
303 304	16	H. Liu, D. Wang, L. Ji, J. Li, S. Liu, X. Liu and S. Jiang, Journal of Chromatography A, 2010,1217, 1898–1903.					

Page 11 of 24

305	17	S. H. Loh, M. M. Sanagi, W. A. Wan Ibrahim and M. N. Hasan, Talanta, 2013, 106, 200-					
306		205.					
307	18	L. Guo, H. K. Lee, Journal of Chromatography A, 1218, 2011, 9321–9327.					
308 309	19	J. Ma, R. Xiao, J. Li, J. Yu, Y. Zhang and L. Chen, Journal of Chromatography A, 2010, 1217, 5462–5469.					
310	20	M. Rezaee, Y. Assadi, MR. Milani Hosseini, E. Aghaee, F. Ahmadi and S. Berijani,					
311		Journal of Chromatography A, 2006, 1116, 1-9.					
312	21	S. Berijani, Y. Assadi, M. Anbia, MR. Milani Hosseini and E. Aghaee, Journal of					
313		Chromatography A, 2006, 1123, 1-9.					
314	22	N. Fattahi, Y. Assadi, M. R. M. Hosseini and E. Z. Jahromi, Journal of Chromatography					
315		<i>A</i> , 2007, 1157, 23-29.					
316	23	M. Rezaee, Y. Yamini, S. Shariati, A. Esrafili and M. Shamsipur, Journal of					
317		Chromatography A, 2009, 1216, 1511-1514.					
318	24	MI. Leong and SD. Huang, Journal of Chromatography A, 2008, 1211, 8-12.					
319	25	M. R. Khalili Zanjani, Y. Yamini, S. Shariati and J. Å. Jönsson, Analytica Chimica Acta,					
320		2007, 585, 286-293.					
321	26	E. Baltussen, P. Sandra, F. David and C. Cramers, Journal of Microcolumn Separations,					
322		1999, 11, 737-747.					
323	27	E. Baltussen, C. Cramers and P. Sandra, Analytical and Bioanalytical Chemistry, 2002,					
324		373, 3-22.					
325	28	M. Kawaguchi, R. Ito, K. Saito and H. Nakazawa, Journal of Pharmaceutical and					
326		Biomedical Analysis, 2006, 40, 500-508.					
327	29	M. Kawaguchi, R. Ito, Y. Hayatsu, H. Nakata, N. Sakui, N. Okanouchi, K. Saito, H.					
328		Yokota, Si. Izumi and T. Makino, Journal of Pharmaceutical and Biomedical Analysis,					
329		2006, 40, 82-87.					
330	30	F. David and P. Sandra, Journal of Chromatography A, 2007, 1152, 54-69.					
331	31	E. Lesellier, Analusis, 1999, 27, 363-368.					
332	32	D. Cam, S. Gagni, L. Meldolesi and G. Galletti, Journal of Chromatographic Science,					
333		2000, 38, 55-60.					
334	33	M. H. Fatemi, M. R. Hadjmohammadi, P. Shakeri and P. Biparva, Journal of Separation					
335		Science, 2012, 35, 86-92.					

336	34	H. Xu, Z. Ding, L. Lv, D. Song and YQ. Feng, Analytica chimica acta, 2009, 636, 28-
337		33.
338	35	L. Tavakoli, Y. Yamini, H. Ebrahimzadeh and S. Shariati, Journal of chromatography A,
339		2008, 1196, 133-138.
340	36	M. T. Pena, M. C. Casais, M. C. Mejuto and R. Cela, Journal of Chromatography A,
341		2009, 1216, 6356-6364.
342	37	E. Tahmasebi and Y. Yamini, Analytica chimica acta, 2012, 756, 13-22.
343	38	P. M. do Rosário and J. M. Nogueira, <i>Electrophoresis</i> , 2006, 27, 4694-4702.
344		
345		
346		
347		
348		
349		
350		
351		
257		
552		
353		
354		
355		
356		
357		
358		
359		
360		

361	Figure Cantions
362	
363	Fig. 1 Effect of extraction solvent volume on the extraction efficiency. Conditions: sample
364	volume 5 mL: extraction solvent 1-undecanol: disperser solvent 0.5 mL methanol: centrifuging
365	time and speed 5min with 5000 rpm: concentration of analytes 100 µg L^{-1}
366	
367	Fig. 2 Effect of disperser solvent kind on the extraction efficiency. Conditions: sample volume, 5
368	mL; extraction volume, 30 μ L 1-undecanol; disperser solvent, 0.5 mL; centrifuging time and
369	speed, 5min with 5000 rpm; concentration of analytes, 100 μ g L ⁻¹ .
370	
371	Fig. 3 Effect of disperser solvent volume on the extraction efficiency. Conditions: sample
372	volume, 5 mL; extraction volume, 30 μ L 1-undecanol; disperser solvent, methanol; centrifuging
373	time and speed, 5 min with 5000 rpm; concentration of analytes, 100 μ g L ⁻¹ .
374	
375	Fig. 4 Effect of extraction time on the SBSE-DLLME-SFO efficiency. Condition: sample
376	volume, 100 mL; stirring speed, 300 rpm; desorption time, 15 min; concentration of analytes, 15
377	μ g L ⁻¹ , DLLME-SFO parameters are the same as in Figure 2.
378	
379	Fig. 5 Effect of desorption time on the SBSE-DLLME-SFO efficiency. Condition: sample
380	volume, 100 mL; stirring speed, 300 rpm; extraction time, 40 min; concentration of analytes, 15
381	μ g L ⁻¹ . DLLME-SFO parameters are the same as in Figure 2.
382	
383	Fig. 6 Chromatograms related to extraction of the target analytes of the non-spiked (A) and
384	spiked (B) tap water at the concentration level of 25 μ g L ⁻¹ of Flu., Flut., Pyr. and BaP and 20 μ g
385	L^{-1} of BaA.
386	
387	
388	
389	
390	

Analyte	LR^{a} (µg L ⁻¹)	R^{2b}	LOD^{c} (µg mL ⁻¹)	$\mathrm{RSD}^{\mathrm{d}}\left(\% ight)$	EF^{e}
Flu.	0.05-400	0.9910	0.0098	2.17	2223
Flut.	0.02-400	0.9940	0.0067	3.94	1630
Pyr.	0.02-200	0.9990	0.0067	6.92	2637
BaA	0.06-250	0.9932	0.010	5.73	1708
BaP	0.04-200	0.9968	0.0095	6.03	1735
^a Linear range	e. ^b Square of co	rrelation co	efficient. ^c Limit of	detection (S/N=	=3). ^d Relative
standard devia	tion at concentrati	on level of 2	20 μ g L ⁻¹ for Flu., Ba	A and BaP, 15	ug L ⁻¹ for Flut.
and 30 μ g L ⁻¹ f	for Pyr., respective	ely. ^e Enrichi	ment factor		
	Flu. Flut. Pyr. BaA BaP ^a Linear range standard devia and 30 µg L ⁻¹	AnalyteER (µg L)Flu.0.05-400Flut.0.02-400Pyr.0.02-200BaA0.06-250BaP0.04-200a Linear range. b Square of costandard deviation at concentratiand 30 µg L ⁻¹ for Pyr., respective	Flu. 0.05-400 0.9910 Flut. 0.02-400 0.9940 Pyr. 0.02-200 0.9990 BaA 0.06-250 0.9932 BaP 0.04-200 0.9968 ^a Linear range. ^b Square of correlation co standard deviation at concentration level of 1 and 30 μg L ⁻¹ for Pyr., respectively. ^c Enricht	Analyte LK (tg L) K LOD (tg lift.) Flu. 0.05-400 0.9910 0.0098 Flut. 0.02-400 0.9940 0.0067 Pyr. 0.02-200 0.9990 0.0067 BaA 0.06-250 0.9932 0.010 BaP 0.04-200 0.9968 0.0095 ^a Linear range. ^b Square of correlation coefficient. ^c Limit of standard deviation at concentration level of 20 µg L ⁻¹ for Flu., Ba and 30 µg L ⁻¹ for Pyr., respectively. ^e Enrichment factor	Adalyte EX (μg L) K EOD (μg mL) KSD (x) Flu. 0.05-400 0.9910 0.0098 2.17 Flut. 0.02-400 0.9940 0.0067 3.94 Pyr. 0.02-200 0.9990 0.0067 6.92 BaA 0.06-250 0.9932 0.010 5.73 BaP 0.04-200 0.9968 0.0095 6.03 ^a Linear range. ^b Square of correlation coefficient. ^e Limit of detection (S/N-standard deviation at concentration level of 20 μg L ⁻¹ for Flu., BaA and BaP, 15 μ and 30 μg L ⁻¹ for Pyr., respectively. ^e Enrichment factor

Table 1 Figures of merit in the SPE-DLLME-SFO

Sample	Analytes	Added ($\mu g L^{-1}$)	Found ($\mu g L^{-1}$)	Relative recovery (%)
	Flu.	25	23.2 ± 2.0^{a}	92.8
	Flut.	25	22.9±1.3	91.6
Tap water	Pyr.	25	21.1±1.9	84.4
	BaA	20	19.0±1.6	95.0
	BaP	25	24.4±1.5	97.6
	Flu.	20	18.0±1.6	90.0
	Flut.	15	14.6±1.2	97.3
Lake water	Pyr.	25	24.0±2.0	96.0
	BaA	15	14.7±1.3	98.0
	BaP	20	18.9±1.1	94.5
	Flu.	20	17.1±1.5	85.5
	Flut.	10	9.5±0.80	95.5
Ground water	Pyr.	20	18.0±1.9	90.0
	BaA	20	17.6±1.7	88.0
	BaP	15	13.8±1.0	92.0
	Flu.	20	17.9±1.8	89.5
	Flut.	10	9.6±0.50	96.0
Well water	Pyr.	20	18.2±1.4	91.0
	BaA	20	17.4±1.6	87.0
	BaP	15	14.0±1.0	93.3

Table 2 Determination of PAHs in spiked water samples

413 ^a Mean found amount \pm standard deviation (n = 3).

418 **Table 3** Comparison of the proposed method with other extraction methods for determination of

419 PAHs

Method	Analyte	LR	LOD	RSD (%)	EF	Ref.
		$(\mu g L^{-1})$	$(ng mL^{-1})$			
AA-DLLME ^a	Flut.	0.04-800	0.008	7.3	310-	33
	Pyr.	0.02-400	0.004	5.6	325	
DLLME-SFO ^b	Flut.	1-500	1.10	4.3	116	34
HLLE ^c	Flu.	0.1-400	0.071	4.2-10.3	232	35
	Flut.	0.2-400	0.067		226	
	Pyr.	0.4-400	0.031		245	
DLLME	Flu.	0.02-200	0.008	2.1	902	20
	Flut.	0.02-200	0.010	6.9	1016	
	Pyr.	0.02-200	0.010	5.3	1046	
	BaA	0.02-20	0.01	9.3	1047	
	BaP	0.05-20	0.02	7.7	971	
IL-DLLME ^d	Flu.	0.05-40	0.0002	4.5	317.4	36
	Flut.	0.05-40	0.0008	4.5	328.6	
	Pyr.	0.02-20	0.0001	4.4	336.6	
	BaA	0.02-20	0.00004	5.7	332.6	
	BaP	0.02-20	0.00004	2.5	338.2	
MSPE ^e	Flu.	0.2-100	0.10	6.9	242	37
	Flut.	0.1-100	0.05	8.3	413	
	Pyr.	0.05-100	0.02	5.6	600	
SBSE-LD-MEKC-	Flu.	25-125	10	<12	-	38
$\mathrm{DAD}^{\mathrm{f}}$	Flut.	27-133	11		-	
	Pyr.	27-133	11		-	
SBSE-DLLME-SFO	Flu.	0.05-400	0.0098	2.17	2223	This
	Flut.	0.02-400	0.0067	3.94	1630	work
	Pyr.	0.02-200	0.0067	6.92	2637	
	BaA	0.06-250	0.010	5.73	1708	

	BaP 0.04-200 0.0095 6.03 1735
420	
421	^a Alcoholic-assisted dispersive liquid-liquid microextraction. ^b Dispersive liquid-liquid
422	microextraction based on solidification of floating organic drop. ^c Homogeneous liquid-liquid
423	extraction. ^d Ionic liquid dispersive liquid-liquid microextraction. ^e Magnetic solid phase
424	extraction. ^f Stir bar sorptive extraction and liquid desorption was combined with micellar
425	electrokinetic capillary chromatography(MEKC) and diode-array detection.
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	
447	
448	
449	

Fig. 3

Graphical Abstract

The proposed method offers advantages such as low consumption of organic solvents, high enrichment factors and good linearity over the investigated concentration range.

