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Abstract 

Quantum-mechanical exchange and correlation interactions between the electrons are quite crucial in 

deciding the molecular geometry and properties. Such electronic interactions can have a significant 

role in the reliability of a quantitative structure-activity relationship (QSAR) because the biological 

activities of the chemicals can be described as a function of the molecular structure through the 

QSARs which are routinely based on the quantum-mechanical molecular descriptors. In this work, we 

present a detailed analysis on the effect of the quantum-mechanical exchange and correlation on the 

internal stability and external predictivity of a QSAR model based on the quantum-mechanical 

molecular descriptors while modeling the mutagenic activity of a set of 51 nitrated-polycyclic 

aromatic hydrocarbons (PAHs). For this, various molecular descriptors are computed using electronic 

structure methods such as the Hartree-Fock (HF) method, and  density functional theory (DFT) 

employing only the exchange functionals (HFX, B88), pure exchange and correlation functionals 

(HFX+LYP, BLYP), hybrid (B3LYP), meta (M06-L), and meta-hybrid (M06, M06-2X) exchange-

correlation (XC) functionals. To further analyze the role of the electron-correlation, QSAR models are 

also developed using the descriptors incorporating mainly the effect of electron-correlation. The 

external predictivity of the developed models is assessed through the state-of-the-art external 

validation parameters employing an external prediction set of compounds. A comparison of the quality 

of the models developed with the descriptors computed using different electronic structure methods 

revealed that the exchange interactions are quite critical along with the electron-correlation in 

modeling the mutagenicity. Notably, for most of the models, electron-correlation based descriptors are 

found to be highly reliable when computed using the hybrid XC functionals, particularly the B3LYP 

and M06-2X. 

Keywords: QSAR; biological activities; molecular modeling; exchange-correlation, DFT 
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Introduction  

An accurate estimation of the intricate instantaneous interactions between the electrons, 

namely, the quantum-mechanical exchange and correlation,
1,2

 is an important aspect in the 

computation for the energy of an atomic and a molecular system along with the molecular 

geometry. On the other hand, an investigation of such interactions can be advantageous in the 

quantitative modeling of the biological activities, since these fundamental interactions influence 

the molecular properties such as ionization potential, electron affinity, etc.  In our recent 

studies,
3-6

 through an heuristic approach  based on the Hartree-Fock (HF)
7,8

 method and the 

density functional theory (DFT),
8,9

 it has been revealed that the effect of electron-correlations 

described through the electron-correlation based quantum-mechanical molecular descriptors can 

be highly significant in the external predictivity of the quantitative models developed for the 

biological activities and physico-chemical properties of environmentally important compounds. 

For example, while developing the externally predictive quantitative structure-activity 

relationships (QSARs) for the mutagenic activity of nitrated-polycyclic aromatic hydrocarbons 

(PAHs),
3,4

 it was found that the electron-correlation energy, and descriptors incorporating mainly 

the effect of electron-correlations from the molecular descriptors such as the HOMO energy and 

electrophilicity, are more reliable descriptors than the corresponding whole descriptor like the 

total energy. Similarly, the descriptors based on the effect of electron-correlations from the total 

energy and molecular polarizability were also found to be highly reliable while  developing the 

single-parameter based quantitative models  for various physico-chemical properties such as 

aqueous solubility, subcooled liquid vapor pressure, n-octanol/water and n-octanol/air partition 

coefficient of polychlorinated -dibenzo-p-dioxins (PCDDs) and dibenzo-furans (PCDFs),
6  

and 

also for the supercooled vapor pressure of polychlorinated-naphthalenes.
5
 In this study, we 
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present a detailed analysis on the role of quantum-mechanical exchange and correlation 

interactions in the real external predictivity of the QSARs. It should be noted that the “real” 

external predictivity of the quantitative models should be determined using an external prediction 

set of compounds not used in the model development.
10,11

  

The HF method incorporates exchange interactions exactly, though neglecting a 

significant part of the dynamic electron correlations,
7,8

 while the DFT accounts for the exchange-

correlation (XC) through an XC density functional, the exact form of which is yet unknown. The 

most widely used DFT XC functional, B3LYP, was introduced by Becke
12 

and Lee-Yang-Parr
13

 

which is a hybrid of a local and non-local exchange and correlation. Enormous efforts have been 

made recently and in the past decade to find out proper XC density functionals which should 

yield accurate energies, geometries and thermo-chemical properties for not only the covalent 

systems but also for the non-covalently interacting systems.
14-16

 Literature analysis shows that 

the many widely applicable functionals, using the generalized-gradient approximation (GGA)  

based on the gradient of the electron density, are separately accurate for molecules,
17,18

 solids,
19

 

interfaces,
20 

and even low-dimensional systems,
21

 but no GGA functional is simultaneously 

accurate for all of these systems.
22

 On the other hand, recently available meta-GGA functionals, 

which include the dependence on the spin kinetic energy density, overcome many of the 

limitations of GGA functionals with almost same computational cost.
23,24

 However, the 

reliability of hybrid GGA functionals in describing the energies can be sensitive to the amount of 

exact HF exchange embraced in the functional because the quantum-mechanical exchange 

interactions are necessary for an accurate description of an atomic or a molecular structure.
25

 The 

performance of various density functionals, with and without exchange incorporation, has 

previously been analyzed in detail by the different studies.
25-27 

Page 4 of 40RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



  

5 

 

The present work compares the performance of exchange and correlation contributions of 

a few relevant and widely used pure, hybrid, meta, and meta-hybrid GGA functionals as well as 

an exact HF exchange towards the real external predictivity of the QSARs based on quantum-

mechanical molecular descriptors, namely, the total energy of a molecule (E), energy of the 

highest occupied and lowest unoccupied molecular orbital (EHOMO and ELUMO), absolute 

electronegativity (χ), chemical hardness (η), and electrophilicity index (ω).
28-30

 For the present 

study, QSAR models are developed and analyzed for a couple of biological activities, namely, 

the base-pair and frame-shift mutation activity of 51 nitrated-PAHs. The XC functionals of the 

DFT analyzed in the present study are widely used for the QSAR modeling, as discussed in the 

next section. 

 

Theoretical and Computational Details  

As listed in Table 1, the different electronic structure methods employed in the present 

study for the computations of molecular descriptors, include: (1) X-only methods incorporating 

only the exchange, namely, DFT with pure HF exchange (HFX), and Becke exchange (B88)
8,31

 

but without using any correlation functional, (2) X+C methods incorporating both exchange and 

correlation, namely, DFT with pure XC functionals such as HFX+LYP and BLYP,
13

 hybrid XC 

functional such as B3LYP,
32,33 

meta XC functional like M06-L,
34

  and meta-hybrid XC 

functionals like M06
35

 and M06-2X,
35

 and (3) the CORR methods where mainly the effect of the 

electron-correlation on the molecular descriptor is considered. As employed in our previous 

studies,
3-6,36

 the effect of electron-correlation (CORR) on a molecular descriptor (D) is estimated 

using an heuristic approach through, 

DCORR = DDFT − DHF/X-only            (1) 
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where DDFT is the descriptor computed at the DFT level using an XC functional, and DX-only is 

that computed using the X-only DFT such as involving HFX or B88 exchange but without any 

correlation, while DHF is computed at the HF level. It should, however, be noted that the effect of 

electron-correlation determined through Equation (1) while employing a hybrid XC functional, 

still includes some exchange interactions. The difference in the same descriptors computed using 

different electronic structure methods is due to the effect of exchange and correlation on the 

kinetic energy of electrons, electron-nuclear potential energy, and inter-electronic repulsion 

energy between the electrons of same (parallel) as well as different (antiparallel) spin. It should 

further be noted that to capture the effect of electron-correlation using XC functionals such as 

B3LYP, M06, M06-L and M06-2X, the DHF is employed, however, while using the HFX+LYP 

and BLYP functionals, DX-only is used as, 

DCORR(HFX+LYP) = DHFX+LYP − DHFX ,            (2) 

DCORR(BLYP) = DBLYP − DB88.             (3) 

It should further be noted that the descriptors, DCORR, computed using different X-only 

and X+C methods differs not merely due to the exchange and/or correlation contribution but also 

due to the different effects of the XC functionals which in fact result in different electron 

densities for the same molecular structure. The mathematical difference in the Equations (1-3) 

for DCORR, computed using an XC functional, for example BLYP, actually represents the effect 

of the descriptor arising from the difference between the electron-densities obtained using the 

BLYP X+C functional and B88 X-only functional. 

Furthermore, the estimation of electron-correlation in the molecular descriptors, 

particularly for the biologically relevant compounds, at the advanced ab-initio theories such as 
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configuration interaction method
37

 and coupled cluster theory
7
 demands huge computational 

resources and time. The  aforementioned strategy employed in this study and in our previous 

works
3-6,36

 provides a computationally less expensive, though only an approximate, method to 

compare the role of quantum-mechanical exchange and correlation in the descriptors employed 

for developing the externally predictive quantitative models. Through these, the effect of 

variation of the exact HF exchange in the predictivity of QSARs can also be analyzed. For 

example, M06 and M06-2X incorporates 27% and 54% of HF exchange, respectively, whereas 

M06-L does not incorporate exact HF exchange as also illustrated in Table 1. 

For the computation of various descriptors, the geometry of each of the 51 nitrated-

PAHs, listed in the supporting information Tables S1 and S2a-f, is optimized at the HF and DFT 

level of the theory employing a 6-311G(d,p) gaussian basis set, which was followed by the 

harmonic frequency analysis to ensure that the optimized geometry corresponds to a true global 

minimum. It should be noted that the quantitative models discussed in the present study are 

based on the molecular descriptors computed using the same basis set i.e., 6-311G(d,p) for 

various quantum-mechanical computations employing different electronic structure methods, 

though for a few models, we had also analyzed the role of polarization and diffuse function with 

the computations performed using 6-311G and 6-311++G(d,p) basis sets. It should further be 

noted that the exclusion of the polarization functions (d,p) not only leads to different numerical 

values of the molecular descriptors but can also significantly affect the statistical validation  of  

the models, however, no such significant change is observed in the statistical parameters of the 

models when diffuse functions (indicated by ++) are also included which though are 

computationally more expensive. All the quantum-mechanical calculations are performed with 
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Gaussian 03
38

 suite of quantum-chemistry software package, except for the computations using 

M06, M06-L and M06-2X functionals, for which a SCF-MO package, ORCA
39 

was employed. 

 

Data Base  

The data set comprising of 51 nitrated-PAHs having mutagenic potential is taken from 

the existing literature.
40 

These compounds exhibit base-pair mutagenic potency in the TA100 

strain of Salmonella typhimurium. Besides this, 18 compounds of this data set also show 

mutagenic potency in the TA98 strain of Salmonella typhimurium
41

 which corresponds to the 

frame-shift mutation potency of the compounds. Such genotoxic behavior of the compounds 

have hazardous impact on all the life forms, some of these are found to be associated with the 

genetic disorders which can lead to cystic fibrosis, sickle cell anemia, cancer, Crohn’s disease, 

Tay-Sachs disease, etc.
42,43

 The data for TA100 and TA98 mutagenic activity of the set of 51 and 

18 nitrated-PAHs, respectively, along with the computed quantum-mechanical descriptors 

described in the previous sections, are provided in the supporting information Tables S1 and 

S2a-f, respectively. It should, however, be noted that the data-set chosen for the TA100 

mutagenicity in this study is sufficiently large and more reliable than that used for the TA98 

mutagenicity, therefore, the TA100 models are discussed and presented in detail in the main text 

of the article whereas the TA98 models are provided in the supporting information. The TA98 

models developed on a larger data set is presented in our previous study.
3
 The QSAR models, for 

the two types of the mutagenic potency of nitrated-PAHs, are developed using the statistical 

procedures as described in the next section.  

It should further be noted that for a few of the compounds, for example for 6-

nitrobenzo[a]pyrene, the value of chemical hardness, computed through the CORR (HFX+LYP) 
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and CORR(BLYP) methods, is exactly zero as evident in the supporting information Table S2e. 

Since the chemical hardness (η) and electrophilicity index (ω) index are related with each other 

through the absolute electronegativity (χ) as,  

                     � =	 (��)�
	
  ,                                                             (4) 

hence, the electrophilicity index of these compounds has an undefined value. Therefore, the data 

set while developing the models using the electrophilicity index as a descriptor computed 

through the CORR (HFX+LYP) and CORR (BLYP) methods, comprises of 44 and 41 

compounds, respectively, which is smaller than the data set of 51 compounds employed in the 

case of all other methods, as indicated in the supporting information Table S3.  

 

Model Development 

A reliable QSAR model must be internally robust and externally predictive in order to 

have a practical viability. In the present work, QSAR models are developed using multi-linear 

regression (MLR). To test the external predictivity of the models, the whole data-set is divided 

into two validation sets: one into an internal training set of compounds using which the model is 

build, and second into an external prediction set of compounds on which the prediction 

capability of the developed model is tested.  This splitting is mainly performed through the 

activity sampling and random splitting methods. In the activity sampling (or the ordered 

response) method, splitting is performed taking alternate compounds, according to the decreasing 

order of the experimental biological activities, into the training and the prediction set, whereas in 

the random splitting method, the two sets are constituted taking the compounds randomly, for 

example, 30% in the prediction set (for details on the splitting , see supporting information Table 
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S3 and S4 for the compounds exhibiting mutagenic activity in TA100 strain and TA98 strain, 

respectively). Further, the applicability domain of each model is examined through the Williams 

plot
44

 to ensure that the models under consideration do not have any structural outliers (the 

compounds with the leverage greater than a warning leverage) and/or response outliers (the 

compounds with the standardized residuals more than three units of the standard deviation). Such 

outliers can erroneously influence the quality of a model.  

Further, the stability and reliability of the developed QSAR models is assessed through 

the statistical validation parameters listed in Table 2 for the internal and external validation. 

Parameters, namely, the coefficient of determination (R
2
), R

2 
using leave-one-out method 

(Q
2

LOO), and cross-validated concordance correlation coefficient (CCCCV) are employed to 

determine the model’s internal robustness. Besides these, more rigorous procedure such as cross-

validated leave-many-out (Q
2

LMO), Y-scrambling (Q
2

Yscr) and randomization (Q
2

Yrand) are 

employed for the internal validation, with 1000 iterations in each of the procedure, and leaving 

30% of the chemicals from the training set at a time in the Q
2

LMO procedure. The robustness of a 

model can be guaranteed if the value of leave-many-out parameters like Q
2

LMO is similar to that 

of R
2 

and
 
Q

2
LOO, whereas the lower values of Y-scrambling parameters ensure that there is a 

minimum chance-correlation in the proposed models. Furthermore, a low difference between the 

R
2
 and Q

2
LOO indicates similar performance of the model in the fitting and internal predictivity.  

On the other hand, to ensure the real external predictivity of the models, state-of-the-art 

external validation parameters listed in Table 2 are employed, which include the predictive 

squared correlation coefficient such as Q
2

F1,
44,45

 Q
2

F2,
46

 Q
2

F3,
47

 CCCEXT,
48,49

 and r
2

m metrics
50

 

based parameters
 
such as average 

2

mr , and differential 2

mr∆  with the threshold values similar to 

those employed by Chirico and Gramatica
51 

and also in our previous studies.
3-6 

Among these 
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external validation parameters, the  CCCEXT is the most stringent parameter which in fact 

determines the degree of agreement between the observed and predictive activity.
48,49 

 The 

statistical significance of the models is further analyzed through the mean absolute error 

(MAE),
52

  and root mean square error (RMSE)
52

 in the internal validation (in terms of MAECV, 

RMSECV) as well as in the external validation (in terms of MAEEXT, RMSEEXT) as depicted in 

Figure 1 and supporting information Tables S11-S30. Further to check the descriptor collinearity, 

QUIK rule (Q Under Influence of K) with a threshold ∆K value of 0.5
 
is also employed.

53
 

Finally, the degree of scattering between the experimentally (observed) and predicted 

mutagenicity from the developed models is analyzed through the scatter plots. The splitting of 

the data set, model development and validation were performed through the QSARINS
54,55

 

software. All the parameters employed to check the internal and external validation of various 

models are collected in the supporting information Tables S11-S30, whereas only the key 

parameters, provided in the Tables 3-7, are taken for the discussions in the next section. 

It should further be noted that the models developed with the X-only, X+C and CORR-

only methods differs in the distribution of the compounds in the training and external prediction 

set. The splitting is performed separately while developing models based on the descriptors 

computed using different electronic structure methods such that the best possible models are 

obtained, however, the outliers (the excluded compounds) differ in the splitting used for the 

various methods as indicated in the supporting information Tables S3 and S4. Though, we had 

also employed the same splitting for all the electronic structure methods considered in this work, 

however, no significant variation in the statistical parameters is observed, in fact, the models 

were still observed to be as robust and predictive as those using different splitting.    
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Results and Discussion  

In this work, the QSAR models based only on the two-descriptors are discussed so as to 

have a clear understanding of the models since increasing the number of descriptors in a model 

will not only make it difficult to interpret but can also erroneously enhance the statistical 

validation of the model. Tables 3-7 compares the key statistical validation parameters for various 

two-descriptor QSAR models for the TA100 mutagenicity, developed using the molecular 

descriptors computed with the X-only, X+C and CORR quantum-mechanical methods described 

in the previous sections. The corresponding data of the models for the TA98 mutagenicity is 

further provided in the supporting information Tables S5-S9. The performance of different 

quantum-mechanical methods employed for the computation of descriptors is further analyzed, 

in term of errors (MAEEXT and RMSEEXT) in the prediction ability of different models, as 

presented in Figure 1 and supporting information Figure S1, respectively, for the TA100 and 

TA98 mutagenicity. The detailed performance of various two-descriptor QSAR models 

developed using different quantum-mechanical methods is presented below. 

Exchange (X) only methods  

Quantum-mechanical exchange interactions, also known as Fermi correlation, are purely 

quantum-mechanical in origin, and arise between the electrons of the same spin, prohibiting 

them to occupy same position in the space even if they belongs to the different orbitals.
1,2

 As 

evident from the entries 1-2 in Tables 3-7 and supporting information Tables S5-S9, 

respectively, for the TA100 and TA98 mutagenicity, the exchange interactions seem to play a 

significant role, as indicated by the robust statistical parameters for the QSAR models developed 

in the present work using the descriptors computed through the DFT method employing only the 

exchange functional such as the exact HF exchange (HFX) and Becke (B88) exchange. From the 
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statistical parameters listed in the tables, it is clearly evident that the models developed with the 

descriptors computed using the DFT/HFX method are found to be highly robust for TA100 as 

well as TA98 activity except in the case of TA100 model (entry 2 in Table 4) based on the total 

energy and the energy of the LUMO. However, the models based on the descriptors computed 

using the DFT/B88 show reliable parameters only for the TA100 model based on the LUMO 

energy (entry 1 in Table 4), though in the case of TA98 activity, it shows robust parameters for 

all the models analyzed in the present work. It should, however, be noted that as mentioned  

previously, the TA100 models in the present work are more reliable since these are developed 

using a data-set which is sufficiently large and is widely used in the literature for the comparison 

of the models for the mutagenicity of PAHs.
40,56

 

Furthermore, among the models based on the descriptors computed using X-only 

methods, the DFT/HFX computed HOMO energy model (entry 2 in Table 3) based on EHFX and 

�������, outperforms rest of the models while modeling both the activities. Moreover, this model 

have a more generalized applicability domain and least scattering between the experimental and 

predicted activity as evident from the Williams plot and scatter plot represented in Figure 2 for 

the TA100 mutagenicity. Apart from the HOMO energy based model, the model (entry 2 in 

Table 5 and supporting information Table S7) based on the DFT/HFX computed total energy and 

absolute electronegativity, is also found to be robust for both types of mutagenicity. Besides this, 

the electrophilicity index based model (entry 2 in Table 7) is also found to be reliable. The 

Williams and scatter plots of these best performing models developed with the X-only methods 

are provided in the supporting information Figures S2(A)-(B) and S3(A)-(B). Further, for the 

TA100 activity, the model (entry 2 in Table 6) developed with the total energy and chemical 

hardness performs satisfactorily only when computed with the DFT/HFX method, whereas the 
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external predictivity of the same model (entry 1 in Table 6) but developed with the descriptor 

computed using the DFT/B88 method is observed to be comparatively less reliable. However, 

among the TA98 models, both the X-only methods give robust parameters for the models based 

on the chemical hardness (see entries 1 and 2 in the supporting information Table S8), but it may 

be due to the small data-set used for the TA98 models as explained in the previous section.  

It should be noted that the HF and DFT/HFX methods employing 100% HF exchange 

without any correlation functional are expected to yield exactly the same models since the 

expression for the energy in the two methods is exactly the same. However, in the present work, 

for a few molecules, the energy and other molecular descriptors computed using the two methods 

differs slightly as evident in the supporting information Table S2a. This difference is mainly due 

to the different algorithms used for the HF and DFT codes in the computational software. 

Furthermore, as evident in Tables 3-7 (entry 2) for the DFT/HFX method and in the supporting 

information Table S10 for the HF method, though the model’s parameters based on the same 

descriptors computed using the two methods differ, however, the overall reliability and 

predictivity of the models do not vary significantly. 

The statistical performance of the various QSAR models developed with the descriptors 

computed using the X-only methods suggests that the quantum-mechanical exchange interactions 

between the electrons can be highly significant in the modeling of the mutagenic activities as 

evident in the present study on the nitrated-PAHs. It should, however, be noted that the 

descriptors computed through the X-only methods also includes the effect of kinetic motion of 

electrons, electron-nuclear Columbic attraction etc. For example, the total energy computed 

using the X-only methods is the sum of the kinetic energy of electrons, potential energy due to 

electron-nuclear attraction, and the exchange energy due to quantum-mechanical interactions 
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between the electrons of parallel spin, but neglecting some instantaneous electron-electron 

interactions which can be highly significant as described below. 

Exchange-correlation (X+C) methods 

The aforementioned X-only methods do not accounts for a significant part of the dynamic 

electron correlations, namely, the Coulomb correlation arising from the instantaneous 

electrostatic interaction between a pair of electrons.
1,2

 For example, the HF method allows the 

two electrons to come closer to each other than they actually are, since it does not effectively 

includes the Coulomb correlation. On the other hand, the DFT accounts for the exchange as well 

as correlation interactions between the electrons via an XC functional. In the present study, 

QSAR models are also developed using the descriptors computed through the DFT while 

including a correlation functional (besides a standalone exchange functional) as in HFX+LYP 

and BLYP, which includes the LYP correlation functional, respectively, with an exact HF 

exchange and Becke (B88) exchange. Besides these, the hybrid XC functionals such as B3LYP 

and meta functionals (M06, M06-L, M06-2X) were also employed to investigate the role of both 

exchange and correlation in the external predictivity of the quantitative models for the 

mutagenicity.  

Comparing the statistical validation parameters in entries 3-8 of Tables 3-7 and the errors 

in the prediction (depicted in Figure 1 and supporting information figure S1) for various QSAR 

models developed through the molecular descriptors computed with different X+C methods, it is 

clearly evident that for the TA100 mutagenicity, the HFX+LYP based models are the most 

robust, except in the case of model (entry 3 in Table 4) based on the LUMO energy. However, 

the model (entry 3 in Table 6) developed with the total energy and chemical hardness computed 

with HFX+LYP method outperforms all other models for the TA100 mutagenicity. Besides this, 
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the statistical stability and reliability of the model (entry 3 in Table 3) based on the total energy 

and HOMO energy is also found to be comparable to that of the model based on the total energy 

and chemical hardness. In fact, for the TA98 mutagenicity, the HOMO energy based model 

(entry 3 in the supporting information Table S5) is also found to be highly reliable and 

predictive. The Williams plot and scatter plot of these reliable models observed are further 

provided in the supporting information Figures S2(A)-(B) and S3(A)-(B).  

However, the reliability of the models developed with the descriptors computed using 

new-generation meta XC functionals (M06, M06-L, M06-2X) is found to be less than that of the 

models developed using the widely used B3LYP functional as evident from the statistical 

parameters listed in Tables 3-7 (entries 5-8). In fact, for the TA100 mutagenicity, these 

functionals show low validation parameters in most of the models, though in case of the models 

based on the absolute electronegativity and electrophilicity index (entries 6-8 in Tables 5 and 7), 

reliable internal validation parameters are observed, however, these models are still less 

predictive as indicated by the external validation parameter (CCCEXT). Similar observations are 

also made in the case of TA98 mutagenicity. Further, among all the models developed with the 

LUMO energy computed using the X+C methods, only the BLYP and M06-L functionals show 

statistically reliable parameters. However, the TA100 mutagenicity model (entry 4 in Table 6) 

based on the chemical hardness computed using the BLYP functional is found to be unreliable.  

X-only versus X+C methods 

Comparing the overall reliability of the QSAR models based on the descriptors computed 

through the X-only methods with those developed using the same descriptors but computed 

through the X+C methods, it is found that the inclusion of the electron-correlation though 

increases the external predictivity of most of the models, however, it does not significantly 
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improve the internal stability of the models, rather, in some models it decreases the robustness of 

the models. For example, for the model based on the total energy and energy of the LUMO, the 

inclusion of LYP correlation to the HFX or Becke exchange though leads to more reliable 

external validation parameters (Q
2

F3, CCCEXT), but less reliable internal validation parameters 

(R
2
 and Q

2
LOO). However, this trend is observed to be model dependent and is found to be 

opposite for the two exchange functionals, HFX and B88, for most of the models analyzed in the 

present study. Notably, the error in prediction (MAEEXT and RMSEEXT) reduces significantly 

when a correlation functional is included as can be seen for most of the models analyzed in 

Figure 1. 

Overall, the effect of the electron-correlation along with the exchange, including that 

from the hybrid XC functionals, seems to increase the external prediction ability of the models 

but at the same time decreasing the internal stability in a few models. Therefore, it would be 

interesting to see if the exclusion of some exchange while retaining mainly the effect of the 

electron-correlation can increase the internal stability of the models, as analyzed below. 

Correlation (CORR) only methods  

As remarked in the introductory section, the electron-correlation based descriptors 

computed using the CORR method, employing the B3LYP hybrid XC functional, are found to be 

highly reliable while modeling the mutagenicity as evident in our previous studies.
3-4

 In the 

present work, we further analyze the quality of the QSAR models developed with the electron-

correlation based descriptors computed through Equations (1-3) while employing different XC 

functionals such as HFX+LYP, BLYP, B3LYP, M06, M06-L, and M06-2X functionals. It is 

quite evident from the entries 9-14 in Tables 3-7 and Figure 1 that most of the models developed 

using only the electron-correlation based descriptors, in particular computed using the hybrid XC 
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functionals, not only exhibit robust internal and external validation but also have quite low errors 

in the prediction. For example, the CORR(B3LYP) is observed to be outperforming in most of 

the models except in the case of model (entry 11 in Table 4) based on the energy of the LUMO. 

In fact, using the electron-correlation based descriptors computed through the B3LYP, the 

models (entry 11 in Tables 3 and 7) based on the HOMO energy and electrophilicity index along 

with the electron-correlation energy are found to be the most robust. In fact, the electrophilicity 

index based model with descriptors, ECORR(B3LYP) and ωCORR(B3LYP), is found to be highly 

predictive as indicated by the robust value for the CCCEXT parameter. The Williams and scatter 

plot for this model are further represented in Figure 3.  

Besides this, the electron-correlation in the new-generation XC functionals such as M06, 

M06-L and M06-2X, is also observed to yield highly reliable models, particularly the models 

(entries 12-14 in Tables  3, 5 and 6) based on the HOMO energy, absolute electronegativity and 

chemical hardness, are found to be quite robust. Similar trend is observed in the case of TA98 

mutagenicity, where the models developed with the CORR descriptors computed using these 

functionals show excellent internal as well as external reliability as also evident from the 

Williams plot and scatter plots depicted in the supporting information Figures S2(A)-(B) and 

S3(A)-(B). Further, the models based on the electron-correlation contribution from the pure XC 

functionals, HFX+LYP and BLYP, are also found to be reliable though less predictive than those 

developed using the hybrid XC functionals. However, for the model based on the LUMO energy 

(entry 9 in Table 4), the CORR(HFX+LYP) is found to be the most reliable method. In fact, the 

models developed using the descriptor incorporating the electron-correlation through HFX+LYP 

are observed to be statistically more robust than those developed using the BLYP, clearly 

indicating the importance of the exact HF exchange.  
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Furthermore, as evident from the supporting information Tables S5-S9, in the case of 

TA98 mutagenicity, some of the models shows negative value for the internal and external 

validation parameters which can be mainly attributed to the very small data set employed in this 

work compared to a more reliable data-set used in our previous study,
3 

where such models based 

on the descriptors computed using the B3LYP are also found to highly reliable.  

CORR only versus X+C methods 

From the aforementioned discussion on the quality of the models developed using the 

X+C and CORR-only methods, interesting trends are observed. For example, in the case of 

TA100 models (entries 12-14 in Tables 5-7) based on the absolute electronegativity, chemical 

hardness and electrophilicity index, computed using the M06, M06-L and M06-2X meta XC 

functionals, the models are found to be highly robust and predictive when mainly the effect of 

the electron-correlation is included in the descriptor.  Similar trend is observed in the case of 

TA98 mutagenicity, where the models developed with the CORR descriptors computed using 

meta XC functionals show excellent internal as well as external reliability. 

Further, as evident from the entries 5 and 11 in Tables 3-7 for the models based on the 

widely used XC functional B3LYP, it is observed that the models are more robust and predictive 

when mainly the effect of electron-correlation is included in the descriptor, suggesting the 

electron-correlation interactions to be significant while developing the externally predictive 

quantitative models. However, this is not always the case as evident from the models (entries 3 

and 9 in Table 3) based on the HOMO energy computed through the HFX+LYP, where mainly 

retaining the effect of LYP correlation did not seem to improve the quality of the model (entry 9 

in Table 3). Moreover, as discussed previously, the HOMO energy based model (entry 2 in Table 

3) has more reliable internal validation when only the exact HF exchange (HFX) is included 
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without any correlation, whereas the inclusion of LYP correlation to the HFX is observed to 

decrease the internal stability of the HOMO energy based model as evident in entry 3 of Table 3.  

Overall role of the exchange and correlation 

From the above discussions, it is clear that the descriptors computed using the purely 

exchange (X-only) methods, and the CORR descriptors incorporating mainly the effect of 

electron-correlation are most reliable for predicting the mutagenic potential of nitrated-PAHs. 

Interestingly, the X-only methods, like DFT/HFX, having the exact HF exchange, are observed 

to perform satisfactorily for majority of the models. Among the CORR methods, the 

performance of the B3LYP is remarkable even though the new-generation meta XC functionals 

are also observed to be highly reliable. Though it is notable that the electron-correlation based 

descriptors computed using the hybrid XC functionals through Equation (1) do include some 

exchange interactions. However, most of the models based on the CORR descriptors computed 

using the pure XC functional such as HFX+LYP and BLYP underperforms, except for the 

external predictivity, compared to those developed using the corresponding X-only methods 

(DFT/HFX and DFT/B88). Therefore, the quantum-mechanical exchange may be quite critical, 

particularly for the internal stability of the models. 

Further, for the models based on the HOMO energy, all the X-only as well as CORR 

methods are found to provide robust internal and external validation parameters, suggesting this 

descriptor to be an elite choice for modeling the mutagenic potential of compounds as had also 

been observed in our recent studies
3,4 

which though employ different composition of the training 

and prediction sets. However, among the models based on the LUMO energy, the methods 

without the HF exchange, that is, B88 and M06-L are observed to be the most reliable. From the 

robustness and reliability of the models developed in our present and previous studies,
3,4

 it is 
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evident that the models based on the descriptors incorporating mainly the effect of electron-

correlation, particularly  from the total energy, energy of the HOMO, and electrophilicity index, 

can be highly reliable for developing externally predictive QSAR models for the TA100 and 

TA98 mutagenicity, irrespective of the data set distribution. Furthermore, from the Williams 

plots and scatter plots, depicted in the supporting information Figure S2(A)-(B) and S3(A)-(B), it 

is evident that the models developed with the X-only and with the CORR descriptors have a 

generalized domain of applicability, and the least scattering between the predicted and 

experimental activity, suggesting these methods to be highly reliable. The reliability of the 

electron-correlation based descriptors is also evident from the quality of the consensus models 

listed in Table 8, which were proposed using the best models observed in the present study. It 

should be noted that a consensus model incorporates various molecular aspects of the 

compounds through different descriptors. 

 

Conclusions  

Through the quantum-chemical molecular descriptors computed using the HF method and 

the widely used XC functionals of the DFT, the present work had analyzed the role of quantum-

mechanical exchange and electron-correlation in the external predictivity of the QSAR models 

developed for the TA100 and TA98 mutagenic activity of nitrated-PAHs. From the internal 

stability and the external predictivity of the models, following conclusions can be arrived at 

regarding the role of exchange and electron-correlation, and for the performance of various XC 

functionals of the DFT: 
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1. In modeling of the mutagenicity, the descriptors computed using the X-only methods such 

as DFT/HFX, incorporating an exact HF exchange, are observed to be highly reliable for 

the models based on the total energy, HOMO energy, absolute electronegativity and 

electrophilicity index, though the X+C methods of DFT employing the XC functionals 

such as HFX+LYP and B3LYP performs satisfactorily, while the BLYP and meta XC 

functionals are also observed to be reliable for the models based on the LUMO energy.  

2. Surprisingly, the external predictivity of the models increases when mainly the effect of 

the electron-correlation is included in the descriptors particularly when computed through 

the CORR(B3LYP), CORR(M06), CORR(M06-L), and CORR (M06-2X) methods. 

3. The amount of quantum-mechanical exchange interactions is found to be critical along 

with the electron-correlation since retaining the latter decreases the internal stability of a 

few models as observed in the models developed using the CORR(HFX+LYP) and 

CORR(BLYP) methods. 

4. Notably, the models based on the descriptors incorporating mainly the effect of electron-

correlation from the hybrid XC functionals such as B3LYP, and new-generation meta XC 

functionals like M06, M06-L, M06-2X, are observed to be highly reliable. 

From the above conclusions, it may be suggested that the dynamic electron-electron interactions, 

namely, the quantum-mechanical exchange and correlation, can be highly significant in the 

reliability and external predictivity of the QSAR models while modeling the biological activities. 

Supporting Information 

Supporting information Tables S1, S2a-f, S3-S30 and Figures S1, S2(A)-(B) and S3(A)-(B).  
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Table 1. Comparison of the exchange (X)-only, exchange-correlation (X+C) and correlation (CORR) quantum-mechanical methods in terms of the 

quantum-mechanical exchange and correlation interactions. 

S. No. Method Exchange                Correlation 

  Electron-density 

gradients  

 LSD
*
/Slater HF (%)  

X-only methods 

1. HFX - - 100% No 

2. B88 B88 Yes 0% No 

X+C methods 

3. HFX + LYP - - 100% from LYP functional (Refs. 12 and 13)  

4. BLYP B88 Yes 0% from LYP functional (Refs. 12 and 13) 

5. B3LYP B88 Yes 20% from B3LYP functional (Refs. 12 and 13) 

6. M06-L PBE
a
 and spin  

kinetic energy 

density  

             Yes    0% M05 correlation functional augmented by VS
b
 terms, 

treating  opposite- and parallel-spin correlations 

differently (Ref. 34 and references therein) 

 

7. M06 as in M06-L 27% as in M06-L (Ref. 35) 

8. M06-2X as in M06-L 54% as in M06-L (Ref. 35) 

CORR only methods 

9. CORR (HFX + LYP)      as compensated in HFX+LYP through Eq. (2) from LYP functional 

10. CORR (BLYP)      as compensated in BLYP through Eq. (3) from LYP functional 

11. CORR (B3LYP)      as compensated in B3LYP through Eq. (1) from B3LYP functional 

12. CORR (M06)      as compensated in M06 through Eq. (1) from M06 functional 

13. CORR (M06-L)      as compensated in M06-L through Eq. (1) from M06-L functional 

14. CORR (M06-2X)      as compensated in M06-2X through Eq. (1) from M06-2X functional 
*
Local spin density, 

a
Perdew-Burke-Ernzerhof, 

bVoorhis and Scuseria  
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Table 2. Internal and external statistical validation parameters employed for assessing the robustness and external predictivity of the QSAR models. 

S. No. Parameter Significance 

1. �	 = 1 −	∑ (ŷ� −	��)	����
∑ (�� − 	ȳ)	����

= 1 −	���
��� 

where yi  is the experimental value of the training set chemicals, ȳ being the mean 

value, and ŷ is the predicted value from the model. For a complete data set 

containing n number of objects, the RSS represents the residual sum of squares, 

and TSS represents the total sum of squares. 

Provides the information regarding goodness-of-fit of the model 

(Ref. 48). 

2. ����	 = 1 −	∑ (ŷ / �	" )�# $% 	
∑ (" �	ȳ)�# $%

= 1 −	&'())
*))   

where ŷ�/� is the predicted value of the activity excluding i
th
 element from the 

model. Excluding more than one element gives ����	  parameter. PRESS represents 

the predictive error sum of squares for n objects in the complete data set. 

Useful in determining whether the over-fitting occurs in a model 

(Ref. 48). 

3. ��	 = 1 −	 ∑ (��−	ŷ�)	�+,-��� 	
∑ (�� −	ȳ*')	�+,-

���
 

where ȳ*'	is the mean value of the activity for the training set having ./0 number 

of objects, and .1�/ is the number of objects in the external prediction set. 

Judges the model’s performance for new chemicals, but the TSS 

is calculated using the mean of the training set (
TRy ) (Refs. 

44 and 45). 

4. �		 = 1 −	 ∑ (��−	ŷ�)	�+,-��� 	
∑ (�� −	ȳ(2*)	�+,-

���
 

where ȳ(2*	is the mean value of the activity for the external prediction set having 

.1�/ number of objects. 

Judges the model’s performance for new chemicals, but the TSS 

is calculated using mean of the external set (
EXTy ) (Ref. 46). 

5. 

�3	 = 1 −	

[	∑ (��−	ŷ�)	�+,-��� ] .(2*6 		

[	∑ (��−	ŷ�)	�-7
��� ] .*'6

 

Judges the model’s performance for new chemicals, and it is 

independent of the size and distribution of the data set (Ref. 47). 
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where ŷ
 
is the mean of the predicted values. 

Determines the agreement between the experimental and the 

predicted activity from a model (Ref. 48 and 49). 
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7. 
2

mr 8 = 	 9:� ;	9:<�
	    and   Δ>?	 =	>?	 −	>?@	 

where >?	 =	>	(1 −	A>	 −	>B	),			and		>		and >B		are the coefficient of 

determination with and without the intercept of regression line, respectively. >G	  is 

computed using the experimental values on the ordinate axis whereas >G@	 is 

computed using experimental values on the abscissa.  

Provides the information regarding overestimation in the 

prediction due to wide response range (Ref. 50). 

8. 
( ) ( )

.

ˆ

   and   

,ˆ

EXT

1

2

EXT

TR

1

2

LOO

CV

EXTTR

n

yy

RMSE
n

yy

RMSE

n

i

ii

n

i

ii ∑∑
==

−

=

−

=  

Represents the root mean square error in the cross-validation 

(CV) by the leave-one-out (LOO) method and in the external 

validation (EXT) (Ref. 52). 

9. HI�JK =	∑ L�� −	ŷ�,���L�-7���
.*'

 

  and  

 

HI�(2* =	∑ |�� −	ŷ�|�+,-���
.(2*

		 

Represents the mean absolute error in the cross-validation (CV) 

and in the external validation (EXT) (Ref. 52). 
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Table 3. Comparison of the key internal and external validation parameters for the models based on the total energy (E) and energy of the HOMO (EHOMO) 

computed with the Exchange (X) only, Exchange + Correlation (X+C) methods, and with the CORR method incorporating mainly the effect of 

electron-correlation in the descriptors, for modeling the TA100 mutagenicity of nitrated-PAHs. For the TA98 mutagenicity, see supporting 

information Table S5. 

Model 

S.No. 
Method Descriptor Employed Splitting Employed 

  

R2 Q2
LOO R2-Q2

LOO Q2
LMO NOPQ  CCCEXT 

Exchange (X) Only 

1. DFT/B88 EB88 , �RSS���� 30% 0.652 0.559 0.093 0.525 0.673 0.808 

2. DFT/HFX EHFX , ������� 30% 0.792 0.732 0.061 0.719 0.786 0.886 

Exchange + Correlation (X+C) 

3. HFX + LYP EHFX + LYP , ���	;	�TU����  30% 0.765 0.718 0.047 0.698 0.864 0.920 

4. BLYP EBLYP , �R�TU���� 30% 0.738 0.685 0.053 0.664 0.638 0.769 

5. B3LYP EB3LYP ,	�R3�TU���� 30% 0.675 0.616 0.059 0.596 0.651 0.772 

6. M06 EM06 , ��BV���� 30% 0.660 0.588 0.072 0.557 0.697 0.790 

7. M06-L EM06-L , ��BV������  30% 0.634 0.551 0.083 0.561 0.685 0.769 

8. M06-2X EM06-2X ,	��BV�	�����  30% 0.656 0.583 0.073 0.520 0.707 0.795 

Electron-Correlation (CORR) only 

9. CORR(HFX+LYP) ECORR(HFX+LYP) , �W�00(��;�TU)����  30% 0.730 0.675 0.055 0.659 0.834 0.843 

10. CORR(BLYP) ECORR(BLYP) , �W�00(R�TU)����  30% 0.724 0.675 0.055 0.602 0.784 0.783 

11. CORR(B3LYP) ECORR(B3LYP) ,	�W�00(R3�TU)����  30% 0.779 0.727 0.052 0.714 0.862 0.874 

12. CORR(M06) ECORR(M06) ,	�W�00(�BV)����  30% 0.778 0.723 0.054 0.695 0.806 0.889 

13. CORR(M06-L) ECORR(M06-L) ,	�W�00(�BV��)����  30% 0.774 0.722 0.052 0.694 0.757 0.857 

14. CORR(M06-2X) ECORR(M06-2X) ,	�W�00(�BV�	�)����  30% 0.759 0.702 0.058 0.679 0.862 0.926 
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Table 4. Same as Table 3 but for the models based on the total electronic energy (E) and energy of the LUMO (ELUMO). For the TA98 mutagenicity, see 

supporting information Table S6. 

Model 

S.No. 
Method Descriptor Employed Splitting Employed 

  

R2 Q2
LOO R2-Q2

LOO Q2
LMO NOPQ  CCCEXT 

Exchange (X) Only 

1. DFT/B88 EB88 , �RSS�X�� 30% 0.728 0.640 0.085 0.614 0.722 0.849 

2. DFT/HFX EHFX , ����X�� 30% 0.627 0.545 0.082 0.508 0.646 0.789 

Exchange + Correlation (X+C) 

3. HFX + LYP EHFX + LYP , ���	;	�TU�X��  30% 0.578 0.502 0.075 0.472 0.721 0.790 

4. BLYP EBLYP , �R�TU�X�� 30% 0.668 0.606 0.062 0.576 0.817 0.880 

5. B3LYP EB3LYP ,	�R3�TU�X��  30% 0.647 0.584 0.064 0.573 0.828 0.886 

6. M06 EM06 , ��BV�X�� 30% 0.695 0.636 0.060 0.617 0.775 0.836 

7. M06-L EM06-L , ��BV���X��  30% 0.705 0.646 0.059 0.632 0.797 0.854 

8. M06-2X EM06-2X ,	��BV�	��X��   30% 0.683 0.620 0.063 0.588 0.744 0.809 

Electron-Correlation (CORR) only 

9. CORR(HFX+LYP) ECORR(HFX+LYP) , �W�00(��;�TU)�X��  30% 0.717 0.655 0.062 0.642 0.779 0.787 

10. CORR(BLYP) ECORR(BLYP) , �W�00(R�TU)�X��  30% 0.710 0.647 0.063 0.637 0.727 0.757 

11. CORR(B3LYP) ECORR(B3LYP) ,	�W�00(R3�TU)�X��   30% 0.697 0.603 0.094 0.607 0.683 0.696 

12. CORR(M06) ECORR(M06) ,	�W�00(�BV)�X��  30% 0.643 0.546 0.097 0.535 0.636 0.744 

13. CORR(M06-L) ECORR(M06-L) ,	�W�00(�BV��)�X��  30% 0.656 0.562 0.094 0.529 0.616 0.725 

14. CORR(M06-2X) ECORR(M06-2X) ,	�W�00(�BV�	�)�X��  30% 0.659 0.576 0.083 0.549 0.712 0.810 
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Table 5. Same as Table 3 but for the models based on the total electronic energy (E) and absolute electronegativity (χ). For the TA98 mutagenicity, 

see supporting information Table S7. 

Model 

S.No. 
Method Descriptor Employed Splitting Employed 

  

R2 Q2
LOO R2-Q2

LOO Q2
LMO NOPQ  CCCEXT 

Exchange (X) Only 

1. DFT/B88 EB88 , χB88 30% 0.716 0.640 0.076 0.621 0.686 0.831 

2. DFT/HFX EHFX , χHFX 30% 0.796 0.735 0.062 0.718 0.762 0.877 

Exchange + Correlation (X+C) 

3. HFX + LYP EHFX + LYP , χHFX + LYP 30% 0.734 0.681 0.052 0.662 0.845 0.907 

4. BLYP EBLYP , χBLYP 30% 0.717 0.662 0.055 0.640 0.736 0.823 

5. B3LYP EB3LYP , χB3LYP 30% 0.692 0.636 0.056 0.605 0.726 0.827 

6. M06 EM06 , χM06 30% 0.704 0.645 0.059 0.624 0.756 0.836 

7. M06-L EM06-l , χM06-L 30% 0.679 0.616 0.064 0.596 0.752 0.825 

8. M06-2X EM06-2x , χM06-2X 30% 0.698 0.639 0.059 0.608 0.768 0.842 

Electron-Correlation (CORR) only 

9. CORR(HFX+LYP) ECORR(HFX+LYP) , χCORR(HFX+LYP) 
30% 0.723 0.660 0.063 0.661 0.800 0.818 

10. CORR(BLYP) ECORR(BLYP) , χCORR(BLYP) 
30% 0.726 0.676 0.051 0.654 0.787 0.789 

11. CORR(B3LYP) ECORR(B3LYP) , χCORR(B3LYP) 
30% 0.739 0.689 0.050 0.671 0.850 0.862 

12. CORR(M06) ECORR(M06) , χCORR(M06)
 30% 0.724 0.662 0.062 0.622 0.787 0.883 

13. CORR(M06-L) ECORR(M06-L) , χCORR(M06-L)
 30% 0.735 0.675 0.060 0.642 0.784 0.880 

14. CORR(M06-2X) ECORR(M06-2X) , χCORR(M06-2X)
 30% 0.723 0.656 0.067 0.622 0.827 0.905 
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Table 6. Same as Table 3 but for the models based on the total energy (E) and chemical hardness (η). For the TA98 mutagenicity, see supporting 

information Table S8. 

Model 

S.No. 
Method Descriptor Employed Splitting Employed 

  

R2 Q2
LOO R2-Q2

LOO Q2
LMO NOPQ  CCCEXT 

Exchange (X) Only 

1. DFT/B88 EB88 , ηB88 30% 0.538 0.391 0.148 0.377 0.630 0.746 

2. DFT/HFX EHFX , ηHFX 30% 0.745 0.667 0.078 0.639 0.767 0.870 

Exchange + Correlation (X+C) 

3. HFX + LYP EHFX + LYP , ηHFX + LYP 30% 0.771 0.719 0.051 0.697 0.869 0.920 

4. BLYP EBLYP , ηBLYP 30% 0.774 0.721 0.053 0.709 0.136 0.503 

5. B3LYP EB3LYP , ηB3LYP 30% 0.614 0.521 0.093 0.510 0.579 0.693 

6. M06 EM06 , ηM06 30% 0.583 0.453 0.130 0.451 0.618 0.703 

7. M06-L EM06-l , ηM06-L 30% 0.569 0.436 0.133 0.430 0.573 0.663 

8. M06-2X EM06-2x , ηM06-2X 30% 0.588 0.462 0.126 0.459 0.631 0.714 

Electron-Correlation (CORR) only 

9. CORR(HFX+LYP) ECORR(HFX+LYP) , ηCORR(HFX+LYP) 
30% 0715 0.658 0.056 0.625 0.794 0.796 

10. CORR(BLYP) ECORR(BLYP) , ηCORR(BLYP) 
30% 0.723 0.676 0.048 0.596 0.771 0.771 

11. CORR(B3LYP) ECORR(B3LYP) , ηCORR(B3LYP) 
30% 0.781 0.729 0.052 0.720 0.774 0.792 

12. CORR(M06) ECORR(M06) , ηCORR(M06)
 30% 0.725 0.663 0.062 0.626 0.785 0.882 

13. CORR(M06-L) ECORR(M06-L) , ηCORR(M06-L)
 30% 0.736 0.675 0.060 0.648 0.789 0.883 

14. CORR(M06-2X) ECORR(M06-2X) , ηCORR(M06-2X)
 30% 0.723 0.656 0.067 0.626 0.826 0.905 

 

  

Page 35 of 40 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



  

36 

 

Table 7. Same as Table 3 but for the models based on the total electronic energy (E) and electrophilicity index (ω). For the TA98 mutagenicity, see 

supporting information Table S9. 

Model 

S.No. 
Method Descriptor Employed Splitting Employed 

  

R2 Q2
LOO R2-Q2

LOO Q2
LMO NOPQ  CCCEXT 

Exchange (X) Only 

1. DFT/B88 EB88 , ωB88 30% 0.643 0.472 0.171 0.477 0.690 0.804 

2. DFT/HFX EHFX , ωHFX 30% 0.778 0.720 0.059 0.696 0.723 0.854 

Exchange + Correlation (X+C) 

3. HFX + LYP EHFX + LYP , ωHFX + LYP 30% 0.688 0.631 0.057 0.606 0.827 0.891 

4. BLYP EBLYP , ωBLYP 30% 0.595 0.526 0.069 0.499 0.812 0.880 

5. B3LYP EB3LYP , ωB3LYP 30% 0.611 0.541 0.070 0.513 0.806 0.863 

6. M06 EM06 , ωM06 30% 0.683 0.620 0.063 0.584 0.690 0.771 

7. M06-L EM06-L, ω
M06-L 30% 0.658 0.589 0.069 0.546 0.602 0.707 

8. M06-2X EM06-2X , ωM06-2X 30% 0.702 0.644 0.057 0.619 0.762 0.795 

Electron-Correlation (CORR) only 

9. CORR(HFX+LYP) E(CORR,HFX+LYP) , ω(CORR,HFX+LYP) 
30% 0.727 0.663 0.064 0.630 0.595 0.791 

10. CORR(BLYP) ECORR(BLYP) , ωCORR(BLYP) 
30% 0.768 0.695 0.074 0.639 0.632 0.716 

11. CORR(B3LYP) ECORR(B3LYP) , ωCORR(B3LYP) 
30% 0.772 0.730 0.042 0.706 0.898 0.912 

12. CORR(M06) ECORR(M06) , ωCORR(M06)
 30% 0.726 0.661 0.065 0.629 0.783 0.882 

13. CORR(M06-L) ECORR(M06-L) , ωCORR(M06-L)
 30% 0.726 0.661 0.065 0.641 0.790 0.882 

14. CORR(M06-2X) ECORR(M06-2X) , ωCORR(M06-2X)
 30% 0.709 0.640 0.070 0.606 0.815 0.896 
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Table 8.  Same as Table 3 but for the consensus models based on the best descriptors and the methods observed in the 

Tables 3-7 for the TA100 mutagenicity, and in the supporting information Tables S5-S9 for the TA98 

mutagenicity. 

 

Consensus 

Model 

S.No. 

Descriptor Employed Splitting Employed YZ[\Q  RMSETR NOPQ  CCCEXT RMSEEXT 

TA100 Mutagenicity 

1. EHFX , �������,  χ
HFX , ωHFX

 30%
 

0.805
 

0.769
 

0.774 0.880 0.818 

2. EHFX + LYP , ���;�TU���� , χ
HFX + LYP , ηHFX + LYP

 30%
 

0.793 0.836 0.862 0.917 0.644 

3. EM06-2X , χM06-2X , ωM06-2X
 30%

 
0.747

 
0.912

 
0.810 0.861 0.750 

4. ECORR(B3LYP) ,	�W�00(R3�TU)����  , χ
CORR(B3LYP) , ωCORR(B3LYP)

 30%
 

0.792  0.832 0.886  0.898  0.605  

5. ECORR(M06-2X) ,	�W�00(�BV�	�)���� ,  ωCORR(M06-2X)
 30%

 
0.806 0.878 0.844 0.914 0.681 

TA98 Mutagenicity 

6. EHFX , �������,     χ
HFX , ωHFX

 30%
 

0.959
 

0.474
 

0.929 0.965 0.546 

7. EHFX + LYP , ���	;	�TU���� , χ
HFX + LYP, ηHFX + LYP

 30%
 

0.885
 

0.466
 

0.968 0.989 0.348 

8. ECORR(B3LYP) ,	�W�00(R3�TU)����
, ωCORR,(B3LYP)

 activity sampling
 

0.968
 

0.330
 

0.957 0.975 0.450 

9. ECORR(M06-L) ,	�W�00(�BV��)����
, ωCORR(M06-L)

 activity sampling
 

0.936 0.529 0.959 0.980 0.403 

�]W�	   represent the coefficient of determination obtained with weight consensus model strategy. 
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MAEEXT   RMSEEXT   

 

                  E and EHOMO                                              E and ELUMO                                                 E and χ                                                          E and η                                                                        E and ω 

QSAR models for TA100 mutagenicity 

Figure 1. Comparison of the mean absolute error (MAE) and the root mean square error (RMSE) in the external (EXT) predictivity of various models, for the TA100 

mutagenicity of nitrated-PAHs,  based on  the total energy (E), energy of the HOMO and the LUMO, absolute electronegativity (χ), chemical hardness (η) and 

electrophilicity index (ω) computed through exchange-only methods (HFX, B88),  exchange-correlation (XC) methods (HFX+LYP, BLYP, B3LYP, M06, 

M06-L, M06-2X), and also based on the descriptors incorporating mainly the effect of electron correlation (CORR) from the respective XC methods (for the 

TA98 mutagenicity models, see supporting information Figure S1). 
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Figure 2. (a) Williams plot: Standardized residuals versus leverage (h), of the TA100 mutagenicity model based on the total energy and the energy 

of the HOMO computed using DFT/HFX method. The training and prediction set chemicals, represented with open (yellow) and 

filled (blue) circles, respectively, are obtained using 30% random splitting method. The encircled values represent the ID number of 

the compounds, provided in the supporting information Table S1 (for other best models, see also supporting information Figure S2). 
The vertical (solid) line indicates the warning leverage (h*). 

  (b) Scatter plot: Experimental versus predicted LogTA100 mutagenicity using model as specified in (a). (for other best models, see also 

the supporting information Figure S3). 
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Figure 3. Same as Figure 2, but for the TA100 mutagenicity model based on ECORR (B3LYP) and ωCORR (B3LYP) descriptors, incorporating mainly the 

effect of electron-correlation (CORR) in the total-energy (E) and the electrophilicity index (ω), computed using the DFT employing 

B3LYP hybrid XC functional (see also supporting information Figures S2 and S3).  
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