RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

RSC Advances Accepted Manuscript

Base–Catalyzed Synthesis of Amides and Imines *via* C–C and C=C Bond Cleavage

Dilip Kumar T. Yadav and Bhalchandra M. Bhanage*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A transition metal free base catalyzed approach for C–N bond formation *via* C–C and C=C bond activation has been developed. The *N*-arylureas were reacted smoothly with 1,3dicarbonyls and α , β -unsaturated ketones to furnish the 10 corresponding amides and imines respectively in moderate to

excellent yields.

Introduction

Amides are one of the abundant and important units present in pharmaceuticals, polymers, agrochemicals, natural products and ¹⁵ biological systems.¹ In addition, they have wide application as versatile building blocks in the organic synthesis.² Hence, the development of efficient and versatile practical methods for the synthesis of amides has always been an important topic in the organic chemistry. The main synthetic route for amide bond ²⁰ formation is condensation of amines with activated carboxylic acid derivatives.³ Other methods for amide synthesis are

- transition metal catalyzed amidation of aryl halides with nitrogen containing reagents,⁴ the oxidative amidation of aldehydes,⁵ ketones,⁶ alcohols,⁷ amines,⁸ Schmidt rearrangement,^{9a} Curtius ²⁵ rearrangement,^{9b} Beckmannn rearrangement,¹⁰ aminocarbonylation of haloarenes and alkynes,¹¹ transition metal catalyzed cleavage of carbon–carbon bond with a nitrogen source.¹² However, these protocols suffer from one or more
- drawbacks such as use of transition metals, unstable starting ³⁰ compounds, toxic solvents, costly reagents. Hence, the development of simple, efficient and environmentally friendly protocol for the synthesis of amides would be highly desirable.

Recently, selective carbon–carbon bond cleavage (activation) by transition metals have attracted great scope in organic and ³⁵ organometallic chemistry.¹³ To facilitate C–C bond activation different methods have been developed such as chelation assistance,¹⁴ the relief of ring strain¹⁵ and employing functional fragmentation as the leaving groups includes carboxylic acids,^{16a,b} nitriles,^{16c,d} and carbonyls.^{16e} The 1,3-diketones have emerged as

40 an important substrates for C–C bond activation in the organic

*Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai-400019. India.

Tel.: +91-22-33612601; *fax*: +91-22-33611020;

synthesis.¹⁷ Firstly, carbon-carbon bond activation of 1,3-50 diketones with aryl halides to acyl ketones was reported by Lei in 2010.¹⁸ Subsequently, various protocols have been developed for carbon-carbon bond activation of 1,3-diketones.¹⁹ Recently, H₂O₂ mediated oxidative reaction of aromatic amine with 1,3diketone was reported for the amide synthesis.²⁰ Nowadays, much 55 attention have been made on the base catalyzed one pot synthesis of various organic compounds.²¹ Hence, to perform various transformations by using inexpensive and easily available base is a promising research area. Most recently Zhang's group have reported the base catalyzed C-C bond cleavage of 1,3-diketones 60 to furnish the corresponding esters.²² The results inspire us to investigate whether amides could be synthesized via C-C bond cleavage of 1,3-diketones by using base. The N-arylureas are stable, easy to store, handle and can be easily prepared. Moreover, it has been extensively employed as a new type of 65 coupling partners in the organic synthesis.²³ Hence, N-arylureas could be used as other alternatives to amines for the preparation of nitrogen containing compounds. To our knowledge, Narylureas have never been used for the synthesis of amides with 1,3-diketones. Here, we report a novel, simple, efficient, solvent 70 and transition metal free methodology for the synthesis of amides from N-arylureas and 1,3-diketones by using inexpensive and easily available base (Scheme 1).

	$R \xrightarrow{O} R + HN$	I ₂ , TBHP, CH ₃ CO ₂ C ₂ H ₅	
75		CuBr,Py, toluene	Ö O
		O ₂ , 90ºC,18h Jiao work, 2013	R' ∦ R₁ O
80	$R \xrightarrow{O} R + H_2N-Ar$	H ₂ O ₂ (30% aq.), RT → Zhang work, 2013	R H Ar
	$R \xrightarrow{0} R + HO \xrightarrow{R_1}$	t-amylalcohol,18h ────► t-OBuNa, 120°C	
85	$R \xrightarrow{0} R + H_2 N \xrightarrow{0} N^{Ar}$	Zhang work, 2014 KOH (0.4 mmol)	R N ^{Ar}
	н	135°C, 24h This work	Н

90 Scheme 1: Various C-C bond cleavage reactions.

⁴⁵ E-mail: bm.bhanage@gmail.com, bm.bhanage@ictmumbai.edu.in † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

Results and discussion

To optimize the reaction conditions N-phenylurea (1a) and 1,3diphenyl propane-1,3-dione (2a) was chosen as a model substrate for the base-catalyzed synthesis of amide. A series of experiments

- ⁵ were carried out to study the effect of various reaction parameters such as base, temperature and time (Table 1). Initially, we have screened various bases such as KOH, NaOH, K₂CO₃, Na₂CO₃, LiOH, *t*-BuONa, *t*-BuOK and Cs₂CO₃ for the synthesis of *N*phenylbenzamide (**3a**) (Table 1, entries 1–8). It was observed that
- ¹⁰ among the various bases, KOH gave the best yield of the desired product 3a and hence was used for further studies (Table 1, entry 1). However, other bases like NaOH, K₂CO₃, Na₂CO₃, LiOH, *t*-BuONa, *t*-BuOK and Cs₂CO₃ furnished the 3a in moderate to good yields (Table 1, entries 2–8). However, the product
- ¹⁵ formation was not observed in the absence of the base (Table 1, entry 9). Subsequently, we studied the effect of base loading and it was found that 0.4 mmol of KOH furnished **3a** in excellent yield (Table 1, entry 10). Consequently, we have also examined the effect of reaction time and temperature for the effective
- ²⁰ progress of the reaction, and observed that 24 h was the optimum time required for completion of the reaction (Table 1, entry 11). It was found that the yield of **3a** decreases with decrease in reaction temperature from 135 °C to 125 °C (Table 1, entry 12). Furthermore, for the possibility of involvement of trace amount
- ²⁵ of transition metal in the reagent grade KOH, we have also examined the reaction by using KOH 99.99% (metal basis) (Alfa Aesar) and no change in the yield of **3a** was observed (Table 1, entry 13).

Table 1: Optimization of the reaction conditions^a

30	$ \begin{array}{c} H \\ N \\ N \\ O \\ 1a \end{array} $		base temp., time	
	Entry	Base (mmol)	Time (h)	Yield (%) ^b 3a
	1	KOH	24	76
	2	NaOH	24	71
	3	K_2CO_3	24	68
	4	Na ₂ CO ₃	24	63
	5	LiOH	24	58
	6	t-BuONa	24	68
	7	t-BuOK	24	70
	8	Cs_2CO_3	24	75
	9	-	24	0
	10	KOH (0.4)	24	92
	11	KOH (0.4)	20	78
	12 ^c	KOH (0.4)	24	73
	13 ^d	KOH (0.4)	24	92

^a Reaction conditions: **1a** (1.0 mmol), **2a** (1.5 mmol), Base (0.2 mmol), 35 135 °C, 24 h. ^b GC yield. ^c 125 °C. ^d KOH 99.99% (metal basis).

With these optimized reaction conditions in hand, we have studied the scope of developed protocol for the synthesis of various kinds of structurally diverse amides from *N*-arylureas and 1,3-diketones. Firstly, different *N*-arylurea derivatives were 40 examined for the synthesis of amides. The *ortho*-substituted *N*- arylurea derivative (**1b**) exhibits the steric effect and provided corresponding *N*-(*o*-tolyl)benzamide (**3b**) in 68% yield (Table 2, entry 2). The reaction of *N*-arylureas bearing electron donating groups such as (-CH₃, -OMe) afforded the corresponding ⁴⁵ products **3c-3d** in excellent yields (Table 2, entries 3–4). Furthermore *N*-arylurea derivatives bearing halo-substituents (-Cl, -Br) also provided the corresponding products **3e-3f** in

Table 2 [.]	Substrate	study fo	or the	synthesis	of	amide
I abit 2.	Substrate	study It	n the	synthesis	01	annuc

$R^{1} \xrightarrow{\text{N}}_{1} \qquad N \xrightarrow{\text{N}}_{2} \qquad N \xrightarrow{\text{N}}_{2} \qquad N \xrightarrow{\text{N}}_{2} \qquad N \xrightarrow{\text{N}}_{2} \qquad N \xrightarrow{\text{N}}_{3} \xrightarrow{\text{KOH} (40 \text{ mol}\%)}_{135 \text{ °C}, 24 \text{ h}} \qquad O \xrightarrow{\text{N}}_{135 \text{ °C}, 24 \text{ h}} \qquad O \xrightarrow{\text{N}}_{3} \xrightarrow{\text{N}}_{135 \text{ °C}, 24 \text{ h}} \qquad O \xrightarrow{\text{N}}_{3} \xrightarrow{\text{N}}_{135 \text{ °C}, 24 \text{ h}} \qquad O \xrightarrow{\text{N}}_{3} \xrightarrow{\text{N}}_{3} \xrightarrow{\text{N}}_{135 \text{ °C}, 24 \text{ h}} \xrightarrow{\text{N}}_{3} \xrightarrow{\text{N}}$	[™] 3'
--	-----------------

Entry	<i>N</i> -arylurea	1,3-diketone	Product	Yield (%) ^b 3
1		2a	Jaa Saa	90
2	CH ₃ H N 1b O	2a		68
3		2a		92
4		2a		93
5		2a		74
6	Br 1f 0	2a	O N Br	65
7	1a		H ₃ C 3g	82
8	1a		H ₃ CO 3h	85
9	1a	H ₆ CO CCH ₆ CCH ₃ CCH ₆ CCH ₃	H ₃ CO H ₃ CO H ₃ CO H ₃ Si	87
10	1a	F 2e F	F 3j H	60
11	1a		a 3k	63
12	1a	2g		35:40
13	1a	2h	31 3m	36:43
14	1a	2i	$\begin{array}{c} \overset{O}{\operatorname{Ph}} & \overset{O}{\operatorname{Ph}} & \overset{O}{\operatorname{Ph}} \\ \overset{H}{\operatorname{H}} & \overset{O}{\operatorname{Ph}} & \overset{O}{\operatorname{H}} \\ \overset{H}{\operatorname{H}} & \overset{O}{\operatorname{H}} & \overset{O}{\operatorname{H}} \\ \overset{H}{\operatorname{H}} & \overset{O}{\operatorname{H}} \\ \overset{H}{\operatorname{H}} & \overset{O}{\operatorname{H}} \\ \overset{H}{\operatorname{H}} & \overset{O}{\operatorname{H}} \\ \overset{G}{\operatorname{H}} \\ \overset{G}{$	20:24:31
15	1a		3a 3n	30:38

 $^{\rm a}$ Reaction conditions: $\it N$ -arylureas (1 mmol), 1,3-diketones (1.5 mmol), KOH (0.4 mmol), 135 °C, 24 h. $^{\rm b}$ isolated yield.

Н ...

ö

$R^{1} \stackrel{\text{In}}{\underset{1}{\overset{\text{O}}{\overset{\text{NH}_{2}}{\overset{\text{NH}_{2}}{\overset{\text{O}}{\overset{\text{H}_{2}}}{\overset{\text{H}_{2}}}{\overset{\text{H}_{2}}}{\overset{\text{H}_{2}}}{\overset{\text{H}_{2}}}{\overset{H}}{\overset{H}_{2}}}{\overset{H}}}{\overset{H}}}}}}}}}}}}}}}}}}}}}}}}$					
Entry	<i>N</i> -arylurea	α,β-unsaturated ketone	Product	Yield (%) ^b 5	
1		0 4a	5a	77	
2		4a	5b Hyc	62	
3		4a	Sc N-CH3	78	
4	1d ^H NH ₂	4 a		80	
5	a He He	4a	5e	65	
6	Br If O	4a	Sf	63	
7	1a	H _s c 4b	H ₃ C-	76	
8	1a	H ₂ CO 4C	H ₂ CO	79	
9	1a			65	
10	1a	H ₃ CO H ₃ CO COCH ₃	H ₃ 00 H ₃ 00 5j	81	
11	1a	F 4f	F	63	
12	1a	P − − − − − − − − − − − − − − − − − − −		61	
13	1a		ci	64	
14	1a	Br 4i	Br	68	
15	1a		50 V	71	

s a Reaction conditions: N-arylureas (1 mmol), α , β-unsaturated ketones (1.5 mmol), KOH (0.4 mmol), 135 °C, 24 h. b isolated yield.

moderate yields (Table 2, entries 5–6). Next, various 1,3-diketone derivatives were also studied for the synthesis of amides. It was found that ${\bf 2a}$ bearing electron donating substituents (–CH3, –

¹⁰ OMe) furnished the desired amides 3g-3i in excellent yields (Table 2, entries 7–9). Furthermore, the reaction of 1a with 2a bearing halo substituents also provided the respective amides 3j-3k in good yields (Table 2, entries 10–11). Next, the unsymmetrical 1-phenylbutane-1,3-dione (2g) was also studied
¹⁵ with 1a and it was found that mixture of amides 3a and 3l were obtained (Table 2, entry 12). However, the reaction of 1a with aliphatic diketone such as acetylactone (2h) provided the mixture of *N*-phenylacetamide (3l) and β-enaminone (3m) products (Table 2, entry 13). Furthermore, the reaction of 1a with aliphatic
²⁰ β- keto ester (2i) provided the mixture of amide (3l), carbamate

(3n) and ethyl 3-(phenylamino)but-2-enoate (3o) products (Table 2, entry 14). Subsequently, aromatic β - keto ester (2j) was also studied with 1a and it was found that mixture of amide 3a and carbamate 3n were obtained (Table 2, entry 15).

Imines are important intermediates in the synthesis of nitrogen 25 heterocycles, fine chemicals, pharmaceuticals and agricultural chemicals.^{24,25} In addition, they also act as a electrophiles in transformations including addition reactions, various condensations, reductions and cyclization.²⁵ Moreover, imines 30 also display wide range of biological activities such as antiinflammatory, anti-bacterial, anti-fungal, anti-viral properties.²⁶ Thus, the progress toward newer methods for the synthesis of imines is also significant interest among the organic synthetic community. The literature study reveals that α,β -unsaturated 35 ketone undergoes thermal decomposition in the presence of aniline at very high temperature to provide the corresponding imine derivative.²⁷ So, the scope of developed protocol was further expanded for the synthesis of imines by using N-arylureas and α , β - unsaturated ketones. It was observed that the reaction of 40 1a with chalcone (4a) under the optimized reaction conditions furnished the desired N-benzylideneaniline (5a) in 77% yield (Table 3, entry 1). Next, N-arylurea bearing ortho-substituent exhibits steric-effect on the reaction yield and gave corresponding N-benzylidene-2-methylaniline (5b) in 62% yield (Table 3, entry 45 2). Furthermore, N-arylureas having electron donating substituents at para-position (-CH₃, -OMe) were converted into corresponding imine derivatives 5c-5d in good yields (Table 3, entries 3-4). Next, it was observed that 1a bearing halogen substituents (-Cl, -Br) were also well tolerated and gave 50 respective imine products 5e-5f in moderate yields (Table 3, entries 5-6). Furthermore, we have also examined the substituted chalcone derivatives with 1a and it was observed that 4a with electron donating substituents (-CH₃, -OMe) provided the corresponding imines 5g-5h in good yields (Table 3, entries 7-55 8). Subsequently, the reaction of **1a** with disubstituted chalcone derivatives provided respective imine derivatives 5i-5j in good yields (Table 3, entries 9-10). Furthermore, the reaction of 1a with 4a bearing halo substituents also furnished the corresponding imine derivatives 5k-5n in moderate yields (Table 60 3, entries 11-14). Next, the reaction of 1a with 4j provided corresponding N-(thiophen-2-ylmethylene)aniline (50) in 71% vield (Table 3, entry 15).

Based on our experimental observation and literature report,28 we propose a plausible reaction mechanism for the synthesis of 65 amide (Scheme 2). Firstly, when N-arylurea is heated with base at 135 °C, it undergoes thermal decomposition to provide aniline and its formation was confirmed by GC-MS, ¹H and ¹³C NMR spectroscopic techniques. However, aniline formation was not observed in the absence of the base. This confirms that under the 70 thermal condition and in the presence of basic medium, 1a was converted into corresponding aniline. Next, the aniline derivative reacts with carbonyl derivative to form the corresponding intermediate A which finally undergoes C-C bond cleavage to furnish the desire product 3a and acetophenone as a side product. ⁷⁵ Furthermore, based on literature report²⁷ and our observation, we have also found that α . β -unsaturated ketone reacts with aniline formed from N-arylurea under optimized reaction condition to furnish corresponding imine derivative (Scheme 3).

Table 3: Substrate study for the synthesis of imines^a

Scheme 2: Proposed mechanism for the synthesis of amide.

Scheme 3: Proposed mechanism for the synthesis of imine.

5 Conclusion

- In conclusion, we have developed a novel base catalyzed approach for the synthesis of amides and imines *via* C–C and C=C cleavage of 1,3-diketones and α , β -unsaturated ketones with *N*-arylureas. Here, we have firstly demonstrated that *N*-arylureas
- ¹⁰ can be envisioned as a new type of coupling partners for 1,3diketones and α , β -unsaturated ketones. The various amides and imines could be efficiently synthesized by this method in good to excellent yields. Due to the generality of the process, the developed protocol will cover a wide application in organic ¹⁵ synthesis. Hence, the developed protocol sounds to be highly efficient, novel methodology for the synthesis of amides as well as imines and have wide substrate applicability.

Experimental Section

A typical experimental procedure for the synthesis of amide ²⁰ from *N*-arylurea and 1,3-dicarbonyl:

- A 20 mL schlenk tube equipped with magnetic stirring bar was charged with *N*-arylurea (1 mmol), 1,3-dicarbonyl (1.5 mmol), KOH (0.4 mmol) and was placed in a preheated oil bath for 24 h at 135 °C. After cooling down reaction mixture to room
- $_{25}$ temperature, it was extracted with ethyl acetate (3×5 mL) and the combined organic layers were dried over anhydrous $\rm Na_2SO_4$ and concentrated under reduce pressure. The crude product was directly purified by column chromatography (silica gel, 100-200 mesh, PE–EtOAc) to furnish the corresponding pure product. The
- ³⁰ identity of product was confirmed by ¹H and ¹³C NMR spectroscopic analysis.

A typical experimental procedure for the synthesis of imine from *N*-arylurea and α , β -unsaturated ketone:

A mixture of *N*-arylurea (1 mmol), α , β -unsaturated ketone (1.5 mmol), KOH (0.4 mmol) was heated at 135 °C for 24 h in a sealed 20 mL schlenk tube. After cooling the reaction mixture to

room temperature, it was extracted with ethyl acetate $(3 \times 5 \text{ mL})$,

combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduce pressure to afford the crude product. ⁴⁰ The crude product was purified by column chromatography (basic alumina saturated with Et₃N, 100-200 mesh, PE) to provide the desired pure product. The identity of product was confirmed by ¹H and ¹³C NMR spectroscopic analysis.

Acknowledgements

⁴⁵ The author D. K. T. Yadav is greatly thankful to the UGC (University Grant Commission), India for providing the fellowship.

Notes and references

- (a) A. Greenberg, C. M. Breneman and J. F. Liebman, *The Amide Linkage: Selected Structural Aspects in Chemistry*, Biochemistry and Materials Science, Wiley-Interscience, New York, 2000; (b) N. Sewald and H. D. Jakubke, *Peptides: Chemistry and Biology*, Wiley-VCH, Weinheim, 1996.
- 2 (a) C. E. Mabermann, in *Encyclopedia of Chemical Technology*, ed.
 J. I. Kroschwitz, John Wiley & Sons, New York, 1991, vol. 1, pp.
 251; (b) D. Lipp in Encyclopedia of Chemical Technology, Vol. 1 (Ed.: J. I. Kroschwitz), Wiley, New York, 1991, pp. 266; (c) R. C. Larock, *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, New York, 1999.
- (a) N. Ryoki, N. Takahiro, Y. Yasuhiro and M. Haruo, J. Org. Chem., 1991, 56, 4076; (b) D. J. Hardee, L. Kovalchuke and T. H. Lambert, J. Am. Chem. Soc., 2010, 132, 5002; (c) G. E. Veitch, K. L. Bridgwood and S. V. Ley, Org. Lett., 2008, 10, 3623; (d) S. Naik, G. Bhattacharjya, B. Talukdar and B. K. Patel, Eur. J. Org. Chem.,
- ⁵ 2004, 1254; (e) S. Chung, D. P. Uccello, H. Choi, J. I. Montgomery and J. Chen, *Synlett*, 2011, 2072.
- 4 (a) A. Klapars, X. Huang and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 7421; (b) Y.-S. Lin and H. Alper, Angew. Chem., Int. Ed., 2001, 40, 779; (c) X.-F. Wu, H. Neumann and M. Beller, Chem.-Eur. J., 2010, 16, 9750; (d) H. Jiang, B. Liu, Y. Li, A. Wang and H.
- Huang, Org. Lett., 2011, **13**, 1028. 5 (a) W. J. Yoo and C. J. Li, J. Am. Chem. Soc., 2006, **128**, 13064; (b)
- S. De Sarkar and A. Studer, Org. Lett., 2010, **12**, 1992.
- L. Cao, J. Ding, M. Gao, Z. Wang, J. Li and A. Wu, Org. Lett., 2009,
 11, 3810.
- 7 (a) C. Gunanathan, Y. Ben-David and D. Milstein, *Science*, 2007, 266, 790; (b) T. Zweifel, J. V. Naubron and H. Grützmacher, *Angew. Chem., Int. Ed.*, 2009, 48, 559; (c) J. H. Dam, G. Osztrovszky, L. U. Nordstrøm and R. Madsen, *Chem.–Eur. J.*, 2010, 16, 6820; (d) S. C. Ghosh, S. Muthaiah, Y. Zhang, X. Xu and S. H. Hong, *Adv. Synth. Catal.*, 2009, 351, 2643; (e) L. U. Nordstrøm, H. Vogt and R. Madsen, *J. Am. Chem. Soc.*, 2008, 130, 17672.
- 8 J. W. Kim, K. Yamaguchi and N. Mizuno, *Angew. Chem., Int. Ed.*, 2008, **47**, 9249.
- ⁵ 9 (a) J. Aubé and G. L. Milligan, J. Am. Chem. Soc., 1991, 113, 8965;
 (b) H. Lebel and O. Leogane, Org. Lett., 2005, 7, 4107.
- (a) M. Hashimoto, Y. Obora, S. Sakaguchi and Y. Ishii, J. Org. Chem., 2008, 73, 2894; (b) S. Chandrasekhar and K. Gopalaiah, Tetrahedron Lett., 2003, 44, 755; (c) C. Ramalingan and Y. T. Park, J. Org. Chem., 2007, 72, 4536; (d) L. G. Donaruma and W. Z. Heldt,
- Org. Chem., 2007, 72, 4556; (d) L. G. Donaruma and W. Z. Heldt, Org. React., 1960, 11, 1.
 (a) J. R. Martinelli, T. P. Clark, D. A. Watson, R. H. Munday and S.
- (a) J. R. Martinelli, T. P. Clark, D. A. Watson, R. H. Munday and S. L. Buchwald, *Angew. Chem., Int. Ed.*, 2007, 46, 8460; (b) X. Wu, R. Ronn, T. Gossas and M. Larhed, *J. Org. Chem.*, 2005, 70, 3094; (c)
 D. J. Knapton and T. Y. Meyer, *Org. Lett.*, 2004, 6, 687; (d) P.
 - D. J. Knapton and I. Y. Meyer, Org. Lett., 2004, 6, 68/; (d) P. Nanayakkara and H. Alper, Chem. Commun., 2003, 2384.
 - 12 (a) Y. Kuninobu, T. Uesugi, A. Kawata and K. Takai, *Angew. Chem.*, *Int. Ed.*, 2011, **50**, 10406; (b) C. Qin, W. Zhou, F. Chen, Y. Ou and N. Jiao, *Angew. Chem.*, *Int. Ed.*, 2011, **50**, 12595.
- 100 13 (a) M. E. van der Boom and D. Milstein, *Chem. Rev.*, 2003, 103, 1759; (b) C.-H. Jun, *Chem. Soc. Rev.*, 2004, 33, 610.

- 14 (a) A. Sattler and G. Parkin, *Nature*, 2010, 463, 523; (b) H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang and Z.-J. Shi, *J. Am. Chem. Soc.*, 2011, 133, 15244.
- 15 (a) P. A. Wender, A. G. Correa, Y. Sato and R. Sun, J. Am. Chem.
 Soc., 2000, 122, 7815; (b) T. Seiser, O. A. Roth and N. Cramer, Angew. Chem., Int. Ed., 2009, 48, 6320; (c) S. C. Bart and P. J. Chirik, J. Am. Chem. Soc., 2003, 125, 886; (d) T. Seiser and N. Cramer, J. Am. Chem. Soc., 2010, 132, 5340; (e) M. Rubin, M. Rubina and V. Gevorgyan, Chem. Rev., 2007, 107, 3117.
- ¹⁰ 16 (a) R. Shang, Y. Fu, J.-B. Li, S.-L. Zhang, Q.-X. Guo and L. Liu, J. Am. Chem. Soc., 2009, **131**, 5738; (b) P. Hu, M. Zhang, X. Jie and W. Su, Angew. Chem. Int. Ed., 2012, **51**, 227; (c) Y. Hirata, A. Yada, E. Morita, Y. Na kao, T. Hiyama, M. Ohashi and S. Ogoshi, J. Am. Chem. Soc., 2010, **132**, 10070; (d) M. Tobisu, H. Kinuta, Y. Kita, E.
- 15 Rémond and N. Chatani, J. Am. Chem. Soc., 2012, **134**, 115; (e) J. Mecinović, R. B. Hamed and C. J. Schofield, Angew.Chem. Int. Ed., 2009, **48**, 2796.
- 17 (a) M. Gao, Y. Yang, Y.-D. Wu, C. Deng, W.-M. Shu, D.-X. Zhang, L.-P. Cao, N.-F. She and A.-X. Wu, Org. Lett., 2010, **12**, 4026; (b) Y.
- Liu and J.-W. Sun, J. Org. Chem., 2012, 77, 1191; (c) J. Zhao, Y. Zhao and H. Fu, Org. Lett., 2012, 14, 2710; (d) L.-G. Meng, B. Hu, Q.-P. Wu, M. Liang and S. Xue, Chem. Commun., 2009, 6089; (e) J. Xie, H. Jiang, Y. Cheng and C. Zhu, Chem. Commun., 2012, 48, 979.
 C. He, S. Guo, L. Huang and A. Lei, J. Am. Chem. Soc., 2010, 132,
- ¹⁸ C. He, S. Guo, L. Huang and A. Lei, *J. Am. Chem. Soc.*, 2010, **132**, 8273.
- (a) S. Cai, F. Wang and C. Xi, J. Org. Chem., 2012, 77, 2331; (b) X. Zhang, M. Wang, Y. Zhang and L. Wang, RSC Adv., 2013, 3, 1311;
 (c) A. Kawata, K. Takata, Y. Kuninobu and K. Takai, Angew. Chem. Int. Ed., 2007, 46, 7793; (d) V. Kavala, C.-C. Wang, D. K. Barange, Chem. M. K. Kawata, M. B. M. La C. C. Wang, D. K. Barange, Chem. Science, 2012, 7622
- C.-W. Kuo, P.-M. Lei and C.-F. Yao, *J. Org. Chem.*, 2012, 77, 5022;
 (e) X. Fan, Y. He, L. Cui, S. Guo, J. Wang and X. Zhang, *Eur. J. Org. Chem.*, 2012, 673.
- 20 X. Sun, M. Wang, P. Li, X. Zhang and L. Wang, *Green Chem.*, 2013, 15, 3289.
- 35 21 N. Ramireddy and J. C.-G. Zhao, Tetrahedron Lett., 2014, 55, 706.
- 22 F. Xie, F. Yan, M. Chen and M. Zhang, RSC Adv., 2014, 4, 29502.
- 23 (a) N. Barbero, M. Carril, R. SanMartin, E. Domi'nguez, *Tetrahedron* 2008, 64, 7283; (b) R. Hosseinzadeh, Y. Sarrafi, M. Mohadjerani, *Tetrahedron Lett.*, 2008, 49, 840; (c) D. K. T. Yadav,
 ⁴⁰ B. M. Bhanage, *Synlett*, 2014, 25, 1611.
- (a) H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, *Industrial Organic Chemicals*, Wiley-Interscience, New York, 2nd edn, 2004; (b) S. I. Murahashi, Y. Imada, *in Transition Metals for Synthesis* (Eds.: M. Beller, C. Bolm) 2nd ed., Wiley–VCH, Weinheim, Germany, 2004, vol. 2, p. 497.
- 25 J. P. Adams, J. Chem. Soc. Perkin Trans. 1, 2000, 125.
- 26 P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, F. Bartl, Biological properties of schiff bases and azo derivatives of phenols. Curr. Org. Chem., 2009, **13**, 124.
- 50 27 J. J. Eisch and R. Sanchez, J. Org. Chem., 1986, 51, 1848.
- 28 R. Laudien and R. Mitzner, J. Chem. Soc. Perkin Trans. 2, 2001, 2226.

Base-Catalyzed Synthesis of Amides and Imines via C-C and C=C Bond Cleavage

Dilip Kumar T. Yadav and Bhalchandra M. Bhanage*

Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai- 400019, India

A simple and efficient protocol has been developed for the synthesis of amides and imines from 1,3-dicarbonyls and α , β -unsaturated ketones respectively with *N*-arylureas in the presence of inexpensive and easily available KOH base under solvent free condition.