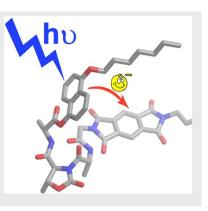

RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.


You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Hybrid foldamers equipped with a donor and an acceptor unit exhibit unexpected conformations that affect the photoinduced electron transfer ability. The donor quenching efficiency depends not only on the length of the pseudopeptide linker but also on the secondary structure that can be modified by the solvent coordination ability.

Pseudopeptide Foldamers Designed for Photoinduced Intramolecular Electron Transfer

Lorenzo Milli,^a Enrico Marchi,^a* Nicola Castellucci,^a Maria Teresa Indelli,^b Margherita Venturi,^{a,c} Paola Ceroni,^{a,c} Claudia Tomasini ^a* Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

FULL PAPER

Pseudopeptide Foldamers Designed for Photoinduced Intramolecular Electron Transfer[†]

Lorenzo Milli,^[a] Enrico Marchi,^{*[a]} Nicola Castellucci,^[a] Maria Teresa Indelli,^[b] Margherita Venturi,^[a,c] Paola Ceroni^[a,c] and Claudia Tomasini^{*[a]}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

We have designed and prepared three pseudopeptide foldamers, called dyads 1, 2 and 3, equipped with a donor and an acceptor unit to promote intramolecular electron transfer after light excitation. All the three dyads contain the same donor and acceptor, which are a derivative of 1,5-dihydroxynaphthalene and a

- ¹⁰ derivative of pyromellitic diimide, respectively. The donor and acceptor units are separated by hybrid foldamers of different length in order to vary both their distance and relative orientation. Specifically, one, two or three L-Ala-D-Oxd (Ala = alanine, Oxd = 4-carboxy-5-methyl-oxazolidin-2-one) units are contained in dyads **1**, **2**, and **3**, respectively. Dyad **1** folds in a bent conformation in which the donor and acceptor units lie one close to the other, while dyads **2** and **3** preferentially assume an extended
- ¹⁵ conformation. In all the three dyads both the donor and acceptor emissions are efficiently quenched *via* intramolecular electron transfer, as suggested by photophysical and electrochemical investigations. Because of its bent conformation dyad 1 exhibits a charge-transfer (CT) band at 410 nm in CH₂Cl₂ solution and a photoinduced electron transfer that occurs more efficiently than in dyads 2 and 3. Upon dissolving dyad 1 in DMSO, a competitive solvent for hydrogen bonds that establish in the pseudopeptide

²⁰ linker, the CT band disappears and the efficiency of electron transfer slightly decreases, in agreement with an unfolded conformation in which donor and acceptor units are no longer in close contact.

Introduction

Long-range electron transfer (ET) through proteins is a fundamental reaction in living organisms, playing a role in ²⁵ energy-conversion processes like photosynthesis and respiration¹ as well as in enzymatic reactions.² Intramolecular electron-transfer reactions between donor and acceptor sites separated by a synthetic peptide or a protein fragment have provided a deep insight into the role played by the bridge in mediating electron ³⁰ transfer.³ To carry out these studies the supramolecular chemistry⁴ and photochemistry⁵ approach can be very useful because it enables to assemble prefabricated molecular components that carry the desired photophysical and redox properties. Indeed, in a suitably designed supramolecular species ³⁵ A-L-D (where the electron acceptor A and electron donor D units are covalently bound with a linker L) light excitation can cause

an intramolecular electron transfer from the excited state of D to A. This approach offers the advantage that the properties of the supramolecular system can be predicted by knowing the ⁴⁰ properties of the isolated components or of suitable model molecules.

Over the last 50 years several donor and acceptor chromophores have been examined in the context of their capability to form charge-transfer (CT) complexes.⁶ In the frame ⁴⁵ of these investigations, it has also been evidenced that the linker

plays a key role to put in communication the two chromophores. In principle, a lot of different linkers could be used for this purpose, providing pathways through peptide bonds, aromatic side chains, weak noncovalent hydrophobic interactions, ⁵⁰ hydrogen-bonding networks associated with helices and sheets and/or other secondary structural features that change the electronic structure and induce low-energy pathways across polypeptides.⁷ Among the peptide bridging groups studied, the oligoproline building blocks were used as a key model for ⁵⁵ systematic study of the distance dependence of the electron transfer process.⁸ The advantage of the oligoprolines over other naturally occurring amino acids and peptides is the predictability of their secondary structure, which imparts significant rigidity upon the spatial separation between the donor and acceptor.⁹

⁶⁰ In the last few years, the design and synthesis of oligomers based on proline units, both in the presence and absence of stabilizing hydrogen bonds, have been extensively pursued. Interesting new molecules capable of folding into defined secondary structures may be prepared by replacing the proline ⁶⁵ moieties with pseudoproline (ΨPro) units.¹⁰

Simplified artificial systems based on backbones designed to fold in secondary structures are called "foldamers", and they have recently received considerable attention because they hold promises for addressing chemical, physico-chemical and 70 biological problems and represent a new frontier in research.¹¹ We have extensively studied the conformational behavior of foldamers containing a pseudoproline scaffold as 4-carboxy-5methyl-oxazolidin-2-one (Oxd)¹² On acylation of this pseudoproline unit, imides are obtained: the two carbonyls lie apart from one another and form the peptide bond in a *trans* ⁵ conformation.¹³ We have also reported hybrid foldamers, where

- the Oxd moiety is alternated with an α or a β -amino acid.¹⁴ The relative configuration of the Oxd and the alternated amino acid is very important, as the L-Ala-D-Oxd series tends to form β -bend ribbon spirals, while the L-Ala-L-Oxd series does not.
- In this paper, we report the synthesis, the conformational characterization and the photophysical investigation of a series of hybrid oligomers, called dyads 1, 2 and 3 (Figure 1). They contain a derivative of pyromellitic diimide as electron acceptor group and a derivative of 1,5-dihydroxynaphthalene as the
- ¹⁵ electron donor one. These two moieties are linked by one, two, or three L-Ala-D-Oxd units in dyads 1, 2 and 3.

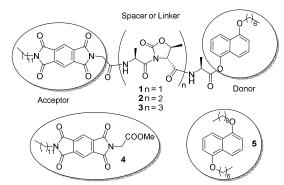
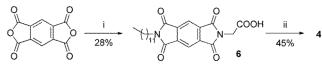
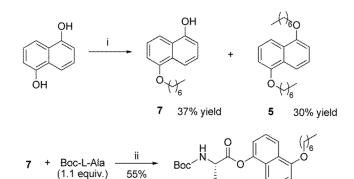


Fig. 1 Formulas of the investigated dyads 1, 2 and 3 and the acceptor and compounds 4 and 5 taken as models of the acceptor and donor units, ²⁰ respectively.

The aim of this work is to check if the photophysical properties, and in particular the interaction between the donor and acceptor units, are affected by the different bridge and by the ²⁵ resulting conformation of the foldamers.


Results and Discussion

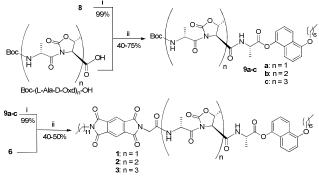
Synthesis

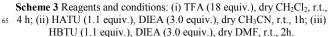

Dyads 1, 2 and 3 have been prepared in solution by a convergent synthesis, where the donor group, the acceptor group and the ³⁰ spacer are assembled.

The acceptor group, a pyromellitic diimide, has been prepared in one step as white powder by reaction of pyromellitic dianhydride with dodecylamine and glycine in refluxing DMF in 28% yield.¹⁵ Besides **6**, that was used for the dyads preparation,

³⁵ the corresponding methyl ester **4** (Figure 1) was synthesized as acceptor model for the photophysical analysis, by reaction of **6** with SOCl₂ in CH₃OH (Scheme 1).

Scheme 1 Reagents and conditions: (i) Gly (1.0 equiv.), dodecylamine (1.0 equiv.), DMF, 120 °C, 6h; (ii) SOCl₂ (excess), MeOH, r.t., 24h.


 Scheme 2 Reagents and conditions: (i) 1-bromoheptane (1.0 equiv.),


 45
 K₂CO₃ (2.1 equiv.), KI (1.0 equiv.), acetone, reflux, 10h; (ii) DCC (1.1 equiv.), DMAP (0.1 equiv.), DCM, r.t., 24h.

8

The donor **8** was prepared in two steps starting from the commercially available 1,5-dihydroxynaphthalene (Scheme 2). After reaction with potassium carbonate, potassium iodide and *n*-⁵⁰ heptyl bromide in acetone, a mixture of the desired 5-(heptyloxy)naphthalen-1-ol **7** and 1,5-bis(heptyloxy)naphthalene **5** was prepared. After purification, **7** and **5** were obtained in 37% and 30% yield respectively. While **7** was used for the dyad preparation, **5** was used as donor model for the photophysical ⁵⁵ analysis. Finally **7** was coupled with Boc-L-Ala in the presence of DCC and DMAP to give the final product **8** in 55% yield.

As mentioned before, the donor and the acceptor units were linked together by the spacers, that are oligomers of the Boc-(L-Ala-D-Oxd)_n-OH series (n = 1, 2, 3), whose synthesis was ⁶⁰ previously reported.¹⁶ The preparation of dyads **1**, **2** and **3** was obtained by two steps, by standard peptide coupling reactions with the acceptor group and the donor group (Scheme 3).

Conformational Analysis

Information on the preferred conformations of dyads **1**, **2** and **3** in solution was obtained by the analysis of FT-IR and ¹H NMR ⁷⁰ spectra.

IR spectroscopy

The analysis of the N-H stretching regions enables to detect if intramolecular N-H•••O=C hydrogen bonds are formed, because non-hydrogen-bonded amide NH groups exhibit a stretching ⁷⁵ signal above 3400 cm⁻¹, while hydrogen-bonded amide NH ones¹⁷ produce a stretching band below 3400 cm⁻¹. The FT-IR spectra were recorded in CH_2Cl_2 at a compound concentration of 3 mM; such a concentration was chosen to avoid compound self-aggregation.

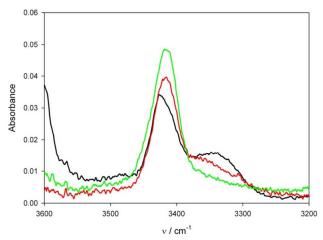


Fig. 2 N-H stretching regions of the FT-IR absorption spectra in pure CH_2Cl_2 at room temperature for 3 mM concentration of dyads 1 (black line), 2 (red line) and 3 (green line).

NH stretching bands of dyads **1**, **2** and **3** are shown in Figure 2: ¹⁰ the spectrum of **1** clearly shows the presence of two bands at 3420 and 3340 cm⁻¹, that account for an hydrogen-bonded and a non-hydrogen-bonded amide NH group. The stretching band at 3340 cm⁻¹ becomes weaker for **2** and totally disappears in the case of **3**. This finding suggests that a folded conformation is ¹⁵ strongly favoured in the case of the shortest dyad **1**, whereas it occurs only partially in dyad **2** and it does not take place at all in dyad **3**.

¹H NMR spectroscopy

- ²⁰ The ¹H NMR analysis of the NH chemical shifts supports the interpretation of the IR spectroscopy results, as the NH of dyad **1** resonates at 7.45 ppm, while the NH's of dyads **2** and **3** resonate between 7.18 and 7.32 ppm, thus showing that NH is more deshielded for **1**. In contrast compounds **9a-c** show the opposite
- ²⁵ behaviour as the NH's chemical shifts resonate at 7.35 for **9a**, increasing to 7.35-7.57 for **9b** and 7.50-7.60 for **9c** (for details see Supporting Information).

A further confirmation of the preferred bent conformation assumed by **1** was obtained by analyzing the chemical shifts of

³⁰ the pyromellitic diimide and 1,5-dihydronaphthalene hydrogens. These chemical shifts for dyads **1**, **2** and **3** together with those found for the model compound **4** and compound **8** are reported in Table 1.

35

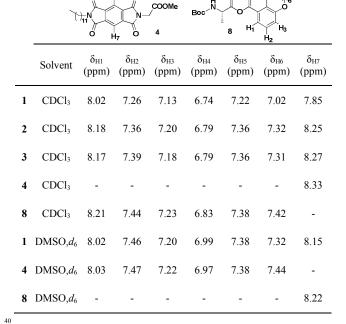
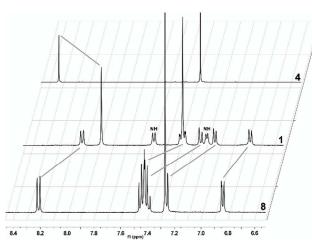
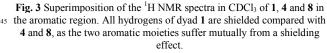
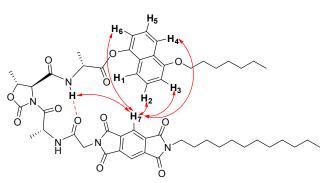




Table 1 Proton chemical shifts (ppm) of aromatic hydrogens for

compounds 1, 2, 3, 4 and 8 in different solvents.

We can notice that H₇ resonates as a singlet for both hydrogens at 8.33 ppm in the spectrum of **4** (Figure 3). In dyads **1**, **2** and **3** there is no skeleton modification that could be responsible for the variation of this chemical shift. In fact, both **2** and **3** spectra show a singlet at 8.25 and 8.27 ppm respectively. In contrast, in the dyad **1** spectrum, the chemical shift of the pyromellitic diimide hydrogens resonates at 7.85 ppm, suggesting that these hydrogens ⁵⁵ are shielded by an aromatic ring (Figure 3). The same effect was observed for the chemical shifts of the 1,5-dihydronaphtalene hydrogens (compound **8**), that are all shielded only in the case of dyad **1** suffer from the shielding effect of a nearby aromatic ring.


Interestingly, when the ¹H NMR spectra of compounds **1**, **4** and **8** are registered in DMSO, d_6 , the chemical shifts variations are negligible as $\Delta\delta$ ranges from 0 to 0.12 ppm, while in CDCl₃ it ranges between 0.09 and 0.47 ppm (Table 1 and SI for details).

⁵ Thus the bent conformation of **1** is favoured by CHCl₃, that is a structure supporting solvent and is disfavoured by DMSO, that is a competitive solvent for N-H•••O=C bonds (see below).¹⁸

ROESY experiments performed on dyads 1 and 2 (as a model of the unfolded dyads), in CDCl₃ using a mixing time of 0.400 s, ¹⁰ proved this hypothesis.

Besides the trivial couplings, in the ROESY spectrum of 1 in CDCl₃, several cross peaks accounting for the interactions between the pyromellitic diimide and 1,5-dihydronaphthalene hydrogens and NH are visible and are highlighted (see SI for

- ¹⁵ more details). In contrast, in the ROESY spectrum of 2 these signals are totally absent (see SI for more details). This finding is in agreement with a preferred bent conformation of 1, that favours the proximity between the donor and the acceptor groups in a range of about 4 Å. The preferred conformation of dyad 1,
- ²⁰ together with all the cross peaks registered in the ROESY spectrum, is summarized in Figure 4.

Fig. 4 Preferential conformation of dyad **1**, that accounts for the ²⁵ formation of a NH hydrogen bond and for the NOE enhancements as gathered from the analysis of its ROESY spectrum (10 mM solution in CDCl₃, mixing time 0.400 s).

Photophysical Characterization

The photophysical properties of the three donor-acceptor dyads 1, $_{30}$ 2 and 3 are compared to those of the compounds 4 and 5 (Figure

1) taken as models for the electron acceptor and donor units respectively (Table 2).

Table 2 Photophysical data for dyads 1, 2 and 3 and model compounds 4 and 5 in air equilibrated CH_2Cl_2 solution at room temperature.

	Absorption Emission ^[b]					$\eta_q^{[d]}$
	λ (nm)	$\epsilon (M^{-1}cm^{-1})$	λ (nm)	ф	$\tau (ns)^{[c]}$	Hd, 1
1	300 308 ^[a] 410	10200 9300 150	330	0.002	0.12 (0.73) 5.30 (0.02)	0.99
2	299 308 ^[a]	10400 9600	330	0.013	0.31 (0.41) 5.30 (0.03)	0.95
3	300 308 ^[a]	11600 10400	330	0.027	0.52 (0.31) 5.30 (0.03)	0.91
4	309 319	1950 2000	447	0.003	9.45	-
5	298 313 327	9950 8200 6100	330	0.25	6.30	-

³⁵ ^{*a*} Shoulder of the absorption band. ^b For the three dyads data are reported only for the residual emission of the donor subunit ($\lambda_{ex} = 280$ nm). No sensitized or residual emission of the acceptor subunit is observed. ^c The fitting equation is I = A₁exp(-t/\tau₁) + A₂exp(-t/\tau₂) + B. The values in brackets are the pre-exponential factors. ^d Donor excited state quenching ⁴⁰ efficiency.

Absorption properties

The absorption spectra of **1**, **2** and **3** (Figure 5, Table 2) in CH₂Cl₂ solution are similar but not exactly superimposable to ⁴⁵ that obtained by the sum of the acceptor and donor model compounds **4** and **5** (grey lines in Figure 5, Table 2). These spectra show the characteristic band of the naphthalene derivative¹⁹ donor compound (280-320 nm). However, the vibronic structure is less pronounced, likely because of the ⁵⁰ different substituents of the naphthalene chromophore in the dyads compared to compound **5**, which bring about a decrease of the symmetry.

In addition, the spectrum of 1 is characterized by an unstructured, large and weak band centered at 410 nm (inset of 55 Figure 5) that is not present in the spectra of dyads 2 and 3. This band can be assigned to a CT transition between donor and acceptor units (see below), as previously reported for similar donor-acceptor components.²⁰ The presence of this CT band only in 1 is in line with the previously reported results showing that 60 only for the shortest dyad the donor and acceptor units undergo a noticeable interaction because of their close proximity. This band is not sensitive to concentration (the molar absorption coefficient does not change in the range $3.7 \times 10^{-7} - 3.7 \times 10^{-4}$), thus excluding intermolecular interactions, but it is sensitive to the 65 solvent nature. In fact, the CT band disappears upon dissolution of dyad 1 in DMSO (inset of Figure 5), a competitive solvent that promote the unfolding of the pseudopeptide (see above),¹⁸ a result evidencing that the supramolecular structure of the pseudopeptide foldamers can be easily affected.

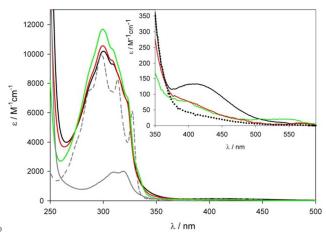


Fig. 5 Absorption spectra of dyad 1 (black full line), dyad 2 (red full line) and dyad 3 (green full line) and of donor (5, grey dashed line) and acceptor (4, grey full line) model compounds in CH₂Cl₂ solution. In the inset an enlargement of the absorption spectra in the low energy part of the three dyads in CH₂Cl₂ solution and of the dyad 1 in DMSO solution (black dotted line) are shown. For more details, see text.

Emission properties and evidence for electron transfer quenching mechanism

The emission properties of these systems were investigated upon

excitation at 286 or at 320 nm, where the donor unit absorbs 90% and 70% of the light, respectively (Table 2).

From the emission spectra obtained by excitation of isoabsorbing CH_2Cl_2 solutions of **1**, **2**, **3** and **5** at 286 nm (Figure 5 6, left) we can estimate the quenching efficiency η_q of the luminescent excited state of the donor unit in the dyads, after correction for the amount of light directly absorbed by the acceptor (Table 2, see SI for more details).

The quenching efficiency is higher than 90% in all cases and is ¹⁰ decreasing from 1 to 3 in agreement with a longer distance between the donor and the acceptor units. For dyad 1 and 2 in DMSO solution (3 it is not soluble in this solvent) we observe, as expected, a stronger decrease of the quenching efficiency for dyad 1 (95%) than for dyad 2 (93%). These results are in ¹⁵ accordance with the absence of the CT band in the absorption spectrum of 1 in DMSO. The lifetimes of the donor residual emission for the three dyads in CH₂Cl₂ solution are reported in Table 2. They are biexponential and characterized by a major short component (less than a ns) and a minor long component ²⁰ (ca. 5 ns) lifetime. The decay of the shorter lifetime is assigned to

the donor molecules linked in the dyads, while the longer one is due to a small amount of free donor impurities present in solution.[‡]

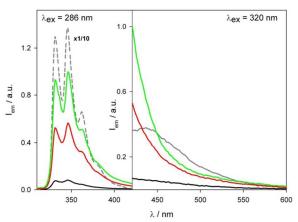


Fig. 6 Emission spectra of dyad 1 (black full line), dyad 2 (red full line) and dyad 3 (green full line) and of donor (5, grey dashed line) and acceptor (4, grey full line) model compounds for optically matched CH₂Cl₂ solutions at the excitation wavelength: 286 nm (left) or 320 nm (right).

³⁰ The quenching efficiencies obtained comparing the corrected emission intensity are the same (within the experimental error) of those estimated by the analysis of the short component lifetime of the luminescent excited state of the donor in the dyads with respect to the one of **5** (Table 2 and SI for more details). It is ³⁵ important to underline that, exciting the dyads at 286 nm, we are

unable to see any emission of the acceptor unit.

By excitation of isoabsorbing CH₂Cl₂ solutions of the dyads at 320 nm (where the 30% of the light is absorbed by the acceptor subunit), the emission spectra (Figure 6, right) are characterized ⁴⁰ only by a very weak tail due to the residual emission of the directly excited donor unit. These emissions are completely different from the one obtained exciting at 320 nm an isoabsorbing solution of the acceptor model **4** (Figure 6, black

dashed-dotted line), demonstrating that in these systems also the

45 luminescent excited state of the acceptor subunit is highly guenched.

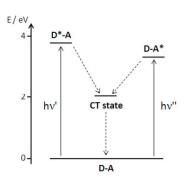


Fig. 7 Schematic representation of the energy levels of model compounds 4 and 5 and for the charge transfer (CT) state of the dyads. Absorptions ⁵⁰ are indicated by full lines, non radiative transition are indicated by dashed lines.

On the basis of the redox potentials of the donor and the acceptor model compounds (see SI),[§] the energy of the charge transfer (CT) state, in which the donor is oxidized ($E_{p.a.} = + 1.23$ V vs SSCE) and the acceptor is reduced ($E_{1/2} = -0.83$ V vs SCE), is lower (ca 1.5 eV) than the energy of the excited state both of the donor and acceptor units. A schematic energy level diagram is reported in Figure 7. The presence of this low CT state suggests that the quenching mechanism of both the donor and the acceptor 60 excited state is *via* electron transfer.

In order to get a deeper insight into the electron transfer mechanism, ultrafast spectroscopic experiments in CH₂Cl₂ solution were performed by using 266 nm as excitation wavelength (see SI). No transient spectral changes with 65 distinctive features of the formation of the charge separated product were observed in the 1-1000 ps time scale. We attribute this result to kinetic reasons: the charge recombination process to the ground state is faster than the photoinduced charge separation and, as a consequence, the charge separated product does not 70 accumulate.

Conclusions

We have designed, prepared, and characterized three pseudopeptide foldamers, called dyads **1**, **2** and **3**. They contain a derivative of pyromellitic diimide as electron acceptor group and ⁷⁵ a derivative of 1,5-dihydroxynaphthalene as the electron donor one, linked together by one, two or three L-Ala-D-Oxd units, respectively.

IR and NMR analyses clearly evidence that in CH₂Cl₂ and in CDCl₃ solution dyad **1** folds in a bent conformation in which the ⁸⁰ donor and acceptor units lie in close proximity, while dyads **2** and **3** lie in a extended conformation.

The photophysical properties of the dyads in CH₂Cl₂ solution strongly support this conformational characterization. Indeed, the absorption spectrum of dyad **1** shows a weak and large band at ⁸⁵ 410 nm assigned to a charge transfer transition that is not present in the spectra of dyads **2** and **3** in agreement with the fact that the donor and the acceptor are in close proximity only in the shortest dyad. Furthermore, in all the three dyads both the donor and acceptor emissions are efficiently quenched most likely *via* ⁹⁰ intramolecular electron transfer that, because of its bent Page 7 of 9

conformation, occurs more efficiently in dyad 1 than in dyads 2 and 3. The degree of interaction between the donor and acceptor units in dyad 1 can also be modulated by changing the folding of the oligopetide bridge. Dissolving 1 in a competitive solvent like

⁵ DMSO the bridge is unfolded (as pointed out by NMR experiments and by the disappearing of the CT band) bringing the donor and acceptor units at a longer distance.

To better investigate this remarkable outcome, further work is under progress in our laboratory to design and prepare new

¹⁰ compounds with the same spacer of dyad **1**, but carrying a wide plethora of acceptor and donor units.

Experimental Section

Synthesis

- The melting points of the compounds were determined in open 15 capillaries and are uncorrected. High quality infrared spectra (64 scans) were obtained at 2 cm⁻¹ resolution using a 1 mm NaCl solution cell and a ATR-FT-IR Bruker Alpha System spectrometer. All spectra were obtained in 3 mM solutions in dry CH₂Cl₂ or in nujol at 297 K. All compounds were dried in vacuo
- ²⁰ and all the sample preparations were performed in a nitrogen atmosphere. NMR spectra were recorded with a Varian Inova 400 spectrometer at 400 MHz (¹H NMR) and at 100 MHz (¹³C NMR). The measurements were carried out in CD₃OD, in CDCl₃ or in DMSO,*d*₆. The proton signals were assigned by gCOSY spectra.
- ²⁵ Chemical shifts are reported in δ values relative to the solvent (CD₃OD, CDCl₃ or DMSO, d_6) peak. Detailed synthetic procedure are reported in SI.

Photophysics

UV-Vis absorption spectra were recorded with a Perkin Elmer ³⁰ λ650 spectrophotometer. Corrected emission spectra and luminescence lifetime measurements were performed with an Edinburgh FLS920 spectrofluorimeter, equipped with a Hamamatsu H5773-04 phototube and a TCC900 card for data acquisition in time-correlated single-photon counting experiments

- ³⁵ (22 ps time resolution) with a PicoQuant PLS-8-2-567 pulsed LED laser with emission maximum at 280 nm. Emission quantum yields were measured following the method of Demas and Crosby²¹ (standard used:²² naphthalene in areated cyclohexane for **5** and quinine sulfate in H₂SO₄ 0.5 M solution for **4**). The
- ⁴⁰ estimated experimental errors are: 2 nm on the band maximum, 5% on the molar absorption coefficient and luminescence lifetime, 10% on the emission quantum yield.

Electrochemical measurements

Electrochemical experiments were carried out in argon-purged ⁴⁵ CH₂Cl₂ (Romil Hi-DryTM) solutions at room temperature with an EcoChemie Autolab 30 multipurpose instrument interfaced to a personal computer. The working electrode was a glassy carbon electrode (0.08 cm², Amel); the counter electrode was a Pt spiral and a silver wire was employed as a quasi-reference electrode

⁵⁰ (QRE). The potentials reported are referred to SCE by measuring the AgQRE potential with respect to decamethyl ferrocene (-0.086 V vs SCE). The concentration of the compounds examined was of the order of $1*10^{-3}$ M; 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) was added as supporting ⁵⁵ electrolyte. Cyclic voltammograms were obtained with scan rates in the range 0.05–5 V s⁻¹. The experimental error on the potential values was estimated to be ± 10 mV.

Acknowledgements

CT and LM thank "Ministero dell'Istruzione, dell'Università e 60 della Ricerca" (MIUR) (program PRIN 2010NRREPL 009) and

- "Consorzio Spinner Regione Emilia Romagna" for financial support. MV, EM and PC thank "Ministero dell'Istruzione, dell'Università e della Ricerca" (MIUR) (PRIN 2010CX2TLM "InfoChem" and FIRB 2010RBAP11C58Y "Nanosolar") and
- 65 MAE (Direzione Generale per la Promozione del Sistema Paese).

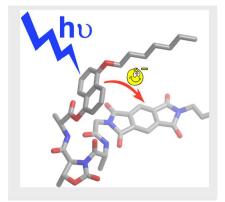
Notes and references

- ^a Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna (Italy). E-mail: claudia.tomasini@unibo.it; enrico.marchi@unibo.it
- ^b Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara (Italy).
 ^b Centro Interuniversitario per la Conversione dell'Energia Solare (SolarChem)
- † Electronic Supplementary Information (ESI) available: synthetic 75 details, IR, NMR and ROESY spectra, quenching efficiency calculations
- and electrochemical details. See DOI: 10.1039/b000000x/

[‡] The light emitted by this component accounts for ca. 60% in the lifetime fittings, but considering its very high emission quantum yield it is possible to estimate that donor free molecule are present in concentration

so less than 10%. The longer lifetime is slightly different from the one reported for the donor model compound 5 likely because of the different substituents.

§ The electrochemical investigation of the dyads was precluded by the limited amount of sample available.


- 85 1 M. Cordes and B. Giese, *Chem. Soc. Rev.*, 2009, *38*, 892.1
- 2 J. Stubbe, D. G. Nocera, C. S. Yee and M. C. Y. Chang, *Chem. Rev.*, 2003, *103*, 2167.
- 3 S. S. Isied, M. Y. Ogawa and J. F. Wishart, *Chem. Rev.*, 1992, *92*, 381.
- 90 4 J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, Wiley-VCH, Weinheim, 1995.
- 5 V. Balzani, P. Ceroni and A. Juris, *Photochemistry and Photophysics: Concepts, Research, Applications*, Wiley-VCH, Weinheim, 2014.
- 95 6 A. Das, S. Ghosh, Angew. Chem. Int. Ed., 2014, 53, 2038.
- a) A. C. Benniston and A. Harriman, *Chem. Soc. Rev.*, 2006, *35*, 169;
 b) S. Bhosale, A. L. Sisson, P. Talukdar, A. Fürstenberg, N. Banerji, E. Vauthey, G. Bollot, J. Mareda, Cornelia Röger, F. Würthner, N. Sakai and S. Matile, *Science*, 2006, *313*, 84-86; c) N. Sakai, A. L. Sisson, S. Bhosale, A. Furstenberg, N. Banerji, E. Vautheyb and S. Matile, *Org. & Biomol. Chem.*, 2007, *5*, 2560-2563; d) S. Bhosale, A. L. Sisson, N. Sakai and S. Matile, *Org. & Biomol. Chem.*, 2006, *4*, 3031-3039.
- 8 A. Vassilian, J. F. Wishart, B. van Hemelryck, H. Schwarz and S. S. Isied, *J. Am. Chem. Soc.*, 1990, *112*, 7278.
 - 9 M. Kuemin, S. Schweizer, C. Ochsenfeld and H. Wennemers, J. Am. Chem. Soc., 2009, 131, 15474.
- a) A. Wittelsberger, M. Keller, L. Scarpellino, L. Patiny, H. Acha-10 Orbea and M. Mutter, Angew. Chem., 2000, 112, 1153; Angew. Chem. Int. Ed., 2000, 39, 1111; b) M. Mutter and T. Haack, 110 Tetrahedron Lett., 1992, 33, 1589; c) J. P. Tam and Z. Miao, J. Am. Chem. Soc., 1999, 121, 9013; d) M. Kümin, L.-S. Sonntag and H. Wennemers, J. Am. Chem. Soc., 2007, 129, 466; e) M. Keller, C. Sager, P. Dumy, M. Schutkowski, G. S. Fischer and M. Mutter, J. Am. Chem. Soc., 1998, 120, 2714; f) P. Dumy, M. Keller, D. E. Ryan, 115 B. Rohwedder, T. Wo and M. Mutter, J. Am. Chem. Soc., 1997, 119, 918; g) M. Mutter, A. Chandravarkar, C. Boyat, J. Lopez, S. Dos Santos, B. Mandal, R. Mimna, K. Murat, L. Patiny, L. Saucède and G. Tuchscherer, Angew. Chem., 2004, 116, 4264; Angew. Chem. Int. Ed., 2004, 43, 4172; h) G. Tuchscherer and M. Mutter, J. Pept. Sci., 120

- 11 a) D. Seebach and J. L. Matthews, J. Chem. Soc., Chem. Commun., 1997, 2015; b) S. H. Gellman, Acc. Chem. Res., 1998, 31, 173; c) R.
- P. Cheng, S. H. Gellman and W. F. DeGrado, *Chem. Rev.*, 2001, *101*, 3219; d) D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore, *Chem. Rev.*, 2001, *101*, 3893; e) A. R. Sanford and B. Gong. *Curr. Org. Chem.*, 2003, *7*, 1649; f) I. Huc, *Eur. J. Org. Chem.*, 2004, 17; g) M. A. Balbo Block, C. Kaiser, A. Khan and S. Hecht, *Top.*
- 10 Curr. Chem., 2005, 245, 89; h) R. P. Cheng, Curr. Opin. Struct. Biol., 2004, 14, 512; i) E. Gatto, A. Porchetta, L. Stella, I. Guryanov, F. Formaggio, C. Toniolo, B. Kaptein, Q. B. Broxterman and M. Venanzi, Chem. Biodivers., 2008, 5, 1263; l) M. Wolffs, N. Delsuc, D. Veldman, N. V. Anh, R. M. Williams, S. C. J. Meskers, R. A. J.
- Is Janssen, I. Huc and A. P. H. J. Schenning, J. Am. Chem. Soc., 2009, 131, 4819.
 - 12 C. Tomasini, G. Angelici and N. Castellucci, *Eur. J. Org. Chem.*, 2011, 3648.
- 13 a) C. Tomasini and M. Villa, Tetrahedron Lett., 2001, 42, 5211; b) F.
- 20 Bernardi, M. Garavelli, M. Scatizzi, C. Tomasini, V. Trigari, M. Crisma, F. Formaggio, C. Peggion and C. Toniolo, *Chem. Eur. J.*, 2002, *8*, 2516.
- 14 a) G. Luppi, C. Soffrè and C. Tomasini, *Tetrahedron: Asymmetry*, 2004, 15, 1645; b) C. Tomasini, G. Luppi and M. Monari, J. Am.
- Chem. Soc., 2006, 128, 2410; c) G. Angelici, G. Luppi, B. Kaptein,
 Q. B. Broxterman, H.-J. Hofmann and C. Tomasini, Eur. J. Org. Chem., 2007, 2713; d) G. Longhi, S. Abbate, F. Lebon, N. Castellucci, P. Sabatino and C. Tomasini, J. Org. Chem., 2012, 6033;
 e) N. Castellucci, G. Falini, L. Milli, M. Monari, S. Abbate, G. Longhi, E. Castiglioni, G. Mazzeo and C. Tomasini, ChemPlusChem,
- 2014, **79**, 114.
- 15 Q.-Z. Zhou, M.-X. Jia, X.-B. Shao, L.-Z. Wu, X.-K. Jiang, Z.-T. Lia and G.-J. Chen, *Tetrahedron*, 2005, *61*, 7117.
- 16 C. Tomasini, G. Luppi and M. Monari, *J. Am. Chem. Soc.*, 2006, *128*, 2410.
- a) L. Belvisi, C. Gennari, A. Mielgo, D. Potenza and C. Scolastico, *Eur. J. Org. Chem.*, 1999, 389; b) J. Yang and S. H. Gellman, *J. Am. Chem. Soc.*, 1998, **120**, 9090; c) I. G. Jones, W. Jones and M. North, *J. Org. Chem.*, 1998, **63**, 1505; d) C. Toniolo, *CRC Crit. Rev.*
- 40 Biochem., 1980, 9, 1; f) B. Imperiali, R. A. Moats, S. L. Fisher and T. J. Prins, J. Am. Chem. Soc., 1992, 114, 3182.
- 18 a) K. D. Kopple, M. Ohnishi and A. Go, *Biochemistry*, 1969, *8*, 4087;
 b) D. Martin and H. G. Hauthal, *Dimethyl Sulphoxide*, Van Nostrand-Reinhold, Wokingham, London, 1975.
- ⁴⁵ 19 P. R. Ashton, R. Ballardini, V. Balzani, S. E. Boyd, A. Credi, M. T. Gandolfi, M. Gómez-López, S. Iqbal, D. Philp, J. A. Preece, L. Prodi, H. G. Ricketts, J. F. Stoddart, M. S. Tolley, M. Venturi and A. J. P. White, D. J. Williams, *Chem. Eur. J.*, 1997, *3*, 152.
- 20 a) D. G. Hamilton, J. E. Davies, L. Prodi and J. K. M. Sanders, *Chem*
- 50 Eur. J., 1998, 4, 608; b) T. Iijima, S. A. Vignon, H.-R. Tseng, T. Jarrosson, J. K. M. Sanders, F. Marchioni, M. Venturi, E. Apostoli, V. Balzani and J. F. Stoddart, Chem Eur. J., 2004, 10, 6375.
- 21 J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 991.
- 22 M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi in *Handbook of*
- ⁵⁵ *Photochemistry*, Taylor & Francis, London, 3rd edn., 2006, ch. 10.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Hybrid foldamers equipped with a donor and an acceptor unit exhibit unexpected conformations that affect the photoinduced electron transfer ability. The donor quenching efficiency depends not only on the length of the pseudopeptide linker but also on the secondary structure that can be modified by the solvent coordination ability.

FULL PAPER

Pseudopeptide Foldamers Designed for Photoinduced Intramolecular Electron Transfer

Lorenzo Milli,^a Enrico Marchi,^a* Nicola Castellucci,^a Maria Teresa Indelli,^b Margherita Venturi,^{a,c} Paola Ceroni,^{a,c} Claudia Tomasini ^a*