

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/advances

Determination of Multi-class Antimicrobials Residues in Soil by
 Liquid Chromatography-tandem Mass Spectrometry

3

### 4 Kui Bian<sup>†</sup>, YaHong Liu<sup>†</sup>, ZongNan Wang, Tong Zhou, XuQing Song, FangYu Zhang and

5 LiMin He\*

6 Antimicrobials residues in environmental matrices may result in the occurrence of 7 antimicrobial-resistant bacteria in soil. In this paper, a new analytical method based on liquid 8 chromatography-tandem mass spectrometry for multiresidue analysis of 24 antimicrobials of wide 9 polarity range and variable physicochemical properties, including sulfonamides, tetracyclines, 10 fluoroquinolones, macrolides, lincosamides and pleuromutilins in soil was developed. Samples 11 were extracted with acetonitrile : Na<sub>2</sub>EDTA-McIlvaine buffer (pH 4.0, 5:5, v/v) system and then 12 re-extracted with 0.2 M sodium hydroxide solution. The extracts were purified using HLB solid 13 phase extraction cartridge. Chromatographic separation of the components was performed on a 14 Zorbax SB-Aq column using acetonitrile-0.1% formic acid as mobile phase. The method developed was linear in a concentration range from the limits of quantification to 200  $\mu$ g kg<sup>-1</sup>, with 15 16 correlation coefficients higher than 0.99. The limits of detection and limits of quantification ranged from 0.01 to 2  $\mu$ g kg<sup>-1</sup> and 0.04 to 5  $\mu$ g kg<sup>-1</sup>, respectively. The overall average recoveries 17 18 for target analytes were more than 60% except for tetracycline (59.3%) in three spiked levels of 1, 4 and 20  $\mu$ g kg<sup>-1</sup> with relative standard deviations less than 20%. The method was further applied 19

National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PC 510642, China. Tel.: +86 20 85280665; fax: +86 20 85284896. E-mail addresses: <u>liminokhe@scau.edu.cn</u>

<sup>†</sup> The authors contributed equally to this work.

| 20 | on the determination of residual antimicrobials in real samples. Some target antimicrobials were     |
|----|------------------------------------------------------------------------------------------------------|
| 21 | detected at different levels and tetracyclines residues were dominant. 163.6 $\mu g \ kg^{-1}$ of    |
| 22 | chlortetracycline was detected in a soil sample. The results indicate that the proposed method has a |
| 23 | good feasibility.                                                                                    |

| ~ |    |
|---|----|
|   | /  |
| / | д. |
| ~ | т. |

### 25 1. Introduction

26 In recent decades, because large amount of drugs have been used in human and veterinary medicine,<sup>1</sup> they have been widely detected in a variety of environmental matrices such as water, 27 soil.<sup>2</sup> Currently, pharmaceutical residues in the environment are of increasing worldwide concern. 28 29 After administration, pharmaceuticals and their metabolites are excreted by animals and humans, 30 and then the excretion of the faeces together with urine flows into the environment. Finally, these 31 compounds accumulate in soil. Some hydrophilic drugs may be mobile in soil which can contaminate ground water,<sup>3</sup> and then they are introduced into the environment even into crops and 32 the food supply.<sup>4</sup> So the existence of antimicrobials in water and soil may pose a risk to human 33 34 health and environment ecology. In addition, the widespread use and environmental persistence of 35 some veterinary or human drugs in the environment have raised concerns about the potential for 36 the increase of antibiotic-resistant bacteria.<sup>5</sup> Bacteria resistant to antimicrobials have been found in aquatic environment and soil.<sup>6-7</sup> It becomes a hot research how to effectively assay the residues of 37 38 antimicrobials in environment such as water body, soil and atmosphere.

Several methods for the analysis of the commonly used antimicrobials in water,<sup>8</sup> animal tissues,<sup>9</sup> milk,<sup>10</sup> and manure<sup>11</sup> have been described using liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, because of the heterogeneity of solid matrices and the great diversity of pharmaceuticals with very different polarity and functionality, the determination of antimicrobials residues in soils is poorly documented. Their presence and distribution in the soil via land application are far from being fully understood, which is primarily due to a lack of appropriate analytical methodologies. In addition, most of the available multi-extraction

| 46 | procedures and instrumental analytical methods for solid environmental samples cover only one <sup>12</sup>            |
|----|------------------------------------------------------------------------------------------------------------------------|
| 47 | or specific classes of antimicrobials. <sup>13,14</sup> But none of these methods includes most common                 |
| 48 | veterinary antimicrobials. Therefore, the development of a sensitive analytical method that allows                     |
| 49 | for determining the residues of several classes of common veterinary drugs in soil is necessary.                       |
| 50 | The available information about the environmentally relevant concentrations of the commonly                            |
| 51 | used antimicrobials is also limited; it is mostly due to analytical difficulties encountered. When                     |
| 52 | trying to analyze these compounds at trace levels, various factors such as their polarity, solubility,                 |
| 53 | $pK_{a},K_{ow}$ and stability in complex matrices shall be considered. As for soil matrix, the sample                  |
| 54 | pre-treatment is the most difficult and time-consuming, and often involves one or more extraction                      |
| 55 | and cleanup steps. Techniques of extraction such as pressurized liquid extraction (PLE), <sup>6</sup>                  |
| 56 | microwave-assisted solvent extraction (MASE) <sup>15</sup> and supercritical fluid extraction (SFE) <sup>16</sup> have |
| 57 | been introduced. The common advantages of all the techniques can be referred the improvement                           |
| 58 | of rapidity and automation. However, some particular drawbacks must be considered. The PLE                             |
| 59 | and SFE techniques require expensive apparatus and complicated optimization procedures. The                            |
| 60 | MASE technique can improve extraction efficiency, but lacks extraction selectivity, thus, and it is                    |
| 61 | required for a further cleanup step. Although the MASE technique is not easily automated, it can                       |
| 62 | reduce the organic solvent consumption and no specialized laboratory equipment is required. After                      |
| 63 | extraction, in common, purification has to be performed by solid-phase extraction (SPE),                               |
| 64 | liquid-liquid extraction (LLE), gel-permeation chromatography (GPC) or semi-preparative liquid                         |
| 65 | chromatography (LC). The SPE method is often preferred since it is faster, requires less solvent                       |
| 66 | and has a lower risk of sample contamination. Due to the hydrophilic - lipophilic balance (HLB)                        |
| 67 | properties and the effectiveness in the extraction of a wide range of acidic, basic and neutral                        |

| 68 | compounds from various matrices, Oasis HLB is one of the most widely utilized SPE sorbent for             |
|----|-----------------------------------------------------------------------------------------------------------|
| 69 | pharmaceutical extraction in soil samples. In this study, the extraction efficiencies of the $C_{18}$ and |
| 70 | MCX SPE cartridges were compared with that of the HLB SPE cartridge.                                      |

71 The present study focuses on developing a sensitive, selective and reproducible method for the 72 simultaneous determination of 24 different antimicrobials including six sulfonamides (SAs), four 73 tetracyclines (TCs), six fluoroquinolones (FQs), five macrolides (MLs), one lincosamides (LAs) 74 and two pleuromutilins (PMs) in soils using LC-MS/MS with a triple quadrupole analyzer. 75 Different extraction solutions, extract ratios and types of solid-phase extraction cartridges for soil 76 sample preparation were discussed and optimized. Afterwards, the method developed was 77 successfully applied to the determination of 100 soils samples randomly collected from different 78 sources (35 piggeries, 25 vegetable fields, 20 living quarters, 20 orchards) in Guangdong Province, 79 China.

80 2. Experimental

### 81 **2.1. Reagents and materials**

82 Reference standards of all pharmaceuticals including difluoxacin, sarafloxacin, enrofloxacin, 83 ciprofloxacin, enoxacin, norfloxacin, chlortetracycline, oxytetracycline, doxycycline, tetracycline, 84 sulfaquinoxaline, sulfaclozine, sulfamethoxydiazine, sulfamonomethoxine, sulfadimidine, 85 sulfamethoxazole, tylosin, roxithromycin, kitasamycin, erythromycin, tilmicosin, clindamycin, valnemulin and tiamulin (purity>90%) were purchased from China Institute of Veterinary Drugs 86 87 Control (Beijing, China) and J & K Chemical LTD (Beijing, China). HPLC-grade Methanol 88 (MeOH), Acetonitrile (ACN) and formic acid were purchased from Fisher Scientific (Fair Lawn, 89 NJ, USA). Ethylenedi-minetetraacetic acid disodium salt dihydrate (Na2EDTA·2H2O), sodium

# **RSC Advances Accepted Manuscript**

### **RSC** Advances

| 90                              | hydroxide pellets (NaOH), disodium hydrogen phosphate (Na2HPO4.12H2O), magnesium nitrate                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 91                              | hexahydrate (Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O) and citric acid monohydrate (H <sub>3</sub> Cit·H <sub>2</sub> O), hydrochloric acid (HCl,                                                                                                                                                                                                                                                                                                                                                        |
| 92                              | 37%, w/v) and ammonia solution (25%, w/v) were purchased from the Guangzhou Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 93                              | Reagent Company (Guangzhou, China). Ammonium acetate was purchased from TEDIA                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 94                              | (Fairfield, OH, USA). Deionized water was obtained using a Millipore purification system Milli                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 95                              | Q (Molsheim, France). Other chemical reagents were of analytical reagents grade.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 96                              | Oasis HLB (hydrophilic-lipophilic balance, poly (divinylbenzene-co-N-pyrrolidone, 60 mg, 3                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 97                              | mL) SPE cartridge and Oasis MCX SPE cartridge (60 mg, 3 mL) were purchased from Waters Co.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 98                              | (Milford, MA, USA). Bond Elut-C <sub>18</sub> SPE cartridge (200 mg, 3 mL) was purchased from Agilent                                                                                                                                                                                                                                                                                                                                                                                                                |
| 99                              | Technologies Co. (Santa Clara, CA, USA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 100                             | A Na <sub>2</sub> EDTA-McIlvaine buffer solution (0.1 M) was prepared by mixing 1000 mL of 0.1 M                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 101                             | citric acid with 625 mL of 0.2 M disodium hydrogen phosphate (pH adjusted to $4.0\pm0.05$ with                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 102                             | NaOH or HCl as needed), and then 60.5 g of Na <sub>2</sub> EDTA·2H <sub>2</sub> O was added into the above mixture.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 103                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                 | Individual stock solutions were prepared at concentrations of 100 mg L <sup>-1</sup> in methanol and stored                                                                                                                                                                                                                                                                                                                                                                                                          |
| 104                             | Individual stock solutions were prepared at concentrations of 100 mg $L^{-1}$ in methanol and stored at -20 $^{0}$ C. Mixed working standard solutions were prepared by the adequate mixing and dilution of                                                                                                                                                                                                                                                                                                          |
| 104<br>105                      | Individual stock solutions were prepared at concentrations of 100 mg $L^{-1}$ in methanol and stored at -20 $^{0}$ C. Mixed working standard solutions were prepared by the adequate mixing and dilution of the individual stock solutions.                                                                                                                                                                                                                                                                          |
| 104<br>105<br>106               | Individual stock solutions were prepared at concentrations of 100 mg L <sup>-1</sup> in methanol and stored<br>at -20 <sup>o</sup> C. Mixed working standard solutions were prepared by the adequate mixing and dilution of<br>the individual stock solutions.<br><b>2.2. Sample preparation and extraction</b>                                                                                                                                                                                                      |
| 104<br>105<br>106<br>107        | Individual stock solutions were prepared at concentrations of 100 mg L <sup>-1</sup> in methanol and stored<br>at -20 <sup>o</sup> C. Mixed working standard solutions were prepared by the adequate mixing and dilution of<br>the individual stock solutions.<br><b>2.2. Sample preparation and extraction</b><br>Blank soil sample selected for the establishment of the quantitative method was collected from a                                                                                                  |
| 104<br>105<br>106<br>107<br>108 | Individual stock solutions were prepared at concentrations of 100 mg L <sup>-1</sup> in methanol and stored<br>at -20 <sup>o</sup> C. Mixed working standard solutions were prepared by the adequate mixing and dilution of<br>the individual stock solutions.<br><b>2.2. Sample preparation and extraction</b><br>Blank soil sample selected for the establishment of the quantitative method was collected from a<br>livestock farm at a depth of 0-10 cm. Soil samples were passed through a 3 mm sieve to remove |

110 A sieved soil sample (5.0 g) was introduced into a 50 mL polypropylene centrifuge tube and 111 spiked at 1, 4 and 20  $\mu$ g kg<sup>-1</sup> by the addition of 100  $\mu$ L appropriate mixed working solutions. After

| 112 | being stand at least 20 min, 15 mL of extraction buffer (ACN : $Na_2EDTA$ -McIlvaine buffer (pH              |
|-----|--------------------------------------------------------------------------------------------------------------|
| 113 | 4.0, 5:5, $v/v$ ) were added into the tube. The tube was vortex mixed to achieve homogeneity, and            |
| 114 | then the tube was ultrasonicated for 10 min, shaken for 20 min, finally centrifuged at 9000 rpm for          |
| 115 | 10 min. The supernatant was transferred to clean glassware and evaporated to below 7 mL in 45                |
| 116 | <sup>0</sup> C water bath. The soil residue was extracted with 10 mL of 0.2 M NaOH again. The top aqueous    |
| 117 | layer was decanted to a new tube, adjusted pH to 4.0 with 1 M HCl, and centrifuged at 6000 rpm               |
| 118 | for 5 min. All the supernatant were combined prior to the cleanup step by solid phase extraction.            |
| 119 | 2.3. Solid phase extraction                                                                                  |
| 120 | Cleanup and enrichment were performed on the Oasis HLB cartridge, which was conditioned                      |
| 121 | using 3 mL methanol followed by 3 mL ultrapure water and 3 mL Na <sub>2</sub> EDTA-McIlvaine buffer.         |
| 122 | The supernatant was loaded into the cartridge at approximate 1 mL min <sup>-1</sup> . The cartridge was then |
| 123 | washed with 6 mL of 5% methanol in water and dried by applying a low positive pressure for 2                 |
| 124 | min, eventually the analytes were eluted with 6 mL methanol. The eluate was evaporated to near               |
| 125 | dryness under gentle nitrogen flux at 45 $^{0}$ C, and then re-dissolved in 1.00 mL of 20% methanol in       |
| 126 | 0.1% formic acid solution prior to analysis by LC - MS/MS.                                                   |
| 127 | 2.4. LC–MS/MS analysis                                                                                       |
| 128 | The chromatographic system was composed of an Agilent 1200 series high-performance liquid                    |
| 129 | chromatography (HPLC) system, including quaternary pump and autosampler (Milford, MA,                        |

USA). The mass system included Applied Biosystems API 4000 triple quadrupole mass
spectrometer with electrospray ionization (ESI) interface and Analyst 1.5 software (Foster City,
CA, USA).

133 Chromatographic separation was performed using an Agilent Zorbax SB-Aq C<sub>18</sub> column (150

# **RSC Advances Accepted Manuscript**

### **RSC Advances**

| 134 | mm $\times$ 2.1 mm i.d., 3.5 µm). The mobile phase consisted of acetonitrile (A) and 0.1% formic acid          |
|-----|----------------------------------------------------------------------------------------------------------------|
| 135 | in water (B). The mobile phase used in the gradient elution consisted of solvent A and solvent B.              |
| 136 | As described in our previous study, <sup>26</sup> the linear gradient developed for the analysis was performed |
| 137 | as follows: 0 - 0.2 min 10% A; 0.2 - 1.0 min 10% - 20% A; 1.0 - 11 min 20% - 40% A; 11 - 15 min                |
| 138 | 40% - 90% A; 15 - 16 min 90% A; 16 - 18 min 90% - 10% A; 18 - 26 min 10% A. The total                          |
| 139 | runtime was 26 min. The column was maintained at 35 $^{0}$ C. The flow rate was 0.2 mL min <sup>-1</sup> and   |
| 140 | the injection volume was 5 µL.                                                                                 |
| 141 | The tandem MS analyses were carried out on API 4000 triple quadrupole mass spectrometer                        |
| 142 | with electrospray ionization source. The turbo ion-spray source was used in positive mode with                 |
| 143 | the following settings: Ion spray voltage (IS), 5000 V; Ion source temperature, 600 °C; Dwell time,            |
| 144 | 50 ms. The optimal collision energy (CE), declustering potential (DP) and transitions chosen for               |
| 145 | the multiple reaction monitoring (MRM) are listed in Table 1. Acquisition and analysis of data                 |
| 146 | were performed through Analyst 1.5 software (Applied Biosystems) in Windows XP                                 |
| 147 | platform-based data-processing system.                                                                         |
| 148 | 2.5. Method validation                                                                                         |
| 149 | The performance characteristics of the developed method including selectivity, limit of detection              |

150 (LOD), limit of quantification (LOQ), recovery and precision were evaluated.

151 The selectivity of the method was checked by analyzing 50 blank soil samples from different

- sources to evaluate possible matrix interferences. The results were evaluated by the presence of
- 153 interfering substances around the analyte's retention time.

Linearity was evaluated by using of matrix-matched calibration curves. Seven-point ranging
from the LOQ of each analyte to 200 μg kg<sup>-1</sup> was prepared by spiking corresponding amounts of

156 target compounds into five gram blank soil extracts.

The LOD and LOQ for the analyte in soil were determined by signal to noise ratio (*S/N*) of 3 and 10, respectively. The most common method was based on the chromatographic response regarding the most intense ion transition for quantification and the ion transition ratio used for confirmation.

161 Recoveries and precision for the entire method were evaluated by spiking blank soil samples at three concentration levels (low, 1 µg kg<sup>-1</sup>; medium, 4 µg kg<sup>-1</sup>; and high, 20 µg kg<sup>-1</sup>) for target 162 163 analytes in six replicates at each level for three consecutive days. The recoveries of twenty-four 164 analytes at the spiked samples were calculated by measuring the ratios of the predicted value 165 obtained from the matrix-matched calibration curves to the corresponding spiked values. Intra-day 166 precision was determined for the three concentration levels in six replicates for each concentration 167 on the same day. Inter-day precision was determined for the three concentration levels in six 168 replicates for each concentration on three different days. The intra-day and inter-day precisions 169 were estimated by calculating the relative standard deviation (RSD, %) for the different 170 concentrations.

Stability was expressed as a percentage of the initial value. Due to the significant difference of physicochemical properties of the 24 antimicrobials, the stability in pure solvent and sample solution should be checked prior to chromatographic investigations. This research mainly investigated the stability of the stock solution of the target analytes under -20 <sup>o</sup>C within 30 days and the short-term stability of the soil sample including room temperature (25 <sup>o</sup>C, in the autosampler) and 4 <sup>o</sup>C within 6, 12, 24 and 48 h. All stability studies were conducted in triplicate. The measured values were compared with those freshly prepared pure solvent and matrix standard 178 solutions at different concentrations.

### 179 **2.6. Matrix effects (ME)**

Matrix effects are common in LC-MS/MS analysis due to the molecules co-elute with the compounds of interest and alter their ionization efficiency in the ionization interface, causing ion suppression or enhancement.<sup>14</sup> The intensity of matrix effect was evaluated by the method of post-extraction addition.<sup>17</sup> The percentage of ME is calculated as  $ME (\%) = B/A \times 100$ Where A and B represent the peak area of an analyte in pure solution and the analyte spiked after

- 186 extraction with 20  $\mu$ g kg<sup>-1</sup> of each compound, respectively. A ME value of 100% indicates that no
- 187 matrix effect is present. If the value is less 100%, there is signal suppression, whereas if the value188 is above 100%, there is signal enhancement.

### 189 **3. Results and discussion**

### 190 **3.1 Sample extraction**

191 In order to develop an effective sample extraction step, several extraction solvents including its192 volume and ratio of the buffer in solvent system were evaluated.

Many minerals and organic matter in the soil matrix may form kinds of interactions (such as complexation, hydrogen bonding, hydrophobic interaction and ion-exchange) with the analytes, so that the extraction of the compounds of interest from soil becomes difficult and complex. Therefore, an appropriate sample pretreatment method is very important for an accurate determination of target analytes in soil samples. On basis of the physicochemical properties of the target compounds and the extraction approaches of similar sample matrix in literatures,<sup>5,13,14,18,19</sup> several preliminary experiments were performed to extract the antimicrobials residues from soil

219

### **RSC Advances**

200 samples. Thus the following five extraction solvent systems were tested:

201 - 
$$M_1$$
=ACN/MeOH (1:1, v/v).

- 202  $M_2$ =ACN/acetate buffer (1:1, v/v, pH 4.0).
- $M_3$ =ACN/acetate buffer (1:1, v/v, pH 4.0) and 0.5 g Na<sub>2</sub>EDTA.
- $-M_4$ =ACN/citrate buffer (1:1, v/v, pH 4.0) and 0.5 g Na<sub>2</sub>EDTA.
- 205 M<sub>5</sub>=ACN: Na<sub>2</sub>EDTA-McIlvaine buffer (5:5, v/v, pH 4.0).

Blank soil samples were spiked with 100  $\mu$ L of 0.2 mg L<sup>-1</sup> (each) mixed working standard 206 207 solution to evaluate the mean recoveries based on the mentioned extractive method above. The 208 recoveries are summarized in Fig. 1. The results demonstrate that good yields (more than 80%) 209 were obtained only for SAs, clindamycin, roxithromycin and tiamulin when using the M<sub>1</sub> system, 210 however, the recoveries of the other compounds were very low (most analytes less than 20%). 211 Salvia et al.<sup>5</sup> suggested that the acetate-based method could result in better recoveries, particularly 212 for veterinary antimicrobials such as sulfonamides and macrolides. Therefore, the M<sub>2</sub> and M<sub>3</sub> 213 systems were also chosen as the extraction solvent. The results show that the high recoveries (70% 214 above) were obtained for major target analytes such as SAs, MLs and LAs. However, the 215 measured recovery ratios of 4 TCs and 6 FQs were all below 60%, and the recoveries of the ten 216 analytes obtained by the  $M_2$  were slightly lower than those by the  $M_3$  (the addition of Na<sub>2</sub>EDTA). 217 TCs and FQs have a strong adsorption capacity to the soil since the polarity/ionic functional 218 groups existed in their chemical structures. So for improving the extraction efficiency of TCs and

abate the chelate effect, was added to avoid the complexation of these analytes with divalent cations such as  $Mg^{2+}$  or  $Ca^{2+}$  in soil <sup>20</sup> and facilitate the extraction of bound compounds. As shown

FQs from soil samples, a complexation agent (Na<sub>2</sub>EDTA buffer and (or) citrate buffer), which can

| 222 | in Fig. 1, the recovery ratios of five of the six FQs (except difloxacin) and one (tetracycline) of the         |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 223 | four TCs were below 40% when the $M_4$ system was used as the extraction solvent. In contrast, the              |
| 224 | $M_5$ system achieved relatively high recoveries for all the analytes except FQs (12%-36%). Thus,               |
| 225 | the $M_5$ could be used to extract most target analytes from soil samples. Further, the volume ratio of         |
| 226 | ACN in the Na <sub>2</sub> EDTA-McIlvaine buffer (for example, 9:1, 7:3, 5:5 and 3:5, $v/v$ ) was investigated. |
| 227 | The experiments show that the recoveries of most analytes (except for FQs) increased with the                   |
| 228 | decrease of acetonitrile in the extraction solvent. The higher recoveries (more than 60%) were                  |
| 229 | obtained with the 5:5 ratio of ACN to $Na_2EDTA$ -McIlvaine buffer than both the 9:1 and 7:3.                   |
| 230 | However, too low ACN (3:5, v/v) in $M_5$ system resulted in low recoveries for MLs and PMs.                     |
| 231 | Several volumes of the $M_5$ system (10, 15 and 20 mL) were subsequently tested. The results                    |
| 232 | indicate that the volume of 15 mL gave higher recoveries than the volume of 10 mL, especially for               |
| 233 | TCs. On the other hand, compared to 15 mL, the 20 mL did not significantly increase the                         |
| 234 | recoveries for most of the analytes. Therefore, in order to get the higher recoveries, while                    |
| 235 | minimizing the consumption of solvent and time, the volume of 15 mL $M_{\rm 5}$ was chosen for the              |
| 236 | following experiments.                                                                                          |

For enhancing the recoveries of FQs, further optimization of extraction protocols was needed. According to the properties of these compounds and the corresponding literatures on the analysis of FQs residues, several extraction solvents including acidic, basic and different buffer solutions were evaluated. Blank soil samples were spiked with 100  $\mu$ L of 0.2 mg L<sup>-1</sup> (each) mixed working standard solution to evaluate the extraction recoveries of different solvents. The results are summarized in Table 2. The pH value of the extraction solvent had a great influence on the extraction efficiency of FQs. 0.1 M HCl, 0.05 M orthophosporic acid and 5% formic acid in

| 244 | acetonitrile did not extract any FQs. The phosphate buffer (pH $3.2$ ) - acetonitrile (1:1, v/v) system    |
|-----|------------------------------------------------------------------------------------------------------------|
| 245 | and phosphate buffer (pH 7.4) also gave very poor recoveries (all below 40% for the six FQs).              |
| 246 | Delepine et al. <sup>21</sup> used 0.05 M phosphate buffer solution (pH 7.4) to extract FQs from muscle.   |
| 247 | Good recoveries for FQs were obtained. But in our experiments, perhaps because there are a great           |
| 248 | number of divalent metallic elements and organic matters in soil matrix, very low recoveries were          |
| 249 | obtained when the phosphate buffer solution was used to extract FQs from soil. Turiel et al. <sup>22</sup> |
| 250 | reported that the high recoveries for FQs could be obtained when the 50% (w/v) $Mg(NO_3)_2$                |
| 251 | solution containing 4% of ammonia was used to desorb and extract FQs from soil on basis of the             |
| 252 | formation of fluoroquinolones- $Mg^{2+}$ complexes. In this study, good recoveries were also obtained      |
| 253 | using this extraction solution. Nevertheless, because $Mg^{2+}$ in the extracts formed precipitation       |
| 254 | with the Na <sub>2</sub> EDTA-McIlvaine buffer solution, resulting in blockage of the SPE cartridge in the |
| 255 | cleanup step. Fortunately, good recoveries for FQs were achieved when using strong basic solution          |
| 256 | as an extraction solvent. One reason was due to FQs (as anionic form) being dissolved in sodium            |
| 257 | hydroxide solution. Another reason was that in alkaline condition the carboxyl of FQs was                  |
| 258 | negatively charged, which has an electrostatic repulsion to the negative charge on the surface of          |
| 259 | the soil.                                                                                                  |
| 260 | Thus the concentration and volume of NaOH were further optimized Firstly the influence of                  |

the concentration of NaOH on the extraction efficiency was investigated in the concentration range of 0.01 - 0.5 M. The results reveal that the extraction efficiency of FQs increases with the increase of NaOH concentration. However, if the concentration of NaOH was too high, the recoveries of the other analytes decreased, especially up to 0.5 M, the recoveries of TCs, SQ and SCZ were significantly lowered. Secondly, the different volumes of NaOH solution were tested.

The results show that the recoveries for FQs increased with the increase of the volume of NaOH

| 267 | solution. On the contrary, the recoveries for the other target analytes such as SAs and MLs                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 268 | decreased. The results are shown in Fig. 2. For a compromise, the 10 mL of 0.2 M NaOH was                                   |
| 269 | used for the following experiments.                                                                                         |
| 270 | Finally, the ACN : Na <sub>2</sub> EDTA-McIlvaine buffer (5:5, v/v, pH 4.0) system ( $M_5$ ) in combination                 |
| 271 | with 0.2 M NaOH was selected to extract target analytes in soil samples.                                                    |
| 272 | 3.2 Cleanup                                                                                                                 |
| 273 | In complex environmental samples, for example sediments and soils, some matrix components can                               |
| 274 | mask analytes in the chromatographic separation and in the final detection system. <sup>6</sup> Therefore it is             |
| 275 | very necessary to choose the ideal SPE sorbents giving an acceptable recovery for all target                                |
| 276 | compounds with different physicochemical properties. At present, the most commonly used SPE                                 |
| 277 | cartridges, which allow large sample volumes to be concentrated and purified in one step, are                               |
| 278 | $HLB^{14}$ , $C_{18}^{23}$ and $MCX^{24}$ cartridges. In this study, three types of SPE (Bond Elut- $C_{18}$ SPE $C_{18}$ , |
| 279 | Oasis MCX and Oasis HLB) were evaluated. Each type of cartridge was processed at its optimal                                |
| 280 | conditions. As shown in Fig. 3, recoveries less than 50 % for most of the target analytes were                              |
| 281 | obtained with both $C_{18}$ and MCX cartridges, especially for SAs (below 10%). However, the HLB                            |
| 282 | cartridge achieved the best recoveries (75-104%) for all analytes except for valuemulin (67%). So                           |
| 283 | the HLB cartridge was chosen as the optimized SPE cartridge.                                                                |

284 **3.3. Optimization of LC-MS/MS conditions** 

266

The electronic spray ionization-tandem mass spectrometer offers a high sensitivity and improved selectivity through multiple reactions monitoring acquisition to detect antimicrobials in real samples. The optimization of MS parameters for each compound was performed by direct infusion

| 288 | of pure reference standards (1 mg $L^{-1}$ ) into the MS/MS compartment at 10 $\mu$ L min <sup>-1</sup> by a syringe |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 289 | pump (Harvard Apparatus, Holliston, MA). In the positive ion mode, the protonated molecules                          |
| 290 | $\left[M+H\right]^{+}$ were observed for all compounds on their full-scan mass spectra. These ions were              |
| 291 | selected as precursor ions to further produce product ions, and the corresponding parameters                         |
| 292 | including declustering potential and collision energy in MRM mode were optimized. The results                        |
| 293 | are listed in Table 1. For each analyte, two ion transitions were monitored; the first transition                    |
| 294 | corresponding to the highest abundance was used for quantification and the second one for                            |
| 295 | confirmation. Ion logarithms were selected in accordance with the 2002/657/EC requirements                           |
| 296 | $(\mathrm{IPs}{\geq}4)^{25}.$                                                                                        |
| 297 | The chromatographic separation of the target compounds was performed using HPLC. The                                 |
| 298 | Zorbax SB-Aq column, which was proved to be superior to other chromatographic columns in our                         |
| 299 | laboratory, <sup>26</sup> was used for LC separation of the twenty-four analytes. In brief, acetonitrile was         |
| 300 | selected as eluent A and 0.1% formic acid in Milli Q water was selected as eluent B. The linear                      |
| 301 | gradient program was referred to the gradient program previously reported in section 2.4.                            |
| 302 | 3.4. Validation of the analytical method                                                                             |

### 303 3.4.1. Specificity

304 Specificity is the ability to assess unequivocally the analyte in the presence of endogenous 305 compounds. It was checked by analyzing 50 different blank soil samples to verify the absence of 306 interfering substances. The results show that this method could effectively extract and recover all 307 the target analytes spiked in the soil samples and no interfering peaks within the 2.5% margin of 308 the relative retention time of the 24 analytes. Typical MRM chromatograms in the positive ESI 309 mode obtained from the blank soil extracts are illustrated in Fig. 4a.

### 310 **3.4.2.** Linearity

Since sample matrices tend to affect (either reduce or enhance) the ion intensities of target analytes, matrix-matched calibration curves are used to determine the analytes concentrations. The linearity of the method was determined by seven values (not excluding blank values) from the expected range of concentrations with six replicates of each. As shown in Table 3, the soil matrix for the prepared matrix-matched calibration curves was from piggeries. The calibration curves were linear for all compounds over a wide range of concentrations from the LOQ to 200  $\mu$ g kg<sup>-1</sup> with a correlation coefficient (*r*) higher than 0.99.

318 **3.4.3. Recovery and precision** 

319 Recovery and precision (repeatability and within-laboratory reproducibility) were determined by 320 processing independently the eighteen spiked samples at three levels  $(1, 4 \text{ and } 20 \text{ }\mu\text{g }\text{kg}^{-1})$  in three 321 different days. As shown in Table 3, the average recoveries for most antimicrobials increases with 322 the increase of the spiking levels and the overall average recoveries for target analytes are more 323 than 60% except for tetracycline (59.3%) in three spiked levels. The higher recoveries were 324 obtained for macrolides and lincosamides, and low recoveries were obtained for polar 325 tetracyclines, fluoroquinolones and sulfonamides. There is a certain difference within different spiked levels for several target analytes. In low level (1 µg kg<sup>-1</sup>), the average recoveries for 326 327 tetracycline and sulfaclozine are less than 55% (53.2% and 54.4%, repectively); in medium and 328 high levels, the average recoveries for most target analytes exceeded 60% except that the 329 recoveries of three compounds including chlortetracycline, tetracycline and sulfaquinoxaline are 330 almost near 60% (58.2%, 58.6% and 59.4%, respectively). Although all the relative standard 331 deviations are below 20%, the inter-day RSDs are larger than the intra-day RSDs, suggesting there

| 332 | is a certain difference within intra-day recoveries. The results are satisfactory for the detection of                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 333 | multi-class antimicrobials residues in soil samples. Typical MRM chromatograms in the positive                                 |
| 334 | ESI mode obtained from the blank soil extracts spiked at a concentration level of 4 $\mu g$ kg $^{-1}$ are                     |
| 335 | illustrated in Fig. 4b.                                                                                                        |
| 336 | 3.4.4. LOD and LOQ                                                                                                             |
| 337 | The LOD was calculated as a $S/N$ of 3:1 and the LOQ was defined as a $S/N$ of 10:1. The results                               |
| 338 | showed that clindamycin was higher sensitivity (0.01 $\mu g \ kg^{\text{-1}} \ \text{LOD})$ in the optimized LC-MS/MS          |
| 339 | conditions. The LODs of all target compounds ranged from 0.01 $\mu g \ kg^{\text{-1}}$ to 2.0 $\mu g \ kg^{\text{-1}}$ and the |
| 340 | LOQs ranged from 0.04 to 5.0 $\mu$ g kg <sup>-1</sup> (Table 3). The developed method is sensitive enough for the              |
| 341 | determination of trace antimicrobials in soil samples.                                                                         |
| 342 | 3.4.5. Stability                                                                                                               |
| 343 | The results of stability test show that 24 analytes were stable at -20 $^{0}$ C in the stock solution within                   |
| 344 | 30 days, no degradation was observed in pure methanol solvent. Most analytes in the fortified soil                             |
| 345 | extracts remained stable for 48 h at 4 <sup>o</sup> C except that tetracycline and roxithromycin were stable                   |
| 346 | within 36 h. In addition, stability test in the autosampler showed that no significant loss of the                             |
| 347 | compound was observed in matrix extracts solution at 25 $^{0}$ C for 24 h. However, the significant                            |
| 348 | decrease was observed for TCs, especially for tetracycline (near 40%) and 2 MLs (kitasamycin,                                  |
| 349 | 30% and roxithromycin, 35%) in 48 h. Therefore, the prepared sample solution must be analyzed                                  |
| 350 | within 2 days for ensuring accuracy and precision.                                                                             |

### 351 3.5. Matrix effects

352 Matrix effects were evaluated at the concentrations of 20  $\mu$ g kg<sup>-1</sup>. The matrix effects for each 353 compound in soil from piggeries are summarized Table 3. Most antimicrobials experienced weak

matrix suppression. There was matrix suppression at moderate intensity level (62.6% - 76.1%) for FQs and TCs except oxytetracycline (86.9%) and obvious matrix suppression for sulfaquinoxaline (56.8%). Although spiking appropriate internal standards and isotope dilution technique would eliminate for the matrix effects, large varieties of target compounds and the cost of isotope internal standard make this unfeasible. Therefore, this research adopted the matrix matching standard curve method to further compensate for matrix effects.

### 360 **3.6. Method application**

361 A liquid chromatography-tandem mass spectrometric method based on the ESI multiple reaction 362 monitoring mode for multiresidue analysis of 24 antimicrobials in soil was developed. Firstly, 363 samples were extracted with acetonitrile-McIlvaine buffer system and 0.2 M sodium hydroxide 364 solution, and then purified by solid phase extraction cartridge. Chromatographic separation was 365 carried out on the Zorbax SB-Aq column using acetonitrile-0.1% formic acid as mobile phase with 366 gradient program. For evaluating the applicability and performance of the proposed method, 100 367 soils samples collected from different sources (35 piggeries, 25 vegetable fields, 20 orchards and 368 20 living quarters) were examined. None of the target compounds was detected in the samples 369 collected from the living quarters. However, other soil samples were found to be contaminated 370 with at least four antimicrobials. The TCs were dominated antimicrobials detected in soil samples, especially the soils from piggeries with maximum level of 163.6 µg kg<sup>-1</sup> chlortetracycline, 371 followed by FQs (0.7 - 40.7 µg kg<sup>-1</sup>). Four analytes (kitasamycin, tiamulin, doxycycline and 372 tilmicosin) were detected in the orchard soils at concentrations ranging from 1.5  $\mu$ g kg<sup>-1</sup> to 5.9  $\mu$ g 373 374 kg<sup>-1</sup>. Eight analytes (tiamulin, chlortetracycline, oxytetracycline, tetracycline, doxycycline, 375 tilmicosin, enrofloxacin and sulfamonomethoxine) were found at concentrations ranging from 0.5

376 μg kg<sup>-1</sup> to 18.3 μg kg<sup>-1</sup> and ciprofloxacin and norfloxacin at levels of the quantification limits in 377 the vegetable fields. The findings obtained in this study indicate that animal manure can cause 378 veterinary pharmaceuticals contamination of agricultural soil. Some antimicrobials detected at 379 relatively high concentrations in soil may be inferred that the animals were long-term 380 adiminstration and the pharmaceuticals were excreted through animal body as parent compounds.

381 4. Conclusions

382 In this study a robust, sensitive and selective method has been developed and validated for the 383 determination of 24 pharmaceuticals in soil matrices. The method has enabled accurate multiresidue determination of the target analytes in soil at µg kg<sup>-1</sup> levels. The acceptable absolute 384 385 recoveries were above 60% for most of the target compounds. This methodology was successfully 386 applied to four different sources of soils including piggeries, vegetable fields, orchards and living 387 quarters. Several commonly used antimicrobials such as chlortetracycline, enrofloxain and 388 tilmicosin were detected at different concentration levels. Even though some antimicrobials are 389 detected at relatively low concentrations, there are high risks of their potential harms to human 390 health.

391 Acknowledgments

392 The authors thank the financial support by the Program for Changjiang Scholars and Innovative

- 393 Research Team in University (No. IRT13063) and the Joint Project of National Natural Science
- 394 Foundation of China and Natural Science Foundation of Guangdong Province, China (U0631006)
- 395 for this work.

396

397 References

- V. Andreu, P. Vazquez-Roig, C. Blasco and Y. Picó, *Anal. Bioanal. Chem.*, 2009, **394**,
   1329-1339.
- 400 2. W.L. Shelver, H. Hakk, G.L. Larsen, T.M. DeSutter and F.X.M Casey, J. Chromatogr. A., 2010,
- **1217**, 1273-1282.
- 402 3. M.P. Schlüsener, M. Spiteller and K. Bester, J. Chromatogr. A., 2003, 1003, 21-28.
- 403 4. A. K. Sarmah, A, T. M. Michael, B, B. A. B. Alistair and C, Chemosphere, 2006, 65, 725-759.
- 404 5. M. Salvia, E. Vulliet, L. Wiest, R. Baudot and C. Cren-Olivé, J. Chromatogr. A., 2012, 1245,
- 405 122-133.
- 406 6. E. Pérez-Carrera, M. Hansen, V.M. León, E. Björklund, K.A. Krogh, B. Halling-Sørensen and
- 407 E.González-Mazo, Anal. Bioanal. Chem., 2010, 398, 1173-1184.
- 408 7. W. Witte, Int. J. Antimicrob. Ag, 2000, 14, 321-325.
- 409 8. J.L. Zhou, K. Maskaoui and A. Lufadeju, Anal. Chim. Acta, 2012, 731, 32-39.
- 410 9. M. McDonald, C. Mannion and P. Rafter, J. Chromatogr. A., 2009, 1216, 8110-8116.
- 411 10. R.P Lopes, D.V. Augusti, F.A. Santos, E.A. Vargas and R. Augusti, Anal. Methods, 2013, 5,
- 412 5121-5127.
- 413 11. L. Zhou, G. Ying, S. Liu, J. Zhao, F. Chen, R. Zhang, F. Peng and Q. Zhang, J. Chromatogr. A.,
- 414 2012, **1244**, 123-138.
- 415 12. S. O'Connor and D.S. Aga, TrAC Trends Anal. Chem., 2007, 26, 456-465.
- 416 13. A.M. Jacobsen, B. Halling-Sørensen, F. Ingerslev and S. Honoré Hansen, J. Chromatogr. A., 2004,
- **1038**, 157-170.
- 418 14. Y.B. Ho, M.P. Zakaria, P.A. Latif and N. Saari, J. Chromatogr. A., 2012, 1262, 160-168.
- 419 15. S. Morales-Muñoz, J. L. Luque-García and M. D. Luque De Castro, J. Chromatogr. A., 2004, 1059,

- 420 25-31.
- 421 16. Y. Yamini, M. Asghari-Khiavi and N. Bahramifar, Talanta, 2002, 58, 1003-1010.
- 422 17. B.K. Matuszewski, M.L. Constanzer and C.M. Chavez-Eng, Anal. Chem., 2003, 75, 3019-3030.
- 423 18. N. Furusawa, J. AOAC. Int., 1999, 82, 770-772.
- 424 19. P. Kay, P. A. Blackwell and A. B. A. Boxall, Chemosphere, 2005, 60, 497-507.
- 425 20. M.M. Aguilera-Luiz, J.L.M. Vidal, R. Romero-González and A.G. Frenich, J. Chromatogr. A.,
- 426 2008, **1205**, 10-16.
- 427 21. B. Delepine, D. Hurtaud-Pessel and P. Sanders, Analyst, 1998, 123, 2743-2747.
- 428 22. E. Turiel, A. Martín-Esteban and J.L. Tadeo, Anal. Chim. Acta, 2006, 562, 30-35.
- 429 23. D.N. Heller, M.A. Ngoh, D. Donoghue, L. Podhorniak, H. Righter and M.H. Thomas, J.
- 430 *Chromatogr. B.*, 2002, **774**, 39-52.
- 431 24. B. Kasprzyk-Hordern, R.M. Dinsdale and A.J. Guwy, J. Chromatogr. A., 2007, 1161, 132-145.
- 432 25. Commission of the European Communities, Off J. Eur. Union., 2002, L221, 8-36.
- 433 26. F. Hu, K. Bian, Y. Liu, Y. Su, T. Zhou, X. Song and L. He, J. Chromatogr. A., 2014, 1368, 52-63.
- 434

**RSC Advances Accepted Manuscript** 

# 435 **Figure captions**

436

437

| 438 | Fig. 1. Influence of the extraction solvents on the recoveries of the target compounds                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
| 439 | DIF, difluoxacin; SAR, sarafloxacin; ENR, enrofloxacin; CIP, ciprofloxacin; ENO, enoxacin; NOR, norfloxacin;                              |
| 440 | CTC, chlortetracycline; OTC, oxytetracycline; DC, doxycycline; TC, tetracycline; SQ, sulfaquinoxaline; SCZ,                               |
| 441 | sulfaclozine; SMD, sulfamethoxydiazine; SMM sulfamonomethoxine; SM2, sulfadimidine; SMZ,                                                  |
| 442 | sulfamethoxazole; TYL, tylosin; ROX, roxithromycin; KIT, kitasamycin; ERY, erythromycin; TIL, tilmicosin;                                 |
| 443 | CLI, clindamycin; VAL; valnemulin; TIA, tiamulin. M1, ACN/MeOH (1:1, v/v); M2, ACN/acetate buffer (1:1, v/v,                              |
| 444 | pH 4.0); $M_3$ , 0.5 g Na <sub>2</sub> EDTA and ACN/acetate buffer (1:1, v/v, pH 4.0); $M_4$ , 0.5 g Na <sub>2</sub> EDTA and ACN/citrate |
| 445 | buffer (1:1, v/v, pH 4.0); M <sub>5</sub> , ACN : Na <sub>2</sub> EDTA-McIlvaine buffer (5:5, v/v, pH 4.0). Error bars represent standard |
| 446 | deviation of the individual compound spiked at 4 $\mu$ g kg <sup>-1</sup> ( $n = 3$ ).                                                    |
| 447 |                                                                                                                                           |
| 448 |                                                                                                                                           |
| 449 | Fig. 2. Influence of the concentration (a) and amount (b) of NaOH on the recoveries of 24                                                 |
| 450 | antimicrobials at the spiked 4 $\mu$ g kg <sup>-1</sup> each                                                                              |
| 451 |                                                                                                                                           |
| 452 | The abbreviations are the same as <b>Fig. 1</b> .                                                                                         |
| 453 |                                                                                                                                           |
| 454 |                                                                                                                                           |
| 455 | Fig. 3. Influence of the different types of SPE columns on extraction efficiency for 24                                                   |

456 antimicrobials at the spiked 4  $\mu g \ kg^{\text{-1}}$  each

| 457 | The abbreviations are the same as <b>Fig. 1</b> .                                          |
|-----|--------------------------------------------------------------------------------------------|
| 458 |                                                                                            |
| 459 |                                                                                            |
| 460 | Fig. 4. Typical MRM chromatograms obtained from the blank soil extracts (a) and blank soil |
| 461 | extracts spiked at 4 $\mu$ g kg <sup>-1</sup> each (b)                                     |
| 462 | The abbreviations are the same as <b>Fig. 1</b> .                                          |
| 463 |                                                                                            |

# TABLES

| Compounds        | Abbr. | Precursor | Product | DP  | CE   | R <sub>t</sub> | Compounds           | Abbr. | Precursor | Product | DP  | CE   | R <sub>t</sub> |
|------------------|-------|-----------|---------|-----|------|----------------|---------------------|-------|-----------|---------|-----|------|----------------|
|                  |       | ion       | ion     | (V) | (eV) | (min)          |                     |       | ion       | ion     | (V) | (eV) | (min)          |
|                  |       | $[M+H]^+$ |         |     |      |                |                     |       |           |         |     |      |                |
| Fluoroquinolones | FQs   |           |         |     |      |                | Sulfamethoxydiazine | SMD   | 281.2     | 156     | 60  | 25   | 11.7           |
| Difluoxacin      | DIF   | 400.4     | 382.3   | 60  | 28   | 12.1           |                     |       |           | 215.1*  |     | 25   |                |
|                  |       |           | 356.2*  |     | 28   |                | Sulfamonomethoxine  | SMM   | 281.2     | 156     | 60  | 25   | 12.7           |
| Sarafloxacin     | SAR   | 386.4     | 368.2   | 60  | 28   | 11.8           |                     |       |           | 215.1*  |     | 26   |                |
|                  |       |           | 342.3*  |     | 28   |                | Sulfadimidine       | SM2   | 279.2     | 186     | 60  | 25   | 10.6           |

Table 1. LC-MS/MS conditions for the analytes by SRM in positive ion mode

| Enrofloxacin      | ENR | 360.6 | 316.4              | 60 | 30 | 10.7 |                  |     |       | 156*   |     | 28 |      |
|-------------------|-----|-------|--------------------|----|----|------|------------------|-----|-------|--------|-----|----|------|
|                   |     |       | 245.1*             |    | 37 |      | Sulfamethoxazole | SMZ | 254.2 | 156    | 53  | 23 | 13.7 |
| Ciprofloxacin     | CIP | 332.4 | 314.2              | 60 | 25 | 9.9  |                  |     |       | 91.7*  |     | 40 |      |
|                   |     |       | 288.3 <sup>*</sup> |    | 25 |      | Macrolides       | MLs |       |        |     |    |      |
| Enoxacin          | ENO | 321.1 | 303.2              | 63 | 28 | 9.4  | Tylosin          | TYL | 916.6 | 174.3  | 101 | 52 | 16.1 |
|                   |     |       | 234.2*             |    | 28 |      |                  |     |       | 772.6* |     | 41 |      |
| Norfloxacin       | NOR | 320.4 | 302.3              | 50 | 26 | 9.6  | Roxithromycin    | ROX | 837.8 | 679.5  | 60  | 33 | 17.6 |
|                   |     |       | 276.6*             |    | 16 |      |                  |     |       | 158.2* |     | 55 |      |
| Tetracyclines     | TCs |       |                    |    |    |      | Kitasamycin      | KIT | 772.4 | 109.1  | 90  | 78 | 17.7 |
| Chlortetracycline | CTC | 479.3 | 444.2              | 71 | 29 | 11.5 |                  |     |       | 174.2* |     | 50 |      |
|                   |     |       | 462.1 <sup>*</sup> |    | 24 |      | Erythromycin     | ERY | 734.7 | 158    | 64  | 43 | 14.8 |
| Oxytetracycline   | OTC | 460.7 | 426.1              | 65 | 26 | 8.7  |                  |     |       | 576.5* |     | 27 |      |
|                   |     |       | 443.3*             |    | 17 |      | Tilmicosin       | TIL | 869.6 | 696.4  | 130 | 66 | 12.8 |

| Page | 26 | of | 38 |
|------|----|----|----|
|------|----|----|----|

| Doxycycline      | DC  | 445.2 | 410.2              | 65 | 27 | 9.5  |                |     |       | 174.2* |    | 60 |      |
|------------------|-----|-------|--------------------|----|----|------|----------------|-----|-------|--------|----|----|------|
|                  |     |       | 427.2 <sup>*</sup> |    | 19 |      | Lincosamides   | LAs |       |        |    |    |      |
| Tetracycline     | TC  | 445.2 | 428.2              | 70 | 25 | 12.2 | Clindamycin    | CLI | 425.2 | 126.2  | 72 | 37 | 11.9 |
|                  |     |       | 153.9*             |    | 44 |      |                |     |       | 377.3* |    | 27 |      |
| Sulfonamides     | SAs |       |                    |    |    |      | Pleuromutilins | PMs |       |        |    |    |      |
| Sulfaquinoxaline | SQ  | 301.3 | 156                | 62 | 24 | 16.5 | Valnemulin     | VAL | 565.5 | 263.1  | 80 | 25 | 18.1 |
|                  |     |       | 91.7*              |    | 44 |      |                |     |       | 164.2* |    | 44 |      |
| Sulfaclozine     | SCZ | 285.2 | 155.9              | 60 | 23 | 16.1 | Tiamulin       | TIA | 494.5 | 192.2  | 48 | 29 | 17.3 |
|                  |     |       | 107.7*             |    | 38 |      |                |     |       | 119.2* |    | 55 |      |

Abbr., abbreviations; DP, declustering potential; CE, collision energy; Rt, retention time.

\* for identification.

| Solvent                                                                                | Difloxacin | Sarafloxacin | Enrofloxacin   | Ciprofloxacin | Enoxacin   | Norfloxacin    |
|----------------------------------------------------------------------------------------|------------|--------------|----------------|---------------|------------|----------------|
| 0.1 M HCl                                                                              | n.d.       | n.d.         | n.d.           | n.d.          | n.d.       | n.d.           |
| 0.05 M orthophosporic acid                                                             | 0.6        | 17.8         | 5.4            | 16.9          | 22.7       | 19.5           |
| 5% HCOOH in acetonitrile                                                               | n.d.       | 0.1          | n.d.           | n.d.          | n.d.       | n.d.           |
| 0.1 M phosphate buffer-acetonitrile (1:1, v/v, pH 3.2)                                 | 34.3       | 34.5         | 22.3           | 17.5          | 4.5        | 7.4            |
| 0.02 M phosphate buffer (pH 7.4)                                                       | 8.2        | 33.7         | 37.5           | 34.0          | 9.6        | 13.2           |
| 4% NH <sub>3</sub> ·H <sub>2</sub> O in 50% Mg(NO <sub>3</sub> ) <sub>2</sub> solution | 64.6 ± 4.9 | 83.0 ± 5.2   | $78.2 \pm 4.3$ | 117 ± 6.6     | 101 ± 3.5  | $56.5 \pm 6.7$ |
| 0.1 M NaOH                                                                             | 85.6 ± 3.3 | 89.6 ± 3.7   | 88.8 ± 1.4     | 87.9 ± 3.2    | 87.1 ± 6.0 | 89.6 ± 5.5     |

### Table 2. Recoveries for FQs obtained with different extractive solvents (%, n = 3)

n.d., not detected; spiking level, 4  $\mu g \; kg^{\text{-1}}$  each.

| Group | Analyte           | Linearity    | LOD                    | LOQ                    | Intra-day reco        | overy, (%, $n = 6$    | )                      | Intra-day RSD, (%, $n = 6$ ) |                       |                        |  |  |
|-------|-------------------|--------------|------------------------|------------------------|-----------------------|-----------------------|------------------------|------------------------------|-----------------------|------------------------|--|--|
|       |                   | ( <i>r</i> ) | (µg kg <sup>-1</sup> ) | (µg kg <sup>-1</sup> ) | 1 μg kg <sup>-1</sup> | 4 μg kg <sup>-1</sup> | 20 μg kg <sup>-1</sup> | 1 μg kg <sup>-1</sup>        | 4 μg kg <sup>-1</sup> | 20 µg kg <sup>-1</sup> |  |  |
| FQs   | Difluoxacin       | 0.9979       | 0.1                    | 1.5                    | 62.4                  | 61.8                  | 63.5                   | 12                           | 11                    | 8.0                    |  |  |
|       | Sarafloxacin      | 0.9955       | 0.1                    | 1.5                    | 61.6                  | 74.5                  | 88.0                   | 8.6                          | 9.2                   | 7.1                    |  |  |
|       | Enrofloxacin      | 0.9938       | 0.05                   | 0.4                    | 65.2                  | 70.6                  | 68.3                   | 6.0                          | 7.4                   | 5.5                    |  |  |
|       | Ciprofloxacin     | 0.9981       | 0.2                    | 0.5                    | 61.7                  | 77.5                  | 78.9                   | 9.5                          | 9.0                   | 7.2                    |  |  |
|       | Enoxacin          | 0.9965       | 0.1                    | 0.5                    | 59.2                  | 63.5                  | 63.4                   | 11                           | 10                    | 8.5                    |  |  |
|       | Norfloxacin       | 0.9968       | 0.1                    | 0.5                    | 57.9                  | 66.5                  | 70.5                   | 12                           | 11                    | 7.6                    |  |  |
| TCs   | Chlortetracycline | 0.9961       | 0.2                    | 1.0                    | 60.0                  | 60.8                  | 66.7                   | 13                           | 8.3                   | 6.7                    |  |  |
|       | Oxytetracycline   | 0.9974       | 0.2                    | 1.0                    | 70.4                  | 68.0                  | 71.4                   | 14                           | 12                    | 4.4                    |  |  |
|       | Doxycycline       | 0.9952       | 0.2                    | 1.0                    | 65.2                  | 66.5                  | 71.0                   | 14                           | 13                    | 5.3                    |  |  |

| Table 3 Linearity LOD LOO, recovery and precision    | of the developed method and ma   | trix effects from niggeries soil |
|------------------------------------------------------|----------------------------------|----------------------------------|
| Table 5. Linearity, LOD, LOQ, recovery and precision | i of the developed method and ma | this enects nom piggeries son    |

28

|     | Tetracycline        | 0.9978 | 0.5  | 1.5  | 53.8 | 60.1 | 67.4 | 9.5 | 3.4 | 8.0 |
|-----|---------------------|--------|------|------|------|------|------|-----|-----|-----|
| SAs | Sulfaquinoxaline    | 0.9948 | 0.3  | 1.0  | 60.5 | 63.7 | 75.0 | 12  | 9.0 | 6.6 |
|     | Sulfaclozine        | 0.9972 | 1.0  | 2.0  | 55.4 | 68.1 | 60.0 | 10  | 5.9 | 7.0 |
|     | Sulfamethoxydiazine | 0.9954 | 0.2  | 1.0  | 64.4 | 63.8 | 72.9 | 3.8 | 2.8 | 3.0 |
|     | Sulfamonomethoxine  | 0.9980 | 0.2  | 1.0  | 60.0 | 73.9 | 86.0 | 5.0 | 3.9 | 2.7 |
|     | Sulfadimidine       | 0.9959 | 0.5  | 1.0  | 60.8 | 61.9 | 63.4 | 5.4 | 6.7 | 6.0 |
|     | Sulfamethoxazole    | 0.9985 | 0.5  | 1.0  | 65.5 | 72.0 | 71.9 | 6.4 | 5.3 | 3.8 |
| MLs | Tylosin             | 0.9958 | 0.05 | 0.2  | 72.3 | 90.0 | 83.3 | 6.8 | 3.4 | 2.7 |
|     | Roxithromycin       | 0.9988 | 0.05 | 0.2  | 83.0 | 79.8 | 80.6 | 4.9 | 5.0 | 5.0 |
|     | Kitasamycin         | 0.9970 | 1.0  | 2.5  | 79.5 | 75.0 | 79.8 | 6.2 | 3.5 | 2.4 |
|     | Erythromycin        | 0.9974 | 2.0  | 5.0  | 95.8 | 96.3 | 107  | 10  | 5.5 | 4.7 |
|     | Tilmicosin          | 0.9984 | 0.04 | 0.1  | 85.7 | 84.8 | 70.4 | 9.5 | 6.7 | 5.3 |
| LAs | Clindamycin         | 0.9968 | 0.01 | 0.04 | 80.6 | 84.0 | 93.3 | 8.0 | 4.4 | 3.0 |

| PMs | Valnemulin | 0.9974 | 0.05 | 0.3 | 60.3 | 61.2 | 61.5 | 8.1 | 7.8 | 6.5 |
|-----|------------|--------|------|-----|------|------|------|-----|-----|-----|
|     | Tiamulin   | 0.9956 | 0.05 | 0.2 | 70.8 | 78.5 | 75.0 | 6.7 | 6.0 | 3.3 |

### Continue table 3

| Group | Analyte           | Inter-day reco        | overy, (%, $n = 18$   | 3)                     | Inter-day RS          | D, (%, <i>n</i> = 18) | ME ( $\pm$ SD) (%, $n = 3$ ) |                |
|-------|-------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------------|----------------|
|       |                   | 1 μg kg <sup>-1</sup> | $4 \ \mu g \ kg^{-1}$ | 20 μg kg <sup>-1</sup> | 1 μg kg <sup>-1</sup> | 4 μg kg <sup>-1</sup> | 20 μg kg <sup>-1</sup>       | _              |
| FQs   | Difluoxacin       | 61.3                  | 61.7                  | 63.6                   | 14                    | 12                    | 12                           | 75.2 ± 7.9     |
|       | Sarafloxacin      | 61.9                  | 75.3                  | 87.8                   | 8.8                   | 8.7                   | 10                           | $62.6 \pm 4.9$ |
|       | Enrofloxacin      | 64.8                  | 69.9                  | 66.0                   | 6.1                   | 7.4                   | 13                           | 73.4 ±13       |
|       | Ciprofloxacin     | 62.9                  | 79.9                  | 76.4                   | 9.5                   | 8.8                   | 7.8                          | 69.0 ± 7.2     |
|       | Enoxacin          | 58.8                  | 62.2                  | 62.9                   | 12                    | 15                    | 10                           | 68.1 ± 1.5     |
|       | Norfloxacin       | 56.5                  | 65.1                  | 70.7                   | 10                    | 9.5                   | 6.7                          | $74.9 \pm 10$  |
| TCs   | Chlortetracycline | 59.9                  | 58.2                  | 65.2                   | 11                    | 8.8                   | 7.3                          | 71.3 ± 11      |
|       | Oxytetracycline   | 71.5                  | 68.3                  | 71.6                   | 14                    | 10                    | 3.9                          | $86.9 \pm 4.8$ |
|       | Doxycycline       | 64.5                  | 65.4                  | 70.4                   | 12                    | 11                    | 4.4                          | 76.1 ± 2.0     |
|       | Tetracycline      | 53.2                  | 58.6                  | 66.0                   | 10                    | 2.9                   | 8.8                          | $68.6 \pm 4.2$ |

| SAs | Sulfaquinoxaline    | 60.9 | 59.4 | 75.1 | 12  | 10  | 5.6 | $56.8 \pm 3.5$ |
|-----|---------------------|------|------|------|-----|-----|-----|----------------|
|     | Sulfaclozine        | 54.4 | 67.0 | 60.2 | 9.3 | 5.4 | 8.2 | $78.0 \pm 2.4$ |
|     | Sulfamethoxydiazine | 62.6 | 64.5 | 73.6 | 4.8 | 4.0 | 3.2 | $81.2 \pm 6.7$ |
|     | Sulfamonomethoxine  | 60.0 | 74.8 | 84.7 | 6.5 | 5.6 | 6.3 | $84.6 \pm 4.8$ |
|     | Sulfadimidine       | 58.9 | 61.1 | 64.3 | 7.9 | 9.4 | 5.1 | $62.3 \pm 4.8$ |
|     | Sulfamethoxazole    | 64.0 | 69.2 | 70.8 | 8.3 | 8.1 | 4.2 | 82.1 ± 2.2     |
| MLs | Tylosin             | 71.8 | 89.4 | 79.4 | 6.7 | 2.6 | 6.3 | $90.8 \pm 3.0$ |
|     | Roxithromycin       | 82.4 | 81.0 | 79.3 | 4.9 | 4.9 | 5.2 | $93.4 \pm 6.0$ |
|     | Kitasamycin         | 75.9 | 75.6 | 77.0 | 5.5 | 3.5 | 5.7 | 90.4 ± 2.3     |
|     | Erythromycin        | 98.6 | 98.9 | 104  | 13  | 7.3 | 10  | 83.1 ± 2.7     |
|     | Tilmicosin          | 86.9 | 85.8 | 69.1 | 9.6 | 7.0 | 6.5 | 80.9 ± 5.7     |
| LAs | Clindamycin         | 81.5 | 85.5 | 92.9 | 9.3 | 5.7 | 3.3 | 97.3 ± 3.4     |
| PMs | Valnemulin          | 58.5 | 60.9 | 61.7 | 8.8 | 8.6 | 10  | $80.8 \pm 6.1$ |

| Tiamulin | 72.6 | 77.3 | 74.1 | 3.7 | 7.2 | 2.9 | $79.9 \pm 2.1$ |
|----------|------|------|------|-----|-----|-----|----------------|
|          |      |      |      |     |     |     |                |

LOD, limit of detection; LOQ, limit of quantification; SD, standard deviation; RSD, relative standard deviation; ME, matrix effect.



Influence of the extraction solvents on the recoveries of the target compounds / DIF, difluoxacin; SAR, sarafloxacin; ENR, enrofloxacin; CIP, ciprofloxacin; ENO, enoxacin; NOR, norfloxacin; CTC, chlortetracycline; OTC, oxytetracycline; DC, doxycycline; TC, tetracycline; SQ, sulfaquinoxaline; SCZ, sulfaclozine; SMD, sulfamethoxydiazine; SMM sulfamonomethoxine; SM2, sulfadimidine; SMZ, sulfamethoxazole; TYL, tylosin; ROX, roxithromycin; KIT, kitasamycin; ERY, erythromycin; TIL, tilmicosin; CLI, clindamycin; VAL; valnemulin; TIA, tiamulin. M1, ACN/MeOH (1:1, v/v); M2, ACN/acetate buffer (1:1, v/v, pH 4.0); M3, 0.5 g Na2EDTA and ACN/acetate buffer (1:1, v/v, pH 4.0); M4, 0.5 g Na2EDTA and ACN/citrate buffer (1:1, v/v, pH 4.0); M5, ACN : Na2EDTA-McIlvaine buffer (5:5, v/v, pH 4.0). Error bars represent standard deviation of the individual compound spiked at 10 μg kg-1 (n = 3)

71x20mm (300 x 300 DPI)



Influence of the concentration (a) and amount (b) of NaOH on the recoveries of 24 antimicrobials at the spiked 4  $\mu$ g kg-1 / The abbreviations are the same as Fig. 1.

128x63mm (300 x 300 DPI)



Influence of the different types of SPE columns on extraction efficiency for 24 antimicrobials at the spiked 4  $\mu$ g kg-1 / The abbreviations are the same as Fig. 1.

59x15mm (300 x 300 DPI)



Figure 4 297x210mm (200 x 200 DPI)



Typical MRM chromatograms obtained from the blank soil extracts (a) and blank soil extracts spiked at 4 µg kg-1 (b) / The abbreviations are the same as Fig. 1. 297x210mm (200 x 200 DPI)