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We investigate the mechanical properties and stabilities of the planar graphene-like zinc sulfide (g-ZnS) monolayers under

various large strains using electronic structure calculations. The g-ZnS has a low in-plane stiffness, about 1/8 of that of graphene.

The potential profiles and the stress-strain curves indicate that the free standing g-ZnS monolayers can sustain large tensile

strains, up to 0.16, 0.22, and 0.19 for armchair, zigzag, and biaxial deformations, respectively. However, both the strength and

flexibility are reduced compared to graphene-like zinc oxide monolayers. The third, fourth, and fifth order elastic constants are

indispensable for accurate modeling of the mechanical properties under strains larger than 0.02, 0.04, and 0.08 respectively. The

second order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure, while the trend

in the Poisson ratio is reversed. Our results imply that g-ZnS monolayers are mechanically stable under various large strains.

The elastic limits provide a safe-guide for strain-engineering the g-ZnS based electronics.

1 INTRODUCTION1

As one of the first discovered semiconductors, bulk zinc sul-2

fide (ZnS) exists naturally in two polymorphs, zinc blende and3

wurtzite, with a band gap about 3.7 eV1,2. ZnS has important4

applications in ultraviolet light-emitting diodes and injection5

lasers3, flat panel displays4, sensors5, and infrared optical6

windows6, in addition to photocatalysis7 and tribolumines-7

cence8. There are extensive interests in nanostructures of ZnS8

including nanotubes, nanowires, nanobelts, and nanosheets1,9.9

Experimentally, the width-to-thickness ratio dependence of10

the photoplastic effect of the ZnS nanobelts was reported10.11

Nanosheets with a thickness of about 11 Å of wurtzite ZnS12

were obtained11. However, to the authors’ best knowledge,13

the fabrication of mono-atomic-layer graphene-like hexago-14

nal ZnS (g-ZnS) has not yet been reported, as contrasted to a15

few theoretical investigations.16

Theoretical studies show that the ZnS monolayers have pla-17

nar and buckled structures12. Once the out-of plane displace-18

ments of atoms are smaller than 0.03 Å, the planar struc-19

ture (Fig. 1a) is reserved during the energy minimization.20

However, when the out-of-plane displacements of atoms are21
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Fig. 1 Geometry and structure (a) Top-view and (b) side-view of

the g-ZnS monolayer plane; (c) the unit cell with simulation box and

atoms; (d) the orientations of the system.

large, it will re-constructed to various non-planar structures 1

with lower energies, about 0.08 eV/ZnS12. The planar g-ZnS 2

monolayers have a direct band gap over 2.0 eV12 and have a 3

transition to indirect band gap when a biaxial strain of 0.028 4

is applied13. The 2D bulk modulus of g-ZnS monolayers is 5

predicted to be 23.94 N/m using density functional theory cal- 6

culations13. 7

Mechanical forces are much more tangible, reliable, and 8

widely applicable than other stimuli to materials. Macroscopic 9

mechanical stimuli are used for control of molecular systems 10

and molecular machines,in addition to micro-device fabrica- 11

tion.14 The knowledge of mechanical properties of a mate- 12

rial15,16 is the base for development of mechanically respon- 13

sive nanomaterials which will make a significant contribution 14
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to improvements in our lifestyles and our society14. It is de-1

sirable to know the mechanical properties of g-ZnS monolay-2

ers for three reasons. First, it is critical in designing parts or3

structures regarding their practical applications of atomic 2D4

materials17. For instance, applications in high-end bendable5

electronics require the integration of g-ZnS monolayers with6

stretchable polymer substrates. Second, strain engineering is7

a common and important approach to tailor the functional and8

structural properties including band gaps18 and radiation hard-9

ness19 of nanomaterials20,21. Finally, nanomaterials is vulner-10

able to strain with or without intent because of its monatomic11

thickness22,23. For instance, there are strains because of the12

mismatch of lattice constants. In addition, elastic limits and13

tolerances are desirable for functional manipulation24.14

The goal of this paper is to study the mechanical stabili-15

ties and properties of g-ZnS monolayers. We focus on the16

planar structure of g-ZnS in this study because it is more in-17

terested in applications as buckled structure can be suppressed18

under constraints such as substrate, sandwiching, or heteroge-19

neous multilayers25–27, or applied tensile strains in their appli-20

cations. We use density functional theory (DFT) calculations21

to model their responses under various mechanical loadings.22

The strain potential profile, the stress-strain relationships, the23

high order elastic constants, and the pressure dependent prop-24

erties are studied. Our results are compared to that of graphene25

and graphene-like ZnO (g-ZnO). The results of graphene28
26

and g-ZnO29 were reported previously. They serve as refer-27

ences to g-ZnS monolayers because they have similar struc-28

tures. In addition, graphene/ZnS and ZnS/ZnO composites29

were synthesized for superior photoelectric applications26 and30

unusual photoluminescence emissions27, respectively. There-31

fore, a comparative study could be helpful in the material de-32

sign of these composites.33

Our results for the continuum formulation could also be34

useful in finite element modeling of the multi-scale calcula-35

tions for mechanical properties of g-ZnS monolayers at the36

continuum level. The organization of this paper is as follows.37

Section II presents the computational details of DFT calcula-38

tions. The results and analysis are in section III, followed by39

conclusions in section IV.40

2 DENSITY FUNCTIONAL THEORY CAL-41

CULATIONS42

We consider a conventional unit cell containing six atoms (343

Zinc atoms and 3 sulfur atoms) with periodic boundary condi-44

tions (Fig. 1c) to model g-ZnS monolayers. This 6-atom con-45

ventional unit cell is chosen to capture the “soft mode”, which46

is a particular normal mode exhibiting an anomalous reduction47

in its characteristic frequency and leading to mechanical insta-48

bility. This soft mode is a key factor in limiting the strength49

of monolayer materials and can only be captured in unit cells 1

with hexagonal rings30. 2

Following convention, we define the armchair direction as 3

the nearest neighbor direction and the zigzag direction is per- 4

pendicular to it within the atomic plane formed by nearest 5

neighbors (Fig. 1d). Periodic boundary conditions along the 6

plane are applied. The total energies of the system, forces 7

on each atom, stresses, and stress-strain relationships of g- 8

ZnS monolayers under the desired deformation configurations 9

are characterized via DFT. The calculations were carried out 10

with the Vienna Ab-initio Simulation Package (VASP)31,32
11

which is based on the Kohn-Sham Density Functional The- 12

ory (KS-DFT)33 with the generalized gradient approximations 13

as parameterized by Perdew, Burke, and Ernzerhof (PBE) for 14

exchange-correlation functions34. The electrons explicitly in- 15

cluded in the calculations are the 3d104s2 electrons for zinc 16

atoms and 3s23p6 for sulfur atoms. The core electrons are re- 17

placed by the projector augmented wave (PAW) and pseudo- 18

potential approach35. A plane-wave cutoff of 500 eV is used 19

in all the calculations. The convergence of the total energy and 20

forces is 10−5 eV and 10−3 eV/Å, respectively. The calcula- 21

tions are performed at zero temperature. 22

The atomic structures of all the deformed and undeformed 23

configurations were obtained by fully relaxing a 6-atom-unit 24

cell where all atoms were placed in one plane. The simula- 25

tion invokes periodic boundary conditions for the two in-plane 26

directions. There is a 15 Å thick vacuum region to reduce 27

the inter-layer interaction to model the single layer system. 28

The irreducible Brillouin Zone was sampled with a Gamma- 29

centered 24×24×1 k-mesh. Such a large k-mesh was used to 30

reduce the numerical errors caused by the strain of the sys- 31

tems. To eliminate the artificial effect of the out-of-plane 32

thickness of the simulation box on the stress, we use the the 33

second Piola-Kirchhoff stress36 to express the 2D forces per 34

length with units of N/m. 35

For a general deformation state, the number of independent 36

components of the second, third, fourth, and fifth order elastic 37

tensors are 21, 56, 126, and 252 respectively. However, there 38

are only fourteen independent elastic constants that need to 39

be explicitly considered due to the symmetries of the atomic 40

lattice point group D6h which consists of a sixfold rotational 41

axis and six mirror planes36. The fourteen independent elas- 42

tic constants of g-ZnS monolayers are determined by least- 43

squares fit to the stress-strain results from DFT calculations in 44

two steps, detailed in our previous work36, which have been 45

well used to explore the mechanical properties of 2D materi- 46

als28,29,37–46. A brief introduction is that, in the first step, we 47

use a least-squares fit of five stress-strain responses. Five rela- 48

tionships between stress and strain are necessary because there 49

are five independent fifth-order elastic constants (FFOEC). We 50

obtain the stress-strain relationships by simulating the follow- 51

ing deformation states: uniaxial strain in the zigzag direc- 52
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tion (zigzag); uniaxial strain in the armchair direction (arm-1

chair); and equibiaxial strain (biaxial). From the first step,2

the components of the second-order elastic constants (SOEC),3

the third-order elastic constants (TOEC), and the fourth-order4

elastic constants (FOEC) are over-determined (i.e, the number5

of linearly independent variables are greater than the number6

of constrains), and the fifth-order elastic constants are well-7

determined (the number of linearly independent variables are8

equal to the number of constrains). Under such circumstances,9

the second step is needed: least-square solution to these over-10

and well- determined linear equations.11

3 RESULTS AND ANALYSIS12

3.1 Atomic structure13

We first optimized the geometry of the 6-atom-unitcell. The14

relaxed structure shows that the six atoms are still copla-15

nar, as shown in Fig. 1b. The Zn-S bond length is 2.24816

Å (Fig. 1c), agreeing well with previous DFT studies12,13.17

The S-Zn-S angle is 120◦. The lattice constant a = 3.89 Å ,18

which is larger than the experimental measurement (3.75 Å )19

of wurtzite ZnS47, where zinc and sulfur atoms are in differ-20

ent planes. Our planar structure agrees with previous DFT21

calculations12,13. This strain-free structure is then set as the22

reference when mechanical strain is loaded.23

3.2 Strain Energy Profile24

When strain is applied, the system will be disturbed away from25

the equilibrium state. Since the configuration energy of the26

strain-free configuration is the minima of the potential well,27

any strain will increase the system’s energy. By applying dif-28

ferent amounts of strain along different directions, the poten-29

tial well can be explored. Once the strain is applied, all the30

atoms of the system are allowed full freedom of motion. A31

quasi-Newton algorithm is used to relax all atoms into equi-32

librium positions within the deformed unit cell that yields the33

minimum total energy for the imposed strain state of the super34

cell.35

Both compression and tension are considered with La-36

grangian strains ranging from -0.1 to 0.3 with an increment37

of 0.01 in each step for all three deformation modes. It is38

important to include the compressive strains since they are39

believed to be the cause of the rippling of the free standing40

atomic sheet48. It was observed that a graphene sheet expe-41

riences biaxial compression after thermal annealing49, which42

could also happen with g-ZnS monolayers. Such an asymmet-43

rical range was chosen due to the non-symmetric mechanical44

responses of material, as well as its mechanical instability50,45

to the compressive and the tensile strains.46

Fig. 2 Energy profile The strain energy per atom under uniaxial

strain in armchair and zigzag directions, and equibiaxial strains of

g-ZnS (a), compared with g-ZnO (b).
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We define the strain energy per atom Es = (Etot −E0)/n,1

where Etot is the total energy of the strained system, E0 is the2

total energy of the strain-free system, and n = 6 is the num-3

ber of atoms in the unit cell. This size-independent quantity is4

used for comparison between different systems. The Es of the5

g-ZnS monolayer as a function of strain in uniaxial armchair,6

uniaxial zigzag, and biaxial deformation are plotted in Fig. 2a.7

The result of the potential profile of g-ZnS is compared with8

that of g-ZnO (Fig. 2b). Es is anisotropic with strain direction.9

Es is non-symmetrical for compression (η <0) and tension10

(η >0) for all three modes. This non-symmetry indicates the11

anharmonicity of the g-ZnS monolayer structures. The har-12

monic region where the Es is a quadratic function of applied13

strain can be taken between -0.02< η <0.02. The stresses,14

derivatives of the strain energies, are linearly increasing with15

the increase of the applied strains in the harmonic region.16

The anharmonic region is the range of strain where the lin-17

ear stress-strain relationship is invalid and higher order terms18

are not negligible. With even larger loading of strains, the sys-19

tems will undergo irreversible structural changes, and the sys-20

tems are in a plastic region where they may fail. The width of21

the stable region is the opening width of the potential energy22

well (Fig. 2). The opening width and depth of the potential23

energy well ηs could serve as a scale to quantify the flexibil-24

ity and strength of a nanostructure, respectively. The average25

width of the stable regions of the three deformation modes26

(i.e., the opening width of the potential energy wells) is a rea-27

sonably good scale for the mechanical stabilities of the nano28

structures. As a result, from the point view of potential energy,29

we conclude that g-ZnS is mechanically stable. However, it is30

less stable than g-ZnO, because both the depth and width of31

the potential energy well are smaller than that of g-ZnO.32

The ultimate strains are determined as the corresponding33

strain of the ultimate stress, which is the maxima of the stress-34

strain curve, as discussed in the following section. It is worth35

noting that in general the compressive strains will cause rip-36

pling of the free-standing thin films, membranes, plates, and37

nanosheets48. The critical compressive strain for rippling in-38

stability is much less than the critical tensile strain for fracture,39

for example, 0.0001% versus 2% in graphene sheets50. How-40

ever, the rippling can be suppressed by applying constraints,41

such as embedding (0.7% )51, substrates (0.4% before heat-42

ing)49, thermal cycling on SiO2 (0.05%)52 and BN (0.6%)53,43

and sandwiching54. Our study of compressive strains is im-44

portant in understanding the mechanics of these non-rippling45

applications. The rippling phenomena are interesting and im-46

portant, however, they are outside the scope of this study.47

3.3 Stress-strain relationships48

The second P-K stress versus Lagrangian strain relationships49

of g-ZnS sheets for uniaxial strains along the armchair and50

Table 1 Elastic limits Ultimate strengths (Σa
m,Σz

m,Σb
m) in units of

N/m and ultimate strains (ηa
m, ηz

m, ηb
m) of g-ZnS monolayers under

uniaxial (armchair and zigzag) and biaxial strain from DFT

calculations, compared with that of g-ZnS and graphene.

g-ZnS g-ZnOa Grapheneb

Σa
m 5.0 8.4 28.6

ηa
m 0.16 0.17 0.19

Σz
m 5.2 8.7 30.4

ηz
m 0.22 0.24 0.23

Σb
m 5.7 9.3 32.1

ηb
m 0.19 0.20 0.23

a Ref.29; b Ref.28;

zigzag directions, as well as biaxial strains, are shown in 1

Fig. 3a, compared with that of g-ZnO (Fig. 3b), since these 2

two nano materials were extensively studied and well known. 3

The results show that the g-ZnS sheets can sustain large 4

strains. The ultimate tensile strength is the maximum stress 5

that a material can withstand while being stretched, and the 6

corresponding strain is the ultimate strain. Under ideal condi- 7

tions, the critical strain is larger than the ultimate strain. The 8

systems of perfect g-ZnS sheets under strains beyond the ul- 9

timate strains are in a meta-stable state. The ultimate tensile 10

strain, which reflects the intrinsic bonding strengths and acts 11

as a lower limit of the critical strain, should be considered 12

when exploring the potential applications. 13

The ultimate tensile strains of g-ZnS monolayers are 0.16, 14

0.22, and 0.19 along the armchair, zigzag, and biaxial, respec- 15

tively (Table 1). The ultimate tensile stresses are 5.0, 5.2, and 16

5.7 N/m for the armchair, zigzag, and biaxial strains, respec- 17

tively. The g-ZnS monolayer exhibits small ultimate tensile 18

stresses compared to g-ZnO. They are about one sixth that of 19

graphene. The biaxial ultimate tensile stress is 17.9 GPa if 20

we take the monolayer height of 3.19 Å , which is the sep- 21

aration of layers in a wurtzite ZnS47. The positive ultimate 22

tensile stresses could serve as evidence of its stability and 23

bond strengths. Opposed to the ultimate stresses, the ultimate 24

strains of g-ZnS are smaller, but comparable to that of g-ZnO 25

and graphene. Both the strength and flexibility of g-ZnS are 26

reduced compared to that of g-ZnO monlayers. This could 27

be understood from the viewpoint of bond length. The Zn-S 28

bond length is 2.248 Å , 18% larger than that of Zn-O bonds 29

(1.900 Å ). The Zn-S bonds can be viewed as being stretched 30

in prior by the introduction of sulfur atoms, in reference to 31

Zn-O bonds. These stretched bonds are weaker than those un- 32

stretched, resulting in a reduction of the mechanical strength. 33

The g-ZnS sheet behaves in an asymmetric manner with 34

respect to compressive and tensile strains. With increasing 35

strains, the Zn-S bonds are stretched and eventually rupture. 36
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Fig. 3 Stress-strain responses The stress-strain relationships of the g-ZnS sheets under the armchair, zigzag, and biaxial strains. Σ1 (Σ2)

denotes the x (y) component of stress. “Cont” stands for the fitting of DFT calculations (“DFT”) to continuum elastic theory. The compressive

domain is η < 0 (cyan) and the tensile domain is η > 0 (green). The harmonic region is η ≤ ηh and the anharmonic region is ηh < η ≤ ηm.

The mechanically unstable region is η > ηm (yellow region), and the mechanically stable region is η ≤ ηm.
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The positive slope of the stress-strain curves and the positive1

ultimate tensile stresses indicate that this structure is mechan-2

ical stable. Our results show that the g-ZnS monolayers are3

stable under various strains.4

Note that the softening of the g-ZnS monolayers under5

strains beyond the ultimate strains only occurs for ideal con-6

ditions. The systems under this circumstance are in a meta-7

stable state, which can be easily destroyed by long wavelength8

perturbations and vacancy defects, as well as high tempera-9

ture effects, and enter a plastic state55. Thus only the data10

within the ultimate strain has physical meaning and was used11

in determining the high order elastic constants in the following12

subsection.13

3.4 Elastic Constants14

The elastic constants are critical parameters in finite element15

analysis models for mechanical properties of materials. Our16

results of these elastic constants provide an accurate contin-17

uum description of the elastic properties of g-ZnS monolayers18

from ab initio density functional theory calculations. They are19

suitable for incorporation into numerical methods such as the20

finite element technique.21

The second order elastic constants model the linear elastic22

response. The higher (> 2) order elastic constants are impor-23

tant to characterize the nonlinear elastic response of g-ZnS24

monolayers using a continuum description. These can be ob-25

tained using least-squares fit of the DFT data and are reported26

in Table 2. Corresponding values for graphene are also shown.27

The in-plane Young’s modulus Ys (or stiffness) and Poi-28

son’s ratio ν are obtained from the following relationships:29

Ys = (C2
11 −C2

12)/C11 and ν = C12/C11. For g-ZnS, we have30

Ys =43.6 N/m, and ν =0.508. The in-plane stiffness is smaller31

(about 90%) than that of g-ZnO and much smaller (about 1/8)32

than that of graphene (341 N/m28). Taking the experimen-33

tal value of 3.19 Å 47 as the height of g-ZnS monolayer, this34

stiffness is equivalent to 137 GPa, which is comparable to the35

bulk modulus (around 100 GPa) of a metal, for example Zir-36

conium. Our result also agrees with a previous DFT study13.37

The Poisson ratio of a g-ZnS monolayer is much larger than38

that of graphene, but much smaller than of g-ZnO, indicating39

less shear motion in g-ZnS than in g-ZnO monolayers under40

strains.41

Besides the second order elastic constants, the higher or-42

der (> 2) elastic constants are also important quantities56–58.43

Experimentally by measuring the changes of sound veloci-44

ties under the application of hydrostatic and uniaxial stresses,45

these high order elastic constants can be determined59,60.46

The high order elastic constants are very important in study-47

ing the nonlinear elasticity61, thermal expansion (through48

gruneisen parameter)62, temperature dependence of elastic49

constants62,63, harmonic generation60, phonon-phonon in-50

Table 2 Elastic constants Nonzero independent components for

the SOEC, TOEC, FOEC, and FFOEC tensor components,

Poisson’s ratio ν , and in-plane stiffness Ys of g-ZnS monolayers

from DFT calculations, compared with g-ZnO and graphene.

g-ZnS g-ZnOa Grapheneb

a (Å) 3.894 3.291 2.468

Ys (N/m) 43.6 47.8 340.8

ν 0.508 0.667 0.178

SOECs
C11 (N/m) 58.8 86.0 352.0

C12 (N/m) 29.9 57.3 62.6

TOECs

C111 (N/m) -457.7 -525.4 -3089.7

C112 (N/m) -240.5 -456.3 -453.8

C222 (N/m) -414.1 -452.7 -2928.1

FOECs

C1111 (N/m) 2893 2000 21927

C1112 (N/m) 2526 3504 2731

C1122 (N/m) 816 2694 3888

C2222 (N/m) 1456 -554 18779

FFOECs

C11111 (N/m) -10661 -3296 -118791

C11112 (N/m) -9343 -7685 -19173

C11122 (N/m) -16016 -20648 -15863

C12222 (N/m) -20448 -17926 -27463

C22222 (N/m) -22473 1607 -134752
a Ref.29; b Ref.28;

teractions64, photon-phonon interactions65, lattice defects66, 1

phase transitions67, echo phenomena68, and strain soften- 2

ing69, and so on28. In addition, with the higher order elas- 3

tic continuum description utilizing these elastic constants, one 4

can model the stress and deformation state under uniaxial 5

stress, rather than uniaxial strain. Explicitly, when pressure 6

is applied, the pressure dependent second-order elastic mod- 7

uli can be obtained from the high order elastic continuum de- 8

scription36. The third-order elastic constants are important 9

in understanding the nonlinear elasticity of materials, such as 10

changes in acoustic velocities due to finite strain. As a con- 11

sequence, nano devices (such as nano surface acoustic wave 12

sensors and nano waveguides) could be synthesized by intro- 13

ducing local strain17,70, as discussed in detail later in this pa- 14

per. 15

Stress-strain curves in the previous section show that they 16

will soften when the strain is larger than the ultimate strain. 17

From the view of electron bonding, this is due to the bond 18

weakening and breaking. This softening behavior is deter- 19

mined by the TOECs and FFOECs in the continuum aspect. 20

The negative values of TOECs and FFOECs ensure the soft- 21

ening of g-ZnS monolayer under large strain. 22

A good way to check the importance of the high order elas- 23

tic constants is to consider the case when they are missing. 24

With the elastic constants, the stress-strain response can be 25
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Fig. 4 Order effects The predicted stress-strain responses of

biaxial deformation of ordered graphene oxide monolayer from

different orders (second, third, fourth, and fifth order) of elastic

constants of g-ZnS sheet, compared to that from the DFT

calculations (circle line), using biaxial deformation as an example.

predicted from elastic theory36. When we only consider the1

second order elasticity, the stress varies with strain linearly.2

Here we take the biaxial deformation of the g-ZnS sheet as an3

example. As illustrated in Fig. 4, the linear behaviors are only4

valid within a small strain range, about -0.02 ≤ η ≤ 0.02, as5

the same result obtained from the energy versus strain curves6

in Fig. 2. With the knowledge of the elastic constants up to7

the third order, the stress-strain curve can be accurately pre-8

dicted within the range of -0.04 ≤ η ≤ 0.04. Using the elastic9

constants up to the fourth order, the mechanical behaviors can10

be well treated up to a strain as large as 0.08. For the strains11

beyond 0.08, the fifth order elastic are required for an accurate12

modeling. The analysis of the uniaxial deformations comes to13

a similar result.14

Our results illustrate that the monatomic layer structures15

possess different mechanical behaviors in contrast to the bulk16

or multi-layered structures, where the second order elastic17

constants are sufficient in most cases. The second order elas-18

tic constants are relatively easier to be calculated from the19

strain energy curves55,71, however, they are not sufficient for20

monatomic layer structures. The high order elastic constants21

are required for an accurate description of the mechanical be-22

haviors of monatomic layer structures since they are vulnera-23

ble to strain due to the geometry confinements.24

Our results of mechanical properties of g-ZnS monolayers25

are limited to zero temperature due to current DFT calcula-26

tions. Once finite temperatures are considered, the thermal27

expansions and dynamics will in general reduce the interac-28

tions between atoms. As a result, the longitudinal mode elastic29

constants will decrease with respect to the temperature of the 1

system. The variation of shear mode elastic constants should 2

be more complex in response to the temperature. A thorough 3

study will be interesting, which is, however, beyond the scope 4

of this study. 5

3.5 Pressure effect on the elastic moduli 6

With third-order elastic moduli, one can study the effect of 7

the second-order elastic moduli on the pressure p acting in 8

the plane of g-ZnS monolayers. Explicitly, when pressure is 9

applied, the pressure dependent second-order elastic moduli 10

(C̃11, C̃12, C̃22) can be obtained from C11, C12, C22, C111, C112, 11

C222, Ys, and ν as39–41: 12

C̃11 =C11 − (C111 +C112)
1−ν

Ys

P, (1)

C̃22 =C11 −C222
1−ν

Ys

P (2)

C̃12 =C12 −C112
1−ν

Ys

P (3)

The general trend is that the second-order elastic moduli in- 13

crease linearly with the applied pressure (Fig. 5). C̃11 is asym- 14

metrical to C̃22 unlike the zero pressure case. C̃11 = C̃22 =C11 15

only occurs when the pressure is zero. This anisotropy could 16

be the outcome of anharmonicity. For Poisson ratio, Fig. 5 de- 17

picts a trend that decreases monotonically with the increase of 18

pressure, opposite to that of the second-order elastic moduli. 19

Our results show that the g-ZnS monolayers are mechanically 20

stable under the various pressures. 21

Compared to g-ZnO monolayers, g-ZnS monolayers exhibit 22

smaller pressure dependent second-order elastic moduli, as 23

expected. The shear component C̃12 is more insensitive to 24

pressure. The Poisson’s ratio is also smaller in the examin- 25

ing range of -4.0 N/m to 4.0 N/m. However, the change in the 26

Poisson’s ratio is more sensitive to the variation of pressure, 27

indicating a more severe shear movement in g-ZnS monolay- 28

ers in responds to the change of pressures. 29

4 CONCLUSIONS 30

In summary, by applying various mechanical strains, we stud- 31

ied the mechanical properties and stabilities of the g-ZnS 32

monolayers. The potential profiles, the stress-strain relation- 33

ships, the in-plane stiffness, Poisson’s ratio, the second, third, 34

fourth, and fifth order elastic constants, the ultimate stresses, 35

ultimate strains, critical strains, and the pressure effect on the 36

elastic moduli are studied. g-ZnS monolayers have a low in- 37

plane stiffness, about 1/8 that of graphene, and 90% of g-ZnO 38

monolayers. The potential profiles and the stress-strain curves 39

indicate that the free standing g-ZnS monolayer can sustain 40

1–10 | 7

Page 7 of 10 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 5 Pressure dependent elastic moduli Second-order elastic

moduli and Poisson ratio as function of the pressure for the g-ZnS

(a) and g-ZnO (b) monolayers from DFT predictions.

large tensile strains, up to 0.16, 0.22, and 0.19 for armchair, 1

zigzag, and biaxial deformations, respectively. However, both 2

the strength and flexibility are reduced compared to graphene- 3

like zinc oxide (g-ZnO) monlayers. According to the results of 4

the positive ultimate strengths and strains, second order elas- 5

tic constants, and the in-plane Young’s modulus, we conclude 6

that g-ZnS structures are mechanically stable under various 7

strains and pressures. 8

We obtained an accurate continuum description of the elas- 9

tic properties of this structure by explicitly determining the 10

fourteen independent components of high order (up to fifth or- 11

der) elastic constants from the fitting of stress-strain curves 12

obtained from DFT calculations. This data is useful to de- 13

velop a continuum description which is suitable for incorpo- 14

ration into a finite element analysis model for its applications 15

at large scale. We also determined the valid range using these 16

elastic constants in different orders. The harmonic elastic con- 17

stants are only valid with a small range of -0.02 ≤ η ≤ 0.02. 18

With the knowledge of the elastic constants up to the third or- 19

der, the stress-strain curve can be accurately predicted within 20

the range of -0.04 ≤ η ≤ 0.04. Using the elastic constants 21

up to the fourth order, the mechanical behaviors can be accu- 22

rately predicted up to a strain as large as 0.08. For the strains 23

beyond 0.08, the fifth order elastic constants are required for 24

accurate modeling. The high order elastic constants reflect the 25

high order nonlinear bond strength under large strains. We 26

predicted that both the second order elastic constants and the 27

in-plane stiffness monotonically increase with elevating pres- 28

sure, while the trend of Poisson ratio is reversed. Our re- 29

sults could serve as a safe-guide for the strain-engineering 30

of g-ZnS monolayers for their promising applications and ad- 31

vanced function modification. 32
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