# RSC Advances



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

*Accepted Manuscripts* are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This *Accepted Manuscript* will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

## **ARTICLE TYPE**

### **Enhanced photoelectrochemical performance of the hierarchical micro/nano-structure TiO2 mesoporous spheres with oxygen vacancies via hydrogenation**

**Xiaoying Zhang and Zhuoyuan Chen\*** 

#### **Abstract**

5

The hierarchical micro/nano-structure  $TiO<sub>2</sub>$  mesoporous spheres with oxygen vacancies have been fabricated via a template-free strategy followed by hydrogenation and their photocatalytic performance has been explored. The hierarchical micro/nano-structure mesoporous spheres can act as a model <sup>10</sup>architecture for efficient photoelectrochemical devices because they can simultaneously offer abundant catalytic active sites, excellent light-scattering characteristics and a highly conductive pathway for charge carrier collection. More importantly, oxygen vacancies are introduced onto the surface of  $TiO<sub>2</sub>$  and function as shallow donors. The presence of oxygen vacancies not only boosts the light absorption but also improves the electrical conductivities of  $TiO<sub>2</sub>$ , thus enhancing the optical response and electron-hole  $15$  separation. As a result, hierarchical micro/nano-structure  $TiO<sub>2</sub>$  mesoporous spheres with oxygen vacancies exhibit a remarkably enhanced photoelectrochemical performance.

#### **Introduction**

Since the breakthrough work by Fujishima and Honda in 1972,  $_{20}$  TiO<sub>2</sub> has been undoubtedly regarded as one of the most excellent photocatalysts for a variety of solar-driven clean energy and environmental technologies.<sup>1</sup> However, pristine  $TiO<sub>2</sub>$  suffers from ineffective utilization of visible light due to its large band gap and low quantum yield because of the rapid recombination of 25 photogenerated carriers.

Recently, oxygen vacancies (Ov) in oxide semiconductors have been proposed as an alternative strategy to overcome the limitations mentioned above. $2-4$  Lin et al. calculated the electronic band structures of nitrogen-doped and oxygen-deficient anatase

- $30$  TiO<sub>2</sub> based on a density functional theory (DFT).<sup>5</sup> They found that the nitrogen doping mainly accounted for the absorption in the region of 400-500 nm, while the absorption occurring above 500 nm was primarily caused by the Ov. Subsequently, experimental progress has been achieved by Zhang and co-
- 35 workers.<sup>6</sup> They explored a novel plasma electrolysis method to synthesize high-quality  $TiO<sub>2</sub>$  with Ov, which exhibited strong optical absorption covering the range from ultraviolet to infrared. Furthermore, it was investigated that the blue-shift in the absorption edge and a notable increase in the long-wavelength
- 40 absorption was proportional to the concentration of  $Ov^7$ . Therefore, it was believed that the Ov was responsible for the improvement of the visible light absorption of  $TiO<sub>2</sub>$ , because Ov could introduce extra energy levels at approximately 0.75-1.18 eV below the conduction band (CB) of  $TiO<sub>2</sub>$ .<sup>8,9</sup> Besides the

<sup>45</sup>contribution of the enhanced visible light response, Ov were

demonstrated to serve as shallow donors (charge carriers) and account for the enhanced carrier density in hydrogenated  $TiO<sub>2</sub>$ .<sup>10-</sup> <sup>15</sup> The increased carrier density played a critical role in the

conductivity improvement and the recombination inhibition. 50 Therefore, Ov in TiO<sub>2</sub>, especially induced by hydrogenation, could open up new opportunities for efficient photocatalysts.

- In general, the  $TiO<sub>2</sub>$ -photocatalyzed reduction and oxidation take place simultaneously at the surface of  $TiO<sub>2</sub>$ . Consequently, the homogeneous  $TiO<sub>2</sub>$  photocatalysts are usually utilized as <sup>55</sup>nanoparticles to acquire high photocatalytic sites. However, a bothersome obstacle exists in those nanoparticles, where abundant grain boundaries and defects can hinder the achievement of high electrical conductivity.<sup>16</sup> For instance, the electron mobility in a nanoparticles film is about 0.01 cm<sup>2</sup>  $V^{-1}S^{-1}$ , <sup>60</sup>which is 2 orders of magnitude lower than that of a bulk single crystal  $(1 \text{ cm}^2 \text{ V}^{-1} \text{ S}^{-1})$ .<sup>17,18</sup> As known, the recombination is the competition of the separation of photogenerated carriers. The low electron mobility negatively impacts charge separation process, thus resulting in a fast recombination of the photogenerated <sup>65</sup>carriers. Moreover, the excessive aggregation of nanopartices leads to substantial reduction of active surface areas, and thus depresses the catalytic activity. Additionally, their photon
- absorption is often limited by light reflection at the surface of a nanoparticles film.<sup>19,20</sup> One-dimensional nanostructured  $TiO<sub>2</sub>$ , <sup>70</sup>such as nanotubes and nanowires, has been proposed because of the enhancements in charge transport, charge separation and light absorption<sup>21,22</sup>. However, the nanotubes or nanowires, compared to nanoparticles, have smaller surface areas, which can negatively affect charge transfer process. More current evidences have

demonstrated that the optical absorption of  $TiO<sub>2</sub>$  film can be promoted by additionally admixing larger  $TiO<sub>2</sub>$  particles in an optimal volume ratio. $23,24$  Nevertheless, the drawback is that the introduction of larger particles will unavoidably reduce the <sup>5</sup>internal surface areas. Moreover, counteracting the enhancement

- effect of light scattering on the optical absorption, the incorporation of larger particles may lead to an undesirable increase in the electron diffusion length and, consequently, increase the recombination rate of photogenerated carriers.<sup>25</sup> To
- 10 address these issues mentioned above, the hierarchical micro/nano-structured design with mesopores may be an alternative, as suggested by Rolison, underlying "the Importance of Nothing and the Unimportance of Periodicity" in catalytic nanoarchitectures, where "nothing" is the porosity at the
- 15 nanoscale.<sup>26</sup> Such multilevel architectures, combining the advantages of nanoscale and microscale particles, enable materials a wealth of optimized properties.27-29 For instance, this hierarchical structure can simultaneously provide abundant catalytic active sites, electronic conducting framework and mass
- <sup>20</sup>transport accessible porosity. In addition, the nanoarchitectures would be an ideal system to promote light scattering, and to enhance photon absorption for the increased electron-hole generation. Therefore, it is reasonably expected that the hierarchical micro/nano-structure  $TiO<sub>2</sub>$  mesoporous sphere with
- <sup>25</sup>Ov can be interesting candidates for further enhancing the photocatalytic performance. Herein, the hierarchical micro/nano-structure  $TiO<sub>2</sub>$  mesoporous
- spheres with Ov were fabricated, consisting of primary nanoparticles and secondary colloidal spheres. The relationship <sup>30</sup>between morphology, surface structure and the
- photoelectrochemical performances was also explored by comparing with particulate  $TiO<sub>2</sub>$  samples with and without Ov.

#### **Experimental Procedure**

- The hierarchical micro/nano-structure  $TiO<sub>2</sub>$  mesoporous spheres <sup>35</sup>with Ov were prepared via a template-free strategy followed by hydrogen-treatment. The hierarchical micro/nano-TiO<sub>2</sub> spheres (denoted as  $M-TiO<sub>2</sub>$ ) were firstly synthesized as described in our previous work without any variation.<sup>30</sup> In brief, 2 mL tetrabutoxytitanium was added to 50 mL ethylene glycol,
- <sup>40</sup>magnetically stirring for 8 hours at room temperature. The mixture was then poured into a solution containing 170 mL acetone and 2.7 mL water, stirring vigorously. And then the white precipitate was obtained by centrifugation, followed by washing with ethanol for five times and was dried at 50 °C. After
- $45$  refluxing and centrifugation, the M-TiO<sub>2</sub> sample was obtained. For comparison, particulate  $TiO<sub>2</sub>$  (denoted as P-TiO<sub>2</sub>) was also prepared by a sol-gel technique, according to a previous work.<sup>31</sup> Prior to hydrogenation, the synthesized  $TiO<sub>2</sub>$  was calcined in air at 500 °C for 2 h in order to improve the crystallization. The
- 50 hydrogenation was performed as follows: The as-prepared M- $TiO<sub>2</sub>$  or P-TiO<sub>2</sub> samples were transferred to a quartz boat located at the center of a quartz tube, which was horizontally placed in a tubular furnace. Before starting the heat treatment, the inner tube of the furnace was evacuated and then purged with nitrogen, and
- <sup>55</sup>these two steps were repeated for four times. Subsequently, the inner tube of the furnace was evacuated and then purged with hydrogen, and these were repeated twice. Finally, the powders

were annealed at 350 °C for 1 h with 5 °C min<sup>-1</sup> under 20 bar  $H_2$ . After being cooled to room temperature, the hydrogenated M-

- $\omega$  TiO<sub>2</sub> or P-TiO<sub>2</sub> (denoted as HM-TiO<sub>2</sub> or HP-TiO<sub>2</sub>) was obtained. The morphologies and the microstructures of the synthetic products were collected from field emission scanning electron microscopy (FESEM, HITACHI S-4800) and a high-resolution transmission electron microscope (HRTEM, FEI Tecnai G20, FEI
- <sup>65</sup>Company, USA). Their crystalline structures and bonding information were analyzed using X-ray diffraction (XRD, D/MAX-2500/PC; Rigaku Co., Tokyo, Japan) and X-ray photoelectron spectroscopy (XPS, Axis Ultra, Kratos Analytical Ltd., England). The optical absorption properties were recorded
- $70$  in the wavelength range of 200-800 nm by using a Hitachi U4100 spectrophotometer that was equipped with an integrating sphere. N2 adsorption-desorption measurements were carried out at 77 K using a Quantachrome Autosorb gas-sorption system.
- The photocatalytic degradation measurements were performed <sup>75</sup>under illumination with a 300 W Xenon lamp (PLS-SXE300, Beijing Changtuo Co. Ltd., Beijing, China). 0.1 g prepared samples were mixed with an aqueous Rhodamine B (RhB) solution (100mL, 10 mg $L^{-1}$ ) and was stirred vigorously in the dark for 30 min to achieve an adsorption-desorption equilibrium.
- <sup>80</sup>This mixture was then placed under a 300 W Xenon lamp and 3 mL suspension was withdrawn at regular intervals and stored in the dark. After the completion of the test, these suspensions were centrifuged at 10,000 rpm for 10 min to remove suspended particles, and the concentration of RhB was determined.
- 85 The prepared powder samples were fabricated into photoelectrodes as follows: 0.01 g of the obtained powder was added to 0.1 mL of deionized water in an agate mortar, and then carefully ground for 10 min, resulting in a homogeneous paste. This paste was evenly overlaid onto the conductive side of the
- <sup>90</sup>pre-cleaned fluorine-doped tin oxide glass substrate, followed by heat drying at 120°C for 2 h under vacuum condition. A copper wire was then connected to the conductive side of the fluorinedoped tin oxide glass using conductive silver tape. The substrate edges and the metal contact region were sealed with insulating 95 epoxy resin after the conductive silver tape had dried. The working electrode area is  $0.8 \text{ cm}^2$ .

The photoelectrochemical and electrochemical measurements were performed by an Electrochemical Workstation (CHI660D, Shanghai Chenhua Instrument Co., Ltd., Shanghai, China) in a 100 three-electrode cell with the obtained photoelectrode work electrode, Pt foil counter electrode and  $Ag/Ag^+$  reference electrode. A 300 W Xenon lamp (PLS-SXE300, Beijing Changtuo Co. Ltd., Beijing, China) was used as the light source. The electrolyte used was  $0.5$  M  $\text{Na}_2\text{SO}_4$  solution (pH=7). *J-V* 105 curves were collected with chopping every 4 s at a scan rate of 10 mV  $s^{-1}$  and the potential is from -1.0 V to +1.0 V *vs* Ag/AgCl. The variations of the photoinduced current density with time (i-t curve) were measured at a 0 V *vs* Ag/AgCl during a 3-cycle light switching on and off. The electrochemical impedance <sup>110</sup>spectroscopy (EIS) experiments were conducted under light illumination. The frequency range was chosen from 100 kHz to 100 mHz with an AC modulation signal of 5 mV at a dc potential of 0 V *vs* Ag/AgCl. The EIS results were analyzed using Zsimpwin software. Mott-Schottky plots were measured at 1000 <sup>115</sup>Hz in the dark with the potential range between -0.8 V and 0.2 V

*vs* Ag/AgCl.

#### **Results and Discussion**



Fig. 1 (A) Low-magnification SEM image, (B) high-magnification SEM image, (C) TEM and (D) HRTEM images of the as-prepared  $HM-TiO<sub>2</sub>$ . In (D), a short dashed curve is applied to outline a portion of the interface between the crystalline core and the disordered outer layer (marked by black arrows) of HM-TiO2.

The microscopic morphology and crystal structure of the as-10 prepared  $HM-TiO<sub>2</sub>$  were characterized by SEM, TEM and HRTEM as shown in Fig. 1. Typical SEM image (Fig. 1a) at low magnification reveals that the  $HM-TiO<sub>2</sub>$  samples consist of large numbers of submicroscale spherical particles with a diameter of 500-550 nm. From the high magnification SEM image (Fig. 1b)

- <sup>15</sup>and the representative TEM image (Fig. 1c) of an individual hierarchical sphere, these spherical particles are clearly observed be constructed by hundreds of densely packed primary nanoparticles with an average diameter of approximately 15 nm. Further observation (Fig. 1d) indicates that a hydrogen-stabilized
- <sup>20</sup>amorphous layer is coated on the crystalline core after hydrogen treatment, which is in a good agreement with the results shown in literature.<sup>32,33</sup> In addition, well-defined lattice fringes with a dspacing of 0.35 nm can be well indexed to the (101) crystal plane of anatase  $TiO<sub>2</sub>$  (Fig. 1d), which confirms that the core of as-
- $_{25}$  prepared HM-TiO<sub>2</sub> is highly crystallized. For comparison, Fig. S1  $(ESI<sup>†</sup>)$  presents typical morphologies of the obtained HP-TiO<sub>2</sub>, from which numerous nanoparticles with an average diameter of approximately 15 nm are randomly agglomerated, forming a network of much larger clusters and thus reducing their specific 30 surface areas.





TiO<sub>2</sub>. The XRD pattern of anatase TiO<sub>2</sub> is added as a reference. (B) Nitrogen adsorption-desorption isotherm curve of the HM-TiO<sub>2</sub> sample 35 and its pore-size distribution (inset) obtained from desorption branch of the isotherm using the BJH method.

The structural information of the as-synthesized  $HM-TiO<sub>2</sub>$  was further analyzed by employing XRD and Nitrogen adsorption−desorption isotherm and the relevant results are 40 shown in Fig. 2. XRD patterns collected from the resultant HP- $TiO<sub>2</sub>$  and HM-TiO<sub>2</sub> powders (Fig. 2A) illustrate that their diffraction peaks can all be satisfactorily indexed to the anatase phase  $TiO<sub>2</sub>$  (JCPDS No.21–1272). Such high anatase crystallinity in the mesoporous  $TiO<sub>2</sub>$  is highly desirable in photocatalysis. <sup>45</sup>More importantly, no obvious broadening of the diffraction peaks is observed between  $HP-TiO_2$  and  $HM-TiO_2$  samples, indicating that there was no appreciable difference in nano-crystallite size for the samples regardless of the various morphologies observed by SEM. The average size of the primary nanocrystallite is <sup>50</sup>around 15 nm in diameter based on the Scherrer's formula, which is consistent with the microscopic characterizations. Furthermore, to detect the possible phase change taken place upon hydrogenation, XRD pattern of M-TiO<sub>2</sub> was also collected. XRD profiles for these two cases are almost identical, indicating that

 $55$  the bulk lattice structure of anatase  $TiO<sub>2</sub>$  was well-preserved during the hydrogenation procedure, which has also been observed in the previous studies of hydrogenated  $TiO<sub>2</sub>$ .<sup>4</sup>

Although no obvious pores were observed from TEM images because of the overlapping of primary nanoparticles, the porous <sup>60</sup>structure of the product was clearly confirmed by nitrogen adsorption−desorption isotherm and Barrett−Joyner−Halenda (BJH) pore-size distribution analysis. As shown in Fig. 2B, the recorded adsorption and desorption isotherm exhibits a significant hysteresis and can be identified as Type *IV*, indicating 65 the presence of mesopores.<sup>34</sup> Furthermore, the BJH pore-size distribution analysis shows that the as-synthesized  $HM-TiO<sub>2</sub>$ possesses a rather broad pore-size distribution with an average pore radius of 13 nm. Overall, the aforementioned results strongly demonstrate that the as-synthesized  $HM-TiO<sub>2</sub>$  possesses <sup>70</sup>a hierarchical architecture with plenty of different mesopores.



Fig. 3 (A) Overlay of normalized O1s XPS spectra of M-TiO<sub>2</sub> (curve a) and HM-TiO<sub>2</sub> (curve b) ; (B) Normalized O 1s core level XPS spectra of HM- $75$  TiO<sub>2</sub>.

It is well known that hydrogenation could introduce additional Ov into  $TiO<sub>2</sub>$ , which serve as shallow donors and should be able to improve the light response and the electrical conductivity of TiO<sup>2</sup> . To prove the presence of Ov, XPS was employed to <sup>80</sup>examine and compare the chemical composition and surface oxidation states of M-TiO<sub>2</sub> and HM-TiO<sub>2</sub> samples. As shown in Fig.  $S2A$  (ESI†), XPS survey spectra collected from M-TiO<sub>2</sub> and  $HM-TiO<sub>2</sub>$  are essentially identical. Besides Ti and O, only a small amount of C is observed in both samples. These results suggest

that no other impurities were introduced into  $TiO<sub>2</sub>$  mesoporous spheres through hydrogenation. From the O1s XPS spectra of the M-TiO<sub>2</sub> and HM-TiO<sub>2</sub> (Fig. 3A), HM-TiO<sub>2</sub> possesses a slightly broader peak with an additional shoulder at the higher binding  $\epsilon$  energy by comparing with M-TiO<sub>2</sub>. This broad peak could be deconvoluted into two peaks centered at 529.8 eV and 531.2 eV (Fig. 3B). While the peak centered at 529.8 eV is typically

- assigned to Ti−O bonds, the additional peak centered at 531.2 eV could be attributed to the adsorbed oxygen caused by Ov, 10 indicating an increased density of Ov on the surface of HM- $TiO<sub>2</sub>$ .<sup>35</sup> This supported the observation of surface defects in the HRTEM image. After hydrogenation,  $Ti^{3+}$  is expected to form on
- the surface of  $TiO<sub>2</sub>$ . However, there is no obvious difference in the high-resolution Ti2p spectra of M-TiO<sub>2</sub> and HM-TiO<sub>2</sub> <sup>15</sup>samples (Fig. S2B, ESI†). Their Ti2p3/2 and Ti2p1/2 peaks are centered at the binding energies of 458.6 eV and 464.3 eV, which is consistent with the characteristic of  $Ti^{4+}$  in  $TiO_2$ .<sup>36</sup> It is not surprised that no  $Ti^{3+}$  is present at the particle surface because of



Fig. 4 Photoelectrochemical properties of the prepared P-TiO<sub>2</sub>, M-TiO<sub>2</sub>, HP-TiO<sub>2</sub> and HM-TiO<sub>2</sub>. A) Photocatalytic activities for degradation of RhB under simulated solar illumination. C and C<sub>0</sub> are the RhB concentration after photocatalytic degradation and the equilibrium adsorption, 25 respectively. B) Time-dependent profiles of photocurrent responses (i-t

- curves) collected at a constant bias of 0 V (*vs* Ag/AgCl) in 0.5 M NaSO<sup>4</sup> solution with light switched on and off.
- To evaluate the effect of Ov and nanoarchitectures on the photoelectrochemical performance, various measurements were <sup>30</sup>conducted and the results were shown in Fig. 4. Photocatalytic activity of the as-synthesized  $HM-TiO<sub>2</sub>$  was assessed by monitoring the degradation efficiency of RhB. For comparison, the photocatalytic behaviors of HP-TiO<sub>2</sub>, M-TiO<sub>2</sub> and P-TiO<sub>2</sub> photocatalysts have also been investigated. Fig. 4A plots the
- <sup>35</sup>relative changes in the concentration of RhB aqueous solution as a function of the reaction time. It can be clearly seen that the HM- $TiO<sub>2</sub>$  and HP-TiO<sub>2</sub> samples take substantially shorter time for the dye degradation compared to the M-TiO<sub>2</sub> and P-TiO<sub>2</sub> samples. This difference may originate from the presence of Ov.
- $40$  Furthermore, these two hierarchical micro/nano-structured  $TiO<sub>2</sub>$ samples  $(HM-TiO<sub>2</sub>)$  and  $M-TiO<sub>2</sub>)$  exhibit higher photocatalytic activity than those of the particulate  $TiO<sub>2</sub>$  (HP-TiO<sub>2</sub> and P-TiO<sub>2</sub>). More specifically, the  $HM-TiO<sub>2</sub>$  exhibits the highest photocatalytic activity, which can completely degrade RhB dye in
- $45$  30 min under illumination. In contrast, the particulate HP-TiO<sub>2</sub> decomposes RhB dye in 35 min. Therefore, these results clearly indicate that the photocatalytic properties of  $TiO<sub>2</sub>$  can be significantly improved by introducing Ov and the hierarchical micro/nano-architecture.
- Fig. 4B illustrates the photoelectric conversion performances of the as-prepared  $P-TiO_2$ , M-TiO<sub>2</sub>, HP-TiO<sub>2</sub> and HM-TiO<sub>2</sub> samples,

based on the time-dependent profiles of photocurrent responses (i-t curves). The i-t curves also exhibit the enhanced  $55$  photoelectrochemical property of HM-TiO<sub>2</sub>. It is found that the rise and drop of the photocurrent collected from these  $TiO<sub>2</sub>$ samples all correspond well to each turn-on and –off event. The short-circuit photocurrent density of  $HM-TiO<sub>2</sub>$  is more than 1.5 mA cm<sup>-2</sup>, whereas that of P-TiO<sub>2</sub> is less than 0.5 mAcm<sup>-2</sup>. Such a <sup>60</sup>comparison of the evolution of photocurrent density for these  $TiO<sub>2</sub>$  samples makes clear that the presence of hierarchical structure and Ov can boost the photoelectrochemical performances of as-prepared  $TiO<sub>2</sub>$  samples.



65 Fig. 5 UV/Vis diffuse reflectance spectra of the prepared P-TiO<sub>2</sub>, M-TiO<sub>2</sub>, HP-TiO<sub>2</sub> and HM-TiO<sub>2</sub>.

In order to clarify the possible reasons for the enhanced photoelectrochemical performances of HM-TiO<sub>2</sub> its optical properties and electronic properties have been further studied. In  $\pi$ <sup>0</sup> Fig. 5, the optical properties of the as-synthesized TiO<sub>2</sub> samples were explored by UV/Vis diffuse reflectance spectra. In comparison with untreated M-TiO<sub>2</sub> and P-TiO<sub>2</sub> samples, a significant increase in the visible light absorption occurs for the  $HP-TiO<sub>2</sub>$  and  $HM-TiO<sub>2</sub>$ , as indicated by the rising tail of the <sup>75</sup>absorption curve in the long-wavelength range. After hydrogenation, an additional energy level of Ov, which is in the range of  $0.75$ -1.18 eV lower than the CB of TiO<sub>2</sub>, is introduced into  $\text{TiO}_2$ <sup>8</sup> The strong UV absorption can be attributed to the electronic transition from the valence band to the CB. While the so visible light absorption is due to the transitions from the  $TiO<sub>2</sub>$ valence band to the Ov levels or from the Ov to the  $TiO<sub>2</sub>$ conduction band.<sup>11</sup> The enhanced visible light absorption capability makes the  $HP-TiO_2$  and  $HM-TiO_2$  be effective photocatalysts for solar-driven applications by comparing with P- $\text{sn}$  TiO<sub>2</sub> and M-TiO<sub>2</sub>. Obviously, compared with HP-TiO<sub>2</sub>, the obtained  $HM-TiO<sub>2</sub>$  has a significant optical absorption intensity increase in UV light region, but has no evident change in absorption band edges. This additional absorption could be predominantly attributed to light scattering, resulting from the 90 presence of larger secondary spheres, which is in accordance to previous reports. $36,37$  Typically, light scattering occurs with particles  $> 100$  nm in diameter. Thus, the light scattering ability of the secondary spheres with 500-550 nm in diameter could be a plus to enhance the photon absorption and thus increases the <sup>95</sup>amount of photogenerated electrons and holes available to participate in the photocatalytic process. These results are in line

50

with the photoelectrochemical properties obtained in Fig. 4.



Fig. 6 Mott–Schottky plots collected at a frequency of 1 kHz in the dark for M-TiO<sub>2</sub> and HM-TiO<sub>2</sub> samples.

- <sup>5</sup>Subsequently, the effect of hydrogenation on the electronic properties of  $TiO<sub>2</sub>$  was investigated by Mott-Schottky plots (Fig. 6). Both  $HM-TiO<sub>2</sub>$  and M-TiO<sub>2</sub> exhibit positive slopes, as expected for n-type semiconductor. Additionally, the slope of  $HM-TiO<sub>2</sub>$  is relatively smaller than that of M-TiO<sub>2</sub>, conforming
- <sup>10</sup>enhanced donor densities (carrier densities) after hydrogenation according to the following Mott-Schottky equation:

1

$$
N_d = (2 / e_0 \varepsilon \varepsilon_0) \left[ d \left( 1 / C^2 \right) / dV \right]
$$

It should be noted that this Mott-Schottky equation was derived based on the planar structure. Nevertheless, a qualitative  $\mu$ <sub>15</sub> comparison of carrier densities between HM-TiO<sub>2</sub> and M-TiO<sub>2</sub> was reasonable because of their similar nanostructure. The increased donor density is due to the introduction of Ov, which functions as shallow electron donor, thus improving the electrical conductivities of  $TiO<sub>2</sub>$  and enhancing the separation efficiency of  $_{20}$  the photogenerated electron-hole pairs.<sup>11</sup>

A) **HM-TiO** Current Density (mAcm<sup>-2</sup>) 5  $\mathbf{3}$ HP-TiO  $-1$   $\frac{1}{1.0}$  $-0.5$  $0.0$  $0.5$  $1.0$ Potential (V vs Ag/AgCl)



Fig. 7 (A) Chopped J-V curves collected from HM-TiO<sub>2</sub> and HP-TiO<sub>2</sub> at a 25 scan rate of 10 mV s-1 between -1.0 V and +1.0 V vs Ag/AgCl; (B) EIS of HM-TiO<sub>2</sub> and HP-TiO<sub>2</sub> in Nyquist plots in 0.5 M NaSO<sub>4</sub> under simulated solar illumination at a dc potential of 0 V vs Ag/AgCl with an ac potential of 5 mV between frequency range from 100 kHz to 100 mHz. The inset is the expanded range of ordinate and abscissa in the high frequency region. <sup>30</sup>The dots with different symbols are the measured data, while, the solid lines are the fitted results.

In order to study the promotion mechanism of the separation efficiency of photogenerated electrons-holes, the chopped *J-V* curves and EIS of  $HP-TiO_2$  and  $HM-TiO_2$  were measured in this 35 work and the results were shown in Figure 7. For both of HP- $TiO<sub>2</sub>$  and HM-TiO<sub>2</sub>, the photocurrent densities increase gradually with the applied potential before leveling off to a steady photocurrent (Fig. 7A). Furthermore, the photocurrent density of the  $HM-TiO<sub>2</sub>$  sample is substantially higher than that of the HP- $40$  TiO<sub>2</sub> sample in the whole range of potentials studied. The

- $maximum$  photocurrent density of HP-TiO<sub>2</sub> sample is approxiamtely 2.8 mAcm<sup>-2</sup>, while that of the  $HM-TiO<sub>2</sub>$  sample is approxiamtely 5.2 mAcm<sup>-2</sup>. The photocurrents of the  $HM-TiO<sub>2</sub>$ are almost 2-fold higher than that of the  $HP-TiO_2$ , confirming that <sup>45</sup>the nanoarchitecture is playing a positive role on the
- photoelectrochemical performance. In addition, the onset potential for the  $HM-TiO<sub>2</sub>$  sample negatively shifts to -0.83 V *vs* Ag/AgCl, compared with -0.78 V *vs* Ag/AgCl for the HP-TiO<sub>2</sub> sample. The negative shift of onset potential indicates that the  $50$  charge separation and transportation in the HM-TiO<sub>2</sub> are more
- efficient, achieving an enhanced photocurrent. EIS was employed to obtain a deeper insight into the interface electron-transfer kinetics occurring at  $HM-TiO<sub>2</sub>$  samples. Figure 7B shows the EIS responses of  $HM-TiO<sub>2</sub>$  and  $HP-TiO<sub>2</sub>$  films <sup>55</sup>under illumination and the equivalent circuit is shown in Fig. S3 (ESI†). For this system, the Nyquist plots represent two semicircles in the frequency range between 100 mHz and 100 kHz. The semicircle in high frequency regions is assigned to the electron transport between the particles, and the one in the low <sup>60</sup>frequency region corresponds to the charge transfer at the electrode/electrolyte interface.<sup>38</sup> As shown in the inset of Fig. 7B, the semicircle or electron-transfer resistance of  $HP-TiO<sub>2</sub>$  is too large because electrons have difficulty to pass through the particle boundaries. For HM-TiO<sub>2</sub>, the semicircle or electron-65 transfer resistance decreases obviously, suggesting that the HM- $TiO<sub>2</sub>$  serves as efficient transport paths for photogenerated

electrons. The most remarkable in the EIS results is the drastic change in the low frequency region. In contrast with the large semicircle diameter of  $HP-TiO_2$ , an extremely small semicircle diameter for  $HM-TiO<sub>2</sub>$  was observed, indicating that the reactions

- <sup>5</sup>by electron transfer at the electrode/electrolyte interface should be further facilitated.<sup>38,39</sup> It means that the hierarchical nanostructure is beneficial for the charge separation, due to the augment in the active surface and an electronic conducting framework. The results of EIS are in good agreement with the
- 10 above linear sweep voltammograms. These results confirmed that the construction of hierarchical nanostructure is conducive to accelerate the electron transfer process.

#### **Conclusion**

In conclusion, the hydrogenated  $TiO<sub>2</sub>$  mesoporous spheres with

- <sup>15</sup>hierarchical structure consisting of primary nanoparticles with ∼ 15 nm in diameter and secondary colloidal spheres with 500-550 nm in diameter, have been prepared via a facile template-free strategy and subsequently hydrogen treatment. The obtained HM- $TiO<sub>2</sub>$  exhibits an enhanced photocatalytic performance, which
- <sup>20</sup>might be predominantly attributed to the introduction of hierarchical mesoporous structure besides Ov. Firstly, Ov not only boosts the light absorption but also improves the electrical conductivities of  $TiO<sub>2</sub>$ , thus enhancing the optical response and electron-hole separation. Secondly, the  $HM-TiO<sub>2</sub>$  possesses large
- <sup>25</sup>surface/volume ratio increases the electrode/electrolyte contact areas and catalytic active sites. More importantly, high accessible porosity and few grain boundaries provide a short path distance for electronic and ionic transport or mass transport, which improve the electron transport efficiency. In addition, the large
- <sup>30</sup>microscale particles can allow multiple reflections of UV light, which enhances the photon absorption and thus increases the amount of photogenerated electrons and holes available to participate in the photocatalytic process. To some extent, these results may provide a new strategy to design some photocatalysts 35 for the environmental cleaning and energy harvest.

#### **Acknowledgements**

This work was financially supported by the National Natural Science Foundation of China (41376126), Hundreds-Talent 105 Program of the Chinese Academy of Sciences (Y02616101L),

<sup>40</sup>China Postdoctoral Science Foundation (2014M551968) and Postdoctoral Innovation Project of Shandong Province (201402041).

#### **Notes and references**

45

- *Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Fax: +86-532-82880498; Tel: +86-532- 82898731;*
- <sup>50</sup>*\*Corresponding author, Prof. Zhuoyuan Chen;*

 *Email: zychen@qdio.ac.cn;* 

- † Electronic Supplementary Information (ESI) available: [details of SEM and HRTEM of HP-TiO<sub>2</sub>; XPS survey spectra and Overlay of normalized Ti 2p XPS spectra of M-TiO<sub>2</sub> and HM-TiO<sub>2</sub> and Equivalent circuit
- <sup>55</sup>modelvfor EIS should be included here]. See DOI: 10.1039/b000000x/
- 1. A. Fujishima and K. Honda, *Nature*, 1972, **238**, 37-38.
- 2. F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan and Y. Xie, *J. Am. Chem. Soc.*, 2014, **136**, 6826-6829.
- <sup>60</sup>3. G. M. Wang, Y. C. Ling, H. Y. Wang, X. Y. Yang, C. C. Wang, J. Z. Zhang and Y. Li, *Energy Environ. Sci.*, 2012, **5**, 6180-6187.
	- 4. S. S. Zhang, S. Q. Zhang, B. Y. Peng, H. J. Wang, H. Yu, H. H. Wang and F. Peng, *Electrochem. Commun.*, 2014, **40**, 24-27.
- 5. Z. Lin, A. Orlov, R. M. Lambert and M. C. Payne, *J. Phys. Chem. B*, <sup>65</sup>2005, **109**, 20948-20952.
- 6. Z. K. Zhang, M. L. Bai, D. Z. Guo, S. M. Hou and G. M. Zhang, *Chem. Commun.*, 2011, **47**, 8439-8441.
- 7. C. H. Chen, J. Shieh, S. M. Hsieh, C. L. Kuo and H. Y. Liao, *Acta Mater.*, 2012, **60**, 6429-6439.
- <sup>70</sup>8. D. C. Cronemeyer, *Phys. Rev.*, 1959, **113**, 1222-1226.
- 9. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro and V. Dal Santo, *J. Am. Chem. Soc.*, 2012, **134**, 7600-7603.
- 10. A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse and C. G. <sup>75</sup>Van de Walle, *Phys. Rev. B*, 2010, **81**, 085212.
	- 11. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, *Nano Lett.*, 2011, **11**, 3026-3033.
	- 12. X. D. Jiang, Y. P. Zhang, J. Jiang, Y. S. Rong, Y. C. Wang, Y. C. Wu and C. X. Pan, *J. Phys. Chem. C*, 2012, **116**, 22619-22624.
- <sup>80</sup>13. H. Wang, G. Wang, Y. Ling, M. Lepert, C. Wang, J. Z. Zhang and Y. Li, *Nanoscale*, 2012, **4**, 1463-1466.
	- 14. F. M. Pesci, G. Wang, D. R. Klug, Y. Li and A. J. Cowan, *J. Phys. Chem. C*, 2013, **117**, 25837-25844.
	- 15. S. Li, J. Qiu, M. Ling, F. Peng, B. Wood and S. Zhang, *ACS Appl.*  <sup>85</sup>*Mater. Interfaces*, 2013, **5**, 11129-11135.
- 16. A. T. Bell, *Science*, 2003, **299**, 1688-1691.
- 17. E. Hendry, M. Koeberg, B. O'Regan and M. Bonn, *Nano Lett.*, 2006, **6**, 755-759.
- 18. E. Yagi, R. R. Hasiguti and M. Aono, *Phys. Rev. B: Condens. Matter*, <sup>90</sup>1996, **54**, 7945-7956.
- 19. Y. Li and J. Z. Zhang, *Laser Photonics Rev.*, 2010, **4**, 517-528.
- 20. K. Sivula, F. Le Formal and M. Gratzel, *ChemSusChem*, 2011, **4**, 432-449.
- 21. S. S. Zhang, S. Q. Zhang, B. Y. Peng, H. J. Wang, H. Yu, H. H. Wang <sup>95</sup>and F. Peng, *Electrochem. Commun.*, 2014, **40**, 24-27.
- 22. D. A. Wheeler, Y. Ling, R. J. Dillon, R. C. Fitzmorris, C. G. Dudzik, L. Zavodivker, T. Rajh, N. M. Dimitrijevic, G. Millhauser, C. Bardeen, Y. Li and J. Z. Zhang, *J. Phys. Chem. C*, 2013, **117**, 26821- 26830.
- <sup>100</sup>23. J. Ferber and J. Luther, *Sol. Energy Mater. Sol. Cells*, 1998, **54**, 265- 275.
	- 24. Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe and G. Cao, *Adv. Funct. Mater.*, 2008, **18**, 1654-1660.
- 25. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, *J. Am. Chem. Soc.*, 2003, **125**, 6306-6310.
- 26. D. R. Rolison, *Science*, 2003, **299**, 1698-1701.
- 27. W. Zhou, W. Li, J. Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu and D. Zhao, *J. Am. Chem. Soc.*, 2014, **136**, 9280-9283.
- <sup>110</sup>28. C. Y. Yan, W. T. Yi, H. M. Yuan, X. X. Wu and F. Q. Li, *Environ. Prog. Sustainable Energy*, 2014, **33**, 419-429.
	- 29. L. Shi, L. Liang, J. Ma, F. Wang and J. Sun, *Dalton Trans.*, 2014, **43**, 7236-7244.
	- 30. X. Y. Zhang, X. Chen, S. M. Dong, Z. H. Liu, X. H. Zhou, J. H. Yao,
- 115 S. P. Pang, H. X. Xu, Z. Y. Zhang, L. F. Li and G. L. Cui, *J. Mater*. *Chem.*, 2012, **22**, 6067-6071.
	- 31. B. Oregan, J. Moser, M. Anderson and M. Gratzel, *J. Phys. Chem.*, 1990, **94**, 8720-8726.
	- 32. H. Q. Lu, B. B. Zhao, R. L. Pan, J. F. Yao, J. H. Qiu, L. Luo and Y. <sup>120</sup>C. Liu, *RSC Adv.*, 2014, **4**, 1128-1132.
	- 33. X. Chen, L. Liu, P. Y. Yu and S. S. Mao, *Science*, 2011, **331**, 746- 750.
- 34. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, *Pure Appl. Chem.*, 125 1985, **57**, 603-619.

- 35. Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai and M. H. Whangbo, *Chem. Commun.*, 2012, **48**, 5733-5735.
- 36. S. Hoang, S. P. Berglund, N. T. Hahn, A. J. Bard and C. B. Mullins, *J. Am. Chem. Soc.*, 2012, **134**, 3659-3662.
- <sup>5</sup>37. X. Lai, J. E. Halpert and D. Wang, *Energy Environ. Sci.*, 2012, **5**, 5604.
- 38. E. S. Kim, N. Nishimura, G. Magesh, J. Y. Kim, J. W. Jang, H. Jun, J. Kubota, K. Domen and J. S. Lee, *J. Am. Chem. Soc.*, 2013, **135**, 5375-5383.
- <sup>10</sup>39. W. H. Leng, Z. Zhang, J. Q. Zhang and C. N. Cao, *J. Phys. Chem. B*, 2005, **109**, 15008-15023.



The hydrogenated TiO2 mesoporous spheres with hierarchical structure consisting of primary nanoparticles with ~ 15 nm in diameter and secondary colloidal spheres with 500-550 nm in diameter, have been prepared via a facile template-free strategy and subsequently hydrogen treatment. 253x123mm (96 x 96 DPI)