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Aluminum magnesium oxide nanocomposites are prepared 
via a one-step microwave assisted solvothermal method, and 
they show high adsorption capacities for removal both of As 
(V) and Pb (II) ions in water.  

Heavy metal ions, such as As (V), Pb (II) and Cd (II), are highly 10 

toxic pollutants, which can have serious side effects and toxicities 
on human health when their concentrations are higher than 
permissible limits.1-3 Therefore, their efficient removal from 
water is an actively pursued goal in these years. Various methods, 
including chemical coagulation, ion exchange, membrane process, 15 

electrochemical method, and adsorption, have been developed for 
the removal of these heavy metal ions.3-15 Among these methods, 
adsorption technique is perhaps the most extensively adopted due 
to its low cost and simplicity. However, traditional absorbents 
such as activated carbon, activated alumina, clay and zeolite 20 

show limited adsorption abilities for heavy metal ions. 
Nanomaterials, including metal oxides with hierarchical 
nanostructures and layered double hydroxides, have shown 
excellent adsorption capacities for heavy metal ions removal.14-20 
The adsorption capacity of nanomaterials can be attributed to 25 

high surface area, facile mass transportation and abundance active 
adsorption sites. Song et al. developed many different kinds of 
nanomaterials, such as flowerlike α-Fe2O3, CeO2 hollow 
nanospheres, ordered mesoporous γ-Al2O3, urchin zinc silicate, 
which showed higher adsorption capacities than commercial 30 

adsorbents.21-28 Recently, they reported a novel protocol of 
synthesizing flowerlike magnesium oxides and aluminum basic 
carbonate microporous nanospheres for removal of Pb (II) and As 
(V) with maximum adsorption capacities of 1980 mg/g and 170 
mg/g, respectively.29, 30 Despite these outstanding achievements 35 

having been obtained, most of the results can only removal either 
negatively charged heavy metal anions or positively charged 
heavy metal cations alone.   

Wang et al. and Lou et al. fabricated chrysanthemum-like α-
FeOOH31 and urchin-like α-FeOOH hollow nanospheres32, 40 

respectively, and found their good adsorption property for both of 
As (V) and Pb (II). Yang et al. prepared hierarchical porous 
magnetic nanomaterial with high adsorption capacities for 
removal of Pb (II), As (V) and Cr (VI) ions from aqueous 
solution.33 However, the adsorption capacities of these adsorbents 45 

are still relatively low. In addition, expensive chemicals and 
complicated synthesis processes are usually used, which limit 
their practical applications. Therefore, there is an urgent demand 

for developing a low-cost and facile method to fabricate 
nanomaterials with high adsorption capacities for removing 50 

various cationic and anionic heavy metal ions.  
Herein, we present a facile one-step synthesis of aluminum 

magnesium oxide nanocomposites via microwave assisted 
solvothermal method, which is a simple, template-free and low-
cost route. In addition, the morphologies and structures of 55 

obtained aluminum magnesium oxide nanocomposites can be 
easily tuned through changing the molar ratio of Al3+ and Mg2+ 
addition. These nanocomposites had large surface area and 
showed excellent adsorption properties for both As (V) and Pb (II) 
with maximum adsorption capacities of 133 mg/g and 423 mg/g, 60 

respectively.  
In a typical synthesis, certain amount of Al(NO3)3•9H2O, 

Mg(NO3)2•6H2O (total metal molar is 10 mmol) and 20 mmol of 
urea were dissolved in 100 mL of anhydrous ethanol under 
sonication to form clear solution, and then about 40 mL solution 65 

was poured into a Teflon-lined autoclave for microwave heating. 
The oven was heated to 150 °C in 2 min by microwave irradiation, 
and then kept at that temperature for additional 30 min. 
Precipitates were collected by centrifugation after cooling to 
room temperature, and then washed with water and ethanol. 70 

Finally the samples were dried at 80 °C for 5 h. The detail 
experiment procedures are shown in the supplementary 
information. Samples obtained with different molar ratio of Al3+ 
and Mg2+ were defined as AlxMgy nanocomposites, x is the molar 
of Al(NO3)3•9H2O and y is the molar of Mg(NO3)2•6H2O. 75 

Unlike previously reported methods with multistep for 
synthesis of nanocomposites,33 one-step microwave assisted 
solvothermal method without organic template or solvent is used 
to prepare hierarchical aluminum magnesium oxide 
nanocomposites in this work. Microwave heating has major 80 

advantages in cost- and time-efficient, with which the reaction 
time for the solvothermal process can be fulfilled within 30 min. 
In addition, microwave heating leads to uniform heating of the 
whole synthesis mixture, resulting in homogeneous 
nanocomposites in shape and size. Overall, this method is facile, 85 

low-cost and environment-friend. 
Fig. 1a shows the typical SEM image of Al3Mg7 

nanocomposites samples, where the surface of the 
nanocomposites was rough and many sheets were deposited on 
the surface. TEM images (Fig. 1b) clearly shows that Al3Mg7 90 

nanocomposites are composed of “graphene-like” sheets wrapped 
with nanospheres. The corresponding X-ray diffraction (XRD) 
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two typical toxic heavy metal ions in water resources, and their 
efficient removal is of great importance. Fig. S3 shows the 
adsorption rates of As (V) and Pb (II) solutions with an initial 
concentration of 50 mg L-1 on the Al8Mg2 spheres at room 
temperature. The adsorption processes are very fast as the 5 

equilibriums are reached in only 30 min. Fig. 4a and Fig. 4b show 
the adsorption isotherms of alunimum magnesium oxide 
nanocomposites with different molar ratio of alunimum and 
magnesium for As (V) and Pb (II), respectively. The adsorption 
data were fitted with the Langmuir model as follows:  10 

qe = qmbCe/(1 + bCe) 

Where Ce is the equilibrium concentration of heavy metal ions 
(mg/L), qe is the amount of heavy metal ions adsorbed per unit 
weight of the adsorbent at equilibrium (mg/g), qm (mg/g) is the 
maximum adsorption capacity and b is the equilibrium constant 15 

related to the adsorption energy. 
It showed that the experimental data agreed well with 

Langmuir model, indicating the mono-surface complexion 
processes. The maximum adsorption capacities of alunimum 
magnesium oxide nanocomposites can be calculated according to 20 

the fitting curves, as shown in Fig. 4c. The maximum adsorption 
capacities for As (V) and Pb (II) were 133 mg/g on Al8Mg2 and 
423 mg/g on Al2Mg8, respectively. These values are significantly 
higher than the values in recent literatures that can both adsorb 
anions and cations, as shown in Table 1. In addition, these 25 

adsorbents can be regenerated with NaOH (0.1 M) for re-usability. 
Taking Al8Mg2 spheres for example, a recycling test shows that 
their capacities can be maintained as 124 mg/g and 200 mg/g for 
As (V) and Pb (II) after regeneration.  

 30 

    

 
Fig. 4 Adsorption isotherms of (a) As (V), (b) Pb (II) and (c) maximum 
adsorption capacities on alunimum magnesium oxide nanocomposites 
with different molar ratio of alunimum and magnesium.  35 

 

Table 1. Maximum adsorption capacities of different adsorbents for As 
(V) and Pb (II) 

Adsorbents 
Maximum adsorption 

capacity (mg/g) 
As (V) Pb (II)  

Al8Mg2 (this study) 133 215 

Al2Mg8 (this study) 38.7 423 

Chrysanthemum-like α-FeOOH31 66.2 103 

Urchin-like α-FeOOH hollow nanospheres32 58 80 

Porous magnetic Fe2O3@AlO(OH)33 74.9 84.1 

 
Difference of adsorption capacities for Pb (II) and As (V) on 40 

the aluminum magnesium oxide nanocomposites with different 
molar ratio of Al3+ and Mg2+ can be ascribed to the following 
reasons. According to the literatures, the active adsorption sites 
for As (V) and Pb (II) are aluminum and magnesium, 
respectively.29, 30 Therefore, when amount of aluminum in the 45 

composite is high, adsorption capacity for As (V) is also high, 
while adsorption capacity for Pb (II) is low. On the contrary, low 
adsorption capacity for As (V) and high adsorption capacity for 
Pb (II) can be found when low aluminum and high magnesium 
are in the composites. Moreover, alunimum magnesium oxide 50 

nanocomposites with different chemical structures showed 
different surface areas, which also affected the adsorption 
properties for heavy metal ions. 

In conclusion, aluminum magnesium oxide nanocomposites 
were prepared via one-step microwave assisted solvothermal 55 

method. This is a simple, template-free and low-cost route. These 
nanocomposites had large surface area and could adsorb both 
heavy metal anions and cations. The maximum adsorption 
capacities for As (V) and Pb (II) were 133 mg/g and 423 mg/g, 
respectively.  60 
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