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ABSTRACT 8 

Synergistically combined nanomaterials have been applied in various fields in materials science 9 

to improve the properties of the nanocomposites. However, limited studies focused on the ability 10 

of such composites for water treatment. Graphene oxide (GO)–iron oxide (Fe3O4) magnetic 11 

nano-particles composite (GOMNP) was synthesized and used to study the Hg
2+

 adsorption 12 

kinetics from aqueous solution at varying temperatures. GO was attached to magnetic 13 

nanoparticles via the amine group of 3-aminopropyltriethoxysilane which was attached the 14 

surface of Fe3O4. The GOMNP nano–composite had a Hg
2+

 adsorption capacity of 16.6 mg g
–1

. 15 

IR spectra analysis showed that hydroxyl and carboxylate functional groups were mainly 16 

responsible for Hg
2+

 adsorption. Adsorption of Hg
2+ 

by the GOMNP obeyed different adsorption 17 

mechanisms at varying adsorption temperatures. The Elovich kinetics model described the Hg
2+ 

18 

adsorption data better than any other three models tested. GOMNP nano–composite is thus a 19 

promising nanosorbent for Hg
2+ 

removal from aqueous solutions. 20 

Keywords: Graphene oxide; Iron magnetic (Fe3O4) nanoparticles; Mercury; Adsorption; 21 

Kinetics.  22 
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 1 

1. INTRODUCTION 2 

     The adverse impact of mercury (Hg) on biota is well documented. It has been known to cause 3 

dysfunctional organs in human such as in the digestive, reproductive, cardiovascular and nervous 4 

systems, kidney, brain and eye
1,2

. At minute concentrations of more than 6 ppb, mercury is 5 

considered very toxic
2,3

. Hg occurs in the environment mainly in the form of methyl mercury, 6 

and in this and its other environmental forms it is not essential for plants or animals.
1
 Soils and 7 

sediments are usually its final sink, and when in the environment elemental Hg gets easily 8 

methylated and it can be readily absorbed by biota in this methylated form, thus accumulating in 9 

humans via the food chain
1,4,5

. A vivid example of mercury poisoning was seen in the Minamata 10 

incidence in the 1950s in Japan. 11 
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     Recent studies have reported increasing cases of Hg in the environment
6
 and in humans

5
 1 

especially in Asia due to the recent boom in industrial activities in this region. Anthropogenic 2 

emissions are either from intentional uses or as byproduct of other activities. At present, coal 3 

combustion represents a substantial source of Hg to the environment,
7
 and about half of current 4 

emissions are from Asia. Other sources include industrial processes such as cement and chlor-5 

alkali productions, and mining applications, including artisanal and small-scale gold mining.
6
 Hg 6 

in the environment finds its way into water and subsequently to soil where it is readily absorbed 7 

by aquatic organisms such as fishes and plants, respectively. Hence, reducing the quantity of 8 

mercury in effluents before discharge is necessary to reduce the amount of Hg that gets into the 9 

environment, and subsequent accumulation in biota. 10 

     The unique structural and functional properties associated with graphene oxide (GO), such as 11 

its high mechanical strength (>1060 GPa), theoretical surface area (about 2600 m
2 

g
–1

), and the 12 

presence of hydroxyl and carboxylic groups are important characteristics that make graphene 13 

oxide containing materials suitable for environmental applications.
8
 For instance some authors 14 

have employed these properties for adsorption of biphenol A
9
 and arsenic,

10,11
 while others have 15 

employed the unique chemical and physical properties of iron magnetic nanoparticles together 16 

with other materials in the removal of some toxic substances from solution.
8,12,13

 Iron magnetic 17 

nanoparticles have the ease of being removed from solution by magnetization. Iron magnetic 18 

nanoparticles synergistically combined with other nanomaterials have very promising capacities 19 

for water treatment. 20 

     With the foregoing in mind, the aim of this study was to covalently combine GO and iron 21 

magnetic nanoparticles into one chemical entity at reduced temperature, and employ this new 22 
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material in the removal/adsorption of Hg
2+

 from aqueous solution. The adsorption data was 1 

explained kinetically. 2 

2. MATERIAL AND METHODS 3 

2.1 Preparation of GO and Synthesis of the APS–Fe3O4 hybrid nanoparticles 4 

The chemical exfoliation of natural flake graphite was carried out by modified Hummers’ 5 

method in which a very long oxidation period was combined with a multi-cycle purification 6 

process.
8
 (See supporting information) 7 

Fe3O4 nanoparticles (FNPs) were prepared using the chemical co-precipitation method by mixing 8 

3.0 mL of 1 M FeCl3 and 1.0 mL of 2 M FeCl2 (ratio 2:1) solution in a 100 mL beaker containing 9 

a magnetic stirring bar. This mixture was continuously stirred under nitrogen while slowly 10 

adding 1.0 M aqueous NaOH solution. The initial brown precipitate then turned to a black 11 

precipitate (magnetite) while still adding NaOH. The stirrer was turned off and the magnetic 12 

stirring bar removed with a strong magnet. The magnetite formed was allowed to settle and the 13 

supernatant decanted. The solid was then washed with water and then ethanol accompanied by 14 

magnetic decanting after each washing. This is the iron oxide magnetic nanoparticles (FMNP). 15 

0.3 g of the synthesized FMNP was then dispersed in 20 mL ethanol by sonication. 3 mL (3–16 

aminopropyl)–trimethoxysilane (APS) was added to the solution with continued sonication for 17 

10 min, and then incubated at 60 C for 4 hr. Enough N-(3-Dimethylaminopropyl)-N’-18 

ethylcarbodiimide hydrochloride (EDC) was added to make 100 mM and the solution sonicated 19 

for 5 min. The APS reaction is similar to that adopted by He et al.
14

 20 

 21 

 22 
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2.2 Synthesis of GO- Fe3O4 nanoparticles 1 

GO magnetic nanoparticles (GOMNP) was synthesized from various concentrations of GO 2 

solutions. Solutions containing known amounts of GO were prepared in water and sonicated for 3 

5 min (Supporting Information – Table S1). Specific volume of these solutions were added to the 4 

APS–Fe3O4 mixture above to obtain the final ‘x’ mg ml
–1

 GO concentration (‘x’ refers to GO 5 

concentration which could either be 0.5 or 1.0 mg mL
–1

; thus representing FMNP:GO 6 

concentration ratios of 2:1 and 1:1, respectively) (Table S1). These concentration ratios are 7 

denoted as GOMNP-1 and GOMNP-2, respectively. The solutions were mixed, sonicated for 10 8 

min. and incubated at 65 C for 8 hr. The GOMNP particles were then separated by 9 

magnetization, washed with water and ethanol thrice, and then freeze dried. Three control pots 10 

were set up containing: (a) all reagents but EDC (GOMNP); (b) only FMNP and APS (APS-11 

FMNP); and, (c) FMNP and GO only (GOMNP-0). These were to ascertain the success of the 12 

FMNP/APS and FMNP/APS/GO reactions (Table S1). 13 

2.3 Instrumental Characterizations: The GOMNP particles were characterized by Spectrum 14 

One Fourier transform infrared (FTIR) spectrometer (PerkinElmer Instruments Co. Ltd., USA), 15 

Pyris Diamond Thermogravimetric/differential thermal analyzer (PerkinElmer Instruments Co. 16 

Ltd., USA), Renishaw inVia Raman spectrometer (Renishaw plc, UK), Philips XʹPert PRO X-17 

ray diffraction instrument (PANalytical B.V., Netherlands), and Micromeritics ASAP 2020 M + 18 

C accelerated surface area and porosimetry analyzer (Micromeritics Instrument Corporation, 19 

USA). Mercury adsorptions were monitored using Varian 710-ES ICP optical emission 20 

spectrometer (Supporting Information – S2). 21 

 22 

 23 
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2.5 Mercury adsorption 1 

Batch equilibrium adsorption procedure
15

 was used to determine the Hg
2+ 

adsorption kinetics of 2 

GOMNP. The adsorptions were done at pH 5.0±0.2 for three temperatures – 20, 30 and 40 °C, in 3 

the time range of 5 to 180 minutes using a mercury solution concentration of 50 mg L
−1

 and 20 4 

mg of the GOMNP–1 each time. The Hg
2+

/GOMNP–1 mixtures were incubated by shaking at 5 

the desired temperature in a temperature controlled shaker during the course of the adsorption 6 

experiment. The tubes were withdrawn from the shaker at the appropriate time interval, 7 

GOMNP–1 in solutions was separated and the Hg
2+ 

concentration in the supernatant determined. 8 

The quantity of Hg adsorbed in each case was calculated using equation 1. 9 

  
M

VCC
q

)( eo
e


      (1) 10 

where eq ,  oC  and eC  are the amount of Hg adsorbed (mg g
−1

), the initial and final Hg 11 

concentrations in the solution (mg L
−1

), respectively; and V (mL) and M (g) are the volume of 12 

solution and mass of GOMNP–1 used for each adsorption, respectively. 13 

     The simplified linear equations of Lagergren pseudo-first-order – PFO (equation 2), pseudo 14 

second-order – PSO (equation 3) rate models as well as the Elovich (equation 4) and intra-15 

particle diffusion [16] (equation 5) kinetics models were used to describe the adsorption data.  16 
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where eq  and tq  are Hg adsorbed (mg g
−1

) at equilibrium and at time t, respectively; and 1k  1 

(min
−1

) and 2k (g μg
–1 

min
–1

) are the rate constants of the PFO and PSO, respectively. The eq and 2 

rate constants were calculated from the slope and intercept of the plots of log )( te qq  vs. t; and 3 

tq

t
 vs. t for PFO and PSO, respectively, α is the initial adsorption rate (mg g

−1 
min

−1
) and β is the 4 

desorption constant (g mg
−1

) during any one experiment, and C (μg g
–1

) values indicate the 5 

thickness of the boundary layer of Hg
2+

 ion adsorbed, and ik
 
(mg/g/min

1/2
) is intra-particle 6 

diffusion rate constant of the control stage. 7 

 8 

Figure 1: Schematic synthesis of GOMNP. 9 
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3. RESULTS AND DISCUSSION 1 

3.1 Characterization. 2 

The schematic synthesis of the iron magnetic nanoparticles (FMNP) and GO composite is shown 3 

in Figure 1. The FMNP particles were first synthesized and then reacted with 3-4 

aminopropyltriethoxysilane (APS), and subsequently GO sheets were attached via the amine 5 

group on the APS. This was similar to the modification reaction carried out by He et al. [14] 6 

Figure 2a shows the IR spectra of GO and the various modified GO–MNPs. The characteristic 7 

peaks of pristine GO for hydroxyl groups, –C=O bond of the amide-I, carboxylate vibrations, 8 

and –C–O band of carboxylic acids were observed at 3436, 1627, 1421, and 1068 cm
−1

, 9 

respectively.
8
 The IR spectra of various modified GOMNP were different from that of GO as 10 

shown in Figure 2a suggesting that the treatment conferred new functional groups unto the GO. 11 

In addition to the observed peaks of pristine GO, distinct peaks originating after the treatments 12 

were observed in the GOMNP as well as the APS-FMNP. The hydroxyl and amide I band stretch 13 

of C=O were observed at around 3436 and 1628 cm
−1

, respectively. However, the GO band at 14 

1068 cm
−1 

disappeared with the appearance of three new bands at 890, 1051 and 1129 cm
−1 

15 

indicating the presence of Si–O from APS in the newly formed structure.  The band around 1330 16 

cm
−1

 was attributed to –CH2– scissor of the aliphatic propyl chain of the APS while additional 17 

bands around 1491 and 1566 cm
−1

 was assigned to the amine –C–N– and –NH bend linking APS 18 

and GO.
15

 The peak close to 600 cm
−1

 was ascribed to absorption by the Fe–O bond of the iron 19 

oxide. These bands indicate a covalent linkage between GO and the FMNP.
17

 20 
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          1 

         2 

Figure 2. (a) IR spectra of the various synthesized materials; (b) TGA of the GOMNP materials; 3 

(c) Raman spectra of GO, APS-FMNP, and GOMNP; (d) magnetic separation from solution test 4 

(i) GOMNP–0, (ii) GOMNP and (iii) GOMNP–1. 5 

     TGA curves of GO, and the various FMNP modifications are shown in Figure 2b. The curve 6 

for FMNP showed little weight loss – about 3% below 250°C. Comparing the FMNP with the 7 

pristine GO, it was observed that GO showed a far lower thermal stability and much higher 8 

weight loss losing about 60 % of its original weight before 380 °C. This weight loss was due to 9 

moisture loss at the initial temperature, and later on the pyrolysis and decomposition of the labile 10 

oxygen–containing functional groups such as –CO, −OH and – COOH attached to GO resulting 11 

in the loss of CO, CO2 and steam. Further weight loss, which was steady (∼5%) occurred 12 

thereafter in the temperature range of  about 400 to 800°C, and this may be attributed to removal 13 

of more stable functional groups at higher temperatures. However, modification of the GO with 14 
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FMNP reduced the weight loss. The weight loss was between 15 to 25 % depending on the 1 

effectiveness of the reaction between GO and FMNP. The higher the quantity of GO attached to 2 

FMNP, the more the weight loss. Though magnetic separation test result (Figure 2d) showed that 3 

it is possible to react APS–FMNP and GO to obtain GOMNP, comparison of the TGA data of 4 

GOMNP, GOMNP–1, and GOMNP–2 showed that higher quantity of GO (up to 5% more) can 5 

be attached to FMNP in the presence of EDC; thus, more GO was linked per gram FMNP in the 6 

presence of EDC. 7 

     Raman spectroscopy is another method for the identification of the presence of carbonaceous 8 

materials as well as iron oxide phase in a compound because of the varying vibrational 9 

fingerprints of magnetite, maghemite and hematite. Raman spectra of the GO and the modified 10 

GOMNPs showed the presence of the added carbonaceous materials in the GOMNPs (Figure 11 

2c). GO and GOMNP-1 displayed the well known D– and G–bands associated with GO 12 

materials at around 1354 and 1600 cm
−1

, respectively. The D peaks were attributed to the 13 

presence of condensed benzene regions in the graphene structure, while the G peaks were 14 

evidence of sp
2
 bonded carbon that is present in planar sheet configurations which includes sp

2
 15 

C=C stretch vibrations.
8
 The spectra of APS-FMNP and GOMNP showed additional peak at 670 16 

cm
−1

 which corresponds to that of magnetite. The BET surface areas and porosities of GO, 17 

FMNP and GOMNP-1 were determined as 56, 125 and 214 m
−2 

g
−1

, respectively; and adsorption 18 

average pore diameters of 4.8, 13.7, and 13.1 nm, respectively (Supporting Information – Figure 19 

S1). The observed increases in surface area of these new materials were attributed to the rigid 20 

nature of the FMNP particles which reduces stacking of the GO sheets; and hence increases the 21 

surface area. 22 
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     To ascertain whether the magnetic property of the FMNP were transferred to GOMNP by the 1 

FMNP attachment to the GO surface via the amine group of the 3-aminopropyltriethoxysilane 2 

(APS), GOMNP, GOMNP–0 and GOMNP–1 were subjected to magnetic separation test. If the 3 

GO sheets are attached to the FMNP, separation will be perfect in the presence of external 4 

magnetic field. After 20 min, it was observed that GOMNP and GOMNP–1 were separated as 5 

shown in Figure 2d. However, the GOMNP-0 (Figure 2di) remained unseparated just like before 6 

the application of the external magnetic field and no clear solution was observed indicating that 7 

GO–magnetic hybrid particles were not formed like in the GOMNP and GOMNP–1. For 8 

GOMNP (Figure 2dii) partial separation was observed, while GOMNP–1 (Figure 2diii), on the 9 

other hand, showed a complete separation. This was an indication that the FMNPs were attached 10 

to the GO and were separated along with the GO sheets. GO were covalently attached to the 11 

FMNP via amide bonds which were formed between the amine group of APS and the carboxylic 12 

group of the GO sheets. He et al.
14

 have reported a similar reaction using APS. 13 

Page 11 of 20 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



12 

 

      1 

                  2 

Figure 3 a(i). effect of time on Hg
2+

 adsorption by GOMNP–1; a(ii). non-linear curves of the 3 

intra-particle diffusion kinetics model at the various temperatures studied; (b) IR spectra of Hg
2+

 4 

loaded and pristine GOMNP; (c) XRD patterns of GO, FMNP, Pristine GOMNP–1, and 5 

GOMNP–1 loaded with Hg
2+

. 6 

 7 

3.2  Adsorption kinetics of Mercury. 8 

Batch equilibrium adsorption procedure was used to study the Hg
2+

 adsorption kinetics of 9 

GOMNP–1 at pH 5.0±0.2 and at 20, 30, and 40 °C using Hg
2+

 concentration of 50 mg L
−1

 and 20 10 

mg of GOMNP–1 in the time range of 5 to 180 minutes. Adsorption kinetics study is important 11 

because it gives information on the rate of the adsorption of a particular sorbate under a set of 12 

prescribed conditions. Preliminary investigations conducted to compare the Hg
2+

 adsorption 13 

capacity of pristine GO and GOMNP–1 showed that GO has Hg
2+

 adsorption capacity of 2.9 mg 14 
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g
−1

 while GOMNP–1 has over 5 fold higher adsorption capacity. The adsorption time curve 1 

(Figure 3a(i)) showed that Hg
2+

 adsorption equilibria were fast and this was reached within 120 2 

minutes. Similar fast adsorption results have been reported in literature for graphene based 3 

materials.
10,17,18

 The difference in adsorption capacities of GO and GOMNP–1 is an indication 4 

that in addition to the adsorption sites on the GO sheets provided by the presence of the 5 

carboxylic (−COO) and hydroxyl (−OH) functional groups, the FMNP particles magnetic acted 6 

as sorbent for Hg
2+

 in solution. The significant difference in the Hg
2+

 adsorption capacities of 7 

both GO and GO/FMNP composites is also testimony to the success of attaching GO to the 8 

FMNP particles. Figure 3a(i) also showed that increase in Hg
2+

 solution temperature from 20 to 9 

40 °C did not lead to a corresponding increase in adsorption capacity, but that adsorption 10 

capacity is inversely proportional to the temperature. The adsorption trend is 20 °C > 30 °C > 40 11 

°C. The negative effect of temperature on the adsorption of Hg
2+

 by the GOMNP–1 material may 12 

be an indication that the process occurs mainly by physisorption and is exothermic. Vidic and 13 

Siler
2
 and Olsen et al.

7
 have also reported similar temperature effect on Hg

2+
 adsorption. This 14 

observation could be explained thus: Hg metal is liquid and volatile at room temperature; 15 

increasing the adsorption medium temperature increases the kinetic energy of the molecules in 16 

solution and subsequently the molecules moves away from the adsorption surfaces, and hence 17 

the observed reduction in adsorption with increase in temperature.  18 

 19 

 20 

 21 

 22 

 23 
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Table 1: Adsorption kinetics model parameters at 20, 30, and 40 °C 1 

 

Kinetics model 

 

Model parameters 

Temperatures  

20 C 30 C 40 C 

pseudo-first-order 
eq  (mg g

–1
) 2.76 2.08 1.67 

1K  (min
–1

) 0.007 0.002 0.002 

 r
2
 0.909 0.720 0.869 

pseudo-second-order 
eq  (mg g

–1
) -* - - 

2K (g mg
–1 

min
–1

) - - - 

 r
2
 0.922 0.522 0.154 

Elovich qe (mg g
–1

) 16.61 16.43 16.33 

β  7.87 10.75 10.00 

 r
2
 0.950 0.851 0.990 

Intra-Particle diffusion  C (mg g
–1

) 16.17 16.12 16.00 

 Ki
 

0.04 0.03 0.03 

 r
2

 
0.990 0.800 0.917 

  * values are less than 0.001 2 

     The Hg
2+

 adsorption data at 20, 30, and 40 °C was fitted to four kinetics models: the pseudo–3 

first order, pseudo–second order, Elovich and intra–particle diffusion kinetics models (Table 1). 4 

These models were used to describe the adsorption as well as predict the adsorption 5 

mechanism(s) involved in the uptake of Hg
2+

 by GOMNP–1.  Data from Table 1 indicated that 6 

the Lagergren pseudo–first order kinetics described the adsorption better than the Lagergren 7 

pseudo–second order kinetics model as revealed by the correlation coefficients (r
2
) values. 8 

However, none of these models were able to predict the adsorption capacity of the GOMNP–1 9 
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material, nor could they be used to confidently predict the adsorption mechanism that controlled 1 

the adsorption process of Hg
2+

 on GOMNP–1.  2 

     The r
2
 values of the Elovich kinetics model on the other hand showed that the adsorption data 3 

fitted the model better than the pseudo–first order and pseudo–second order kinetics models. The 4 

Elovich model was able to predict the adsorption capacity of the GOMNP for the sorbate. This 5 

adsorption model which originated from chemical reaction kinetics suggested that there was 6 

some degree of boundary layer control between the Hg
2+

 ions and the GOMNP–1 surface active 7 

adsorption sites since the curves does not pass through the origin (Supporting Information – 8 

Figure S2 a, b, c). This boundary layer control is related to the rate determining mechanism and 9 

involved valence electron forces through sharing of electrons between the Hg
2+

 and GOMNP–1 10 

surface active adsorption sites.
19

 11 

     The adsorption kinetic data were further processed to determine whether intra–particle 12 

diffusion was the rate limiting step of the adsorption and to find rate parameters for the model 13 

(Table 1 and Figure 3aii). The r
2
 values of the intra–particle diffusion model were all relatively 14 

better than those of other studied models (>0.800) and the C (μg g
–1

) values of this model, an 15 

indication of the boundary layer thickness of Hg
2+

 on the adsorbent surface, showed that the 16 

Hg
2+

 removal process was mainly surface phenomenon (adsorption) occurring by physisorption. 17 

This conclusion was reached because the quantity of Hg
2+

 on the adsorbent surface significantly 18 

correlated to the experimental values. At lower temperature (20 C), the r
2
 value of the pseudo–19 

second-order kinetics was higher than that of the pseudo–first–order kinetics. The high r
2
 values 20 

of intra-particle diffusion and pseudo–second-order kinetics models support the assertion that the 21 

overall rate of the adsorption process was controlled by more than one–step as observed from the 22 

non-linear curves of Figure 3a(ii). However, as ambient temperature increased, the adsorption 23 
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mechanism changed; the r
2 

values of the intra-particle diffusion model at higher temperatures (20 1 

and 30 C) were close to unity and also significantly higher than those of both the pseudo–first– 2 

and –second–order kinetics. This indicated that as temperature increased the intra-particle 3 

diffusion was the predominant rate determining step of Hg
2+

 adsorption on the GOMNP–1 4 

surface. This was evident in the shapes of the intra-particle diffusion model curves in Figures 5 

3a(ii) at 30 and 40 C. Hence, different kinetics mechanisms control Hg
2+

 at different solution 6 

temperatures. 7 

     The infra-red spectra of the Hg
2+

-loaded and unloaded GOMNP–1 were compared (Figure 8 

3b). It was observed that the Hg
2+

-loaded GOMNP–1 spectra showed shifts in spectra peaks 9 

(especially for the carboxylate and hydroxyl groups) as well as new spectra bands. The amide–I 10 

band at 1628 shifted to 1632 cm
–1

, while the hydroxyl vibration at 1491 cm
–1

 shifted to 1442 cm
–

11 

1
. However, there was a peak split at 3436 cm

–1
 resulting into two new peaks observed at 3324 12 

and 3551 cm
–1

. These peaks were attributed to the adsorption of Hg
2+

 on the hydroxyl functional 13 

group. These peak shifts and new bands associated with hydroxyl vibrations and amide–I bands,  14 

have been attributed to the counter ions changes associated with these functional groups anions 15 

after the adsorptions of Hg
2+

; and are indications of the role played by these functional groups on 16 

the GOMNP–1 surface.  17 

     The crystal phase compositions of the pristine FMNP, GO, GOMNP-1 as well as the Hg
2+

 18 

loaded GOMNP-1 were studied by powder X-ray diffraction (Figure 3c(i–iv)). The analysis of 19 

X-ray patterns revealed structural changes that occurred after specific reactions/adsorption. GO 20 

(Figure 3ci) showed a strong peak around 2θ=12 and a weak broad peak around 23. Both 21 

peaks indicated the presence of functional groups containing oxygen which was formed during 22 

the strong graphite oxidation process.
20

 The pristine GOMNP–1 XRD diffractions (Figure 3ciii) 23 
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showed the characteristic peaks associated with the presence of pure spinal structures of Fe3O4 1 

(Figure 3civ) at 2θ values of 30.1, 35.5, 43.1, 53.6, 57.1 and 62.7°, with the respective indices of 2 

(220), (311), (400), (422), (511), and (440), as well as the GO diffraction bands discussed earlier. 3 

These observations above indicated that the formation of the GOMNP–1 did not result in phase 4 

change of Fe3O4. As similarly observed in the IR spectra, there was a shift in the diffraction 5 

pattern of the GOMNP–1 after Hg
2+

 adsorption (Figure 3cii). All FMNP and GO 2θ observed 6 

bands were also present in the Hg
2+

-loaded GOMNP–1. However, the GO diffraction band 7 

around 2θ=23 became broadened. This was attributed to the presence of Hg
2+ 

which caused a 8 

distortion in the crystal structure of the GOMNP–1 within that band area; and since that band 9 

area has been attributed to GO; this suggested that Hg
2+ 

adsorptions occurred on the GO sheets. 10 

     Comparisons of GOMNP–1 Hg
2+

 adsorption capacity, eq , to those of GO modified with 11 

metal/metal oxide in literature (Table 2) showed that the GOMNP–1 had a better eq  value. 12 

Table 2: Comparison of Hg
2+

 adsorption eq  on GOMNP–1 with GO modified with metal/metal 13 

oxide 14 

Adsorbent  
eq (mg/g) Reference 

GOMNP 16.6 present study 

RGO–MnO2 9.0 (Sreeprasad et al., 2011) [17] 

RGO–Ag 9.0 (Sreeprasad et al., 2011) [17] 

GO 2.9 present study 

 15 

4. CONCLUSION 16 

The kinetics of Hg
2+

 adsorption by graphene oxide–iron oxide magnetic nano-particles 17 

composite (GOMNP) was investigated. Iron oxide magnetic nano-particles was attached to the 18 

graphene oxide (GO) using 3-aminopropyltriethoxysilane at a considerably low temperature. The 19 
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GO–magnetic nanoparticles composite has over 5–fold higher adsorption capacity than the 1 

pristine GO sheets. Increase in temperature had a negative effect on the adsorption of Hg
2+

 by 2 

the composite: 20 C > 30 C > 40 C. The Elovich kinetics model described the Hg
2+ 

adsorption 3 

better than pseudo first– and –second order kinetics models. Hg
2+ 

adsorption kinetics mechanism 4 

at 20 C is predominantly the pseudo-second order kinetics while at higher temperatures the 5 

mechanism was predominantly intra-particle diffusion. IR spectra analysis showed that hydroxyl 6 

and carboxylate functional groups were mainly responsible for Hg
2+

 adsorption. XRD diffraction 7 

patterns also confirmed the involvement of GO functional groups in the adsorption. GOMNP is 8 

thus a promising nanosorbent for Hg
2+ 

removal from aqueous solutions.  9 
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