

RSC Advances

Photocatalytic water oxidation over PbCrO₄ with 2.3 eV band gap in IO_3^-/I^- redox mediator under visible light

Journal:	RSC Advances
Manuscript ID:	RA-COM-10-2014-013049.R1
Article Type:	Communication
Date Submitted by the Author:	17-Nov-2014
Complete List of Authors:	Miseki, Yugo; National Institute of Advanced Industrial Science and Technology, Energy Technology Research Institute Kitao, Osamu; National Institute of Advanced Industrial Science and Technology, Energy Technology Research Institute Sayama, Kazuhiro; National Institute of Advanced Industrial Science and Technology, Energy Technology Research Institute

SCHOLARONE[™] Manuscripts

RSC Advances

Photocatalytic water oxidation over PbCrO₄ with 2.3 eV band gap in IO₃⁻/I⁻ redox mediator under visible light

Received 00th January 2012, Accepted 00th January 2012

Cite this: DOI: 10.1039/x0xx00000x

Y. Miseki*, O. Kitao, and K. Sayama*

DOI: 10.1039/x0xx00000x

www.rsc.org/

PbCrO₄ was prepared by a simple precipitation method under ambient conditions; its band gap was estimated to be 2.3 eV. Pt-loaded PbCrO₄ exhibited high photocatalytic activity in aqueous NaIO₃, promoting water oxidation to generate O₂. Photonic efficiency (apparent quantum yield) at 420 nm was estimated to be 1.0 %.

Various solar energy conversion systems that convert solar energy to chemical fuels, such as hydrogen, have gained increasing attention. For example, the two-photon excitation system (Z-scheme system), which employs two powdered photocatalysts and a suitable redox mediator, and the photocatalysis-electrolysis hybrid system have been widely studied as solar energy conversion systems because the evolved H₂ and O₂ products are separable.¹⁻⁵ Since the photocatalyzed oxidation of water to O_2 is a four-electron transfer process, it is an essential and challenging step. The stability of metal oxide semiconductors makes them attractive candidates as photocatalysts for water oxidation. However, most metal oxide photocatalysts are unavailable for visible light due to their wide band gaps (BG); these are derived from the deep (positive) valence bands, which consist of the O2p orbital. It has been reported that metal oxide complexes such as PbMoO₄ (BG: 3.3 eV),⁶ RbPb₂Nb₃O₁₀ (BG: 2.6 eV),⁷ Bi₂WO₆ (BG: 2.8 eV),⁸ BiVO₄ (BG: 2.4 eV),⁹ AgNbO₃ (BG: 2.9 eV), ¹⁰ PbBi₂Nb₂O₉ (BG: 2.9 eV), ¹¹ and SnNb₂O₆ (BG: 2.3 eV), ¹² which contain Bi³⁺, Pb²⁺, Sn²⁺, and Ag⁺ cations, possess shallower (more negative) valence bands due to s-p orbital hybridization. Therefore, these oxides have received great attention for their use in designing visible light-induced photocatalysts. An oxide of interest is PbCrO₄, which is a water-insoluble orange pigment that exhibits favorable optical absorption properties,¹³ and is obtained as single crystal nanorods via a simple precipitation method.¹⁴ In this study, we observed water oxidation in the presence of IO_3/I as a reversible redox mediator under visible light (up to 550 nm) over a Pt/PbCrO₄ photocatalyst possessed the smallest BG (2.3 eV) compared to other oxide semiconductor photocatalysts with s-p hybrid orbital in valence band. Additionally, we elucidated the band structure of PbCrO₄ via diffuse reflection spectroscopy, valence band X-ray photoelectron spectroscopy, Mott-Schottky plots, and density functional theory calculations.

PbCrO₄ powder was prepared by a simple precipitation method under ambient conditions. Pb(NO₃)₃ (Wako Pure Chemical; 99.5+%) and (NH₄)₂CrO₄ (Kanto Chemical; 97%) were employed as starting materials. Individual solutions of each metal compound (1.6 mmol) in distilled water (200 mL) were mixed at ambient conditions to immediately afford a yellow precipitate. After the suspension was aged for 1 h (rotating speed: 900 rpm), the precipitate was filtered, washed, and dried at 343 K for 2 h. A Pt cocatalyst was loaded onto the PbCrO₄ powder via photodeposition, impregnation, and chemical reduction methods. In the latter method, the PbCrO₄ powder (0.2 g) and a H₂PtCl₆ (30.8 µmol, Wako Pure Chemical; 98.5+%) were dispersed in ethanol (40 mL), and then heated in an oil bath at 373 K for 1 h. The resulting powder was filtered, washed, and dried at 343 K for 2 h. Additional thermal treatment in air at 473 K was conducted to improve the contact between the Pt cocatalyst and the The preparation conditions about PbCrO₄ photocatalyst. impregnation and photodeposition methods were shown in ESI. To prepare the PbCrO₄ electrode, the PbCrO₄ powder was coated on an F-doped SnO₂ (FTO) conductive glass substrate (surface resistance 10 Ω /sq, Nippon Sheet Glass Co., Ltd.) by the squeegee method. The squeegee method is often used to fix a photocatalyst powder onto a conductive substrate for preparing photoelectrodes. Slurry was prepared by mixing 20 mg of PbCrO₄ with 200 µL of distilled water, and then was spread onto a conductive glass plate with a glass rod and heated in air at 573 K for 1 h. The phase purity of the resulting powder was confirmed by X-ray diffraction studies (PANalytical, EMPYREAN). The surface condition and valence band information were analyzed using an X-ray photoelectron spectrometer (Ulvac-Phi, XPS-1800). Photocatalytic reactions were performed in a sidewindow cell made of Pyrex connected to a gas-closed circulation system. A 300-W Xe illuminator (ILC Technology, Inc., CERMAX-LX300) was attached to cut-off filters (HOYA Corporation) and employed for visible light irradiation experiments. Using a magnetic stirrer, the photocatalyst powder (10-150 mg) was dispersed in an aqueous solution (300 mL) of either 20 mM AgNO₃ or 2 mM NaIO₃. The amount of O_2 evolved was determined via on-line gas chromatography (Shimadzu Corporation, MS-5A column, TCD, Ar carrier). The amount of I⁻ ions produced was determined by a color reaction between I and IO3 ions under acidic conditions, from which I_3^- was generated. Photonic efficiency (apparent quantum yield) was evaluated using a 420 nm monochromatic light (7.6 mWcm², 1.6×10^{16} photon s⁻¹) as a light source. The number of incident photons was determined using a Si photodiode that was proofread by NMIJ (National Metrology Institute of Japan).

It was confirmed that monoclinic phase of PbCrO₄ possessing crocoite structure successfully prepared by simple precipitation method via X-ray diffraction pattern, and PbCrO₄ particles have attractive optical absorption property (BG: 2.3 eV, Figure 1 inserted) and have single crystal like nanorod shape via measuring scanning electron microscopy (SEM) image (Figure S1). Table 1 shows the O₂ evolution rates with PbCrO₄ powder in the presence of Ag⁺ or IO₃⁻ ions under visible light. Pristine PbCrO₄ powder facilitated O₂ evolution in aqueous AgNO₃ solution, but not in aqueous NaIO₃ solution. This result indicates that native PbCrO₄ powder lacks the sites on which IO₃ reduction can occur. Therefore, we introduced a Pt cocatalyst onto PbCrO₄ particles using various loading methods. As a result, relatively high rates of O₂ evolution were observed only in the presence of Pt/PbCrO₄, which was prepared by a chemical reduction method in the liquid phase. Optimal amount of Pt loaded was 3 wt% for PbCrO₄. We confirmed that no O₂ evolution took place in absence of light or redox oxidants (Ag^+ or IO_3^-). The X-ray photoelectron spectra of Pt4f_{7/2} on Pt/PbCrO₄ powders revealed that the Pt cocatalyst possesses different valences depending on the loading method employed; Pt was loaded as Pt⁰ metal using the chemical reduction method, while Pt was loaded as PtO_x using the impregnation and photodeposition methods (Figure S2). Overall, Pt metal was observed as an efficient cocatalyst in aqueous NaIO₃ solution for photocatalyzed O₂ evolution reactions.

Figure 1 illustrates the dependence of the O_2 evolution rate on

Table 1 Photocatalytic O_2 evolution rates of PbCrO₄ powders in the presence of Ag⁺ or IO₃⁻ ions under visible light^a

Photocatalyst	Loading method	O ₂ evolution rates	
		/ µmol h ⁻¹	
		(AgNO ₃)	(NaIO ₃)
PbCrO ₄	-	26	0
Pt/PbCrO4 ^b	Chemical reduction	58	13
Pt/PbCrO4 ^b	Impregnation	12	1
Pt/PbCrO4 ^b	Photodeposition	7	0

^aCatalyst: 50 mg, reactant solution: 300 mL, light source: 300 W Xe arc lamp attached with L42 cut off filter. ^bAmount of Pt loaded: 3 wt%.

Figure 1 (a) Dependence of the initial O_2 evolution rate of Ptloaded PbCrO₄ on the cut-off wavelength of the incident light. Catalyst (150 mg), reactant solution (300 mL), light source (300 W Xe arc lamp attached with cut-off filters). Amount of Pt loaded: 3 wt%. (b) Diffuse reflection spectrum of PbCrO₄

Figure 2 shows the time course of photocatalyzed O_2 evolution over 10 mg of Pt(3 wt%)/PbCrO₄ in an aqueous NaIO₃ solution. The turnover numbers of the reacted electrons/holes with respect to the molar quantities of Pt and PbCrO₄ reached 115 and 5.5, respectively. O_2 and I⁻ are produced according to the equations below in the photocatalyzed water oxidation reactions in the presence of IO₃⁻ ion.

$2 \text{ IO}_3^- + 6 \text{ H}_2\text{O} + 12 \text{ e}^-$	\rightarrow	2 I ⁻ + 12 OH ⁻	(1)
$6 H_2O + 12 h^+$	\rightarrow	$3 \text{ O}_2 + 12 \text{ H}^+$	(2)
Total (1) + (2): $2 IO_3^-$	\rightarrow	2 I ⁻ +3 O ₂	(3)

From the results of the color reaction, the amount of I⁻ ions after photocatalysis was estimated to be 29 μ mol in the solution (Figure S3). This value is consistent with the expected stoichiometric amount for O₂ evolution (43 μ mol). These results thus indicate that O₂ is produced solely from photocatalyzed water oxidation reactions.

Metal oxide complexes containing Pb^{2+} cations, such as $PbMoO_4$ (BG: 3.3 eV),⁶ $RbPb_2Nb_3O_{10}$ (BG: 2.6 eV),⁷ and $PbBi_2Nb_2O_9$ (BG: 2.9 eV),¹¹ possess shallower valence bands due to mixing between the Pb6s and O2p orbitals. Accordingly, we were interested in PbCrO₄ for its electronic structure. Figure 3 shows the valence band X-ray photoelectron spectroscopy (valence XPS) data of PbCrO₄, TiO₂, and WO₃. The horizontal axes of these spectra were corrected by C1s (284.5 eV). It was found that the top valence band position of PbCrO₄ is more negative compared to that of WO₃ and TiO₂, which both possess a valence band consisting of the O2p orbital. Results from density functional theory (DFT) calculations using the structural parameters from PDF 98-002-4607 (Figure S4) also indicate that the valence band structure of PbCrO₄ is formed by hybridization of the O2p and Pb6s orbitals.

Next, we estimated the flat band potential of $PbCrO_4$ using a Mott-Schottky plot. Figure 4 depicts the Mott-Schottky plot of the $PbCrO_4$ electrode prepared by the squeegee method. From this result, the flat band potential of $PbCrO_4$ was estimated to be +0.03

Figure 2 Reaction time course of water oxidation in the presence of IO_3^- ion. Catalyst (10 mg), reactant solution (2 mM NaIO₃), light source (300 W Xe arc-lamp attached to L42 cut-off filter).

Figure 3 Valence band XPS data of (a) $PbCrO_4$, (b) TiO_2 , and (c) WO_3 . The horizontal axes of these spectra were corrected by C1s (284.5 eV).

Figure 4 Mott-Schottky plot of PbCrO₄ electrode prepared by the squeegee method. Electrolyte: aqueous 1M phosphate buffer solution (pH 7). Periodicity: 965 Hz.

eV vs. RHE. It has been reported that the potential differences between conduction band minimum and flat band potential for n-type semiconductors (Ta_2O_5 , TaON, and Ta_3N_5) are estimated to be ca. 0.3 eV.¹⁵ Therefore, it is surmised that the conduction band minimum of PbCrO₄ is ca. -0.3–0 eV vs. RHE, if the potential difference is less than 0.3 eV.

From the results of diffuse reflection spectrum (DRS), valence XPS, Mott-Schottky plot, and DFT studies, the band structure of PbCrO₄ was elucidated as shown in Figure 5. The top of valence band potential of PbCrO₄, which consists of the O2p and Pb6s hybrid orbitals, can be estimated from the band gap and flat band potential values; this results in an estimated valence band potential of + 2.3 V vs. RHE. Consequently, PbCrO₄ was found to possess an attractive electronic structure to photocatalytically induce water oxidation (O₂/H₂O = +1.23 V). Recently, the electronically similar metal oxide complex BiVO₄ (BG: 2.4 eV) which also possesses shallow valence band consisting of Bi6s and O2p hybrid orbitals has attracted increasing attention as a visible light-induced water oxidation photocatalyst and photoelectrode. It is worth noting that

Figure 5 Band structure of PbCrO₄

the band gap of $PbCrO_4$ is narrower than that of $BiVO_4$. Therefore, this material is considered to be a promising photocatalyst and photoelectrode for water oxidation.

Conclusions

We successfully determined that Pt-metal loaded PbCrO₄ serves as a new oxide photocatalyst for water oxidation reactions under a wide spectrum of visible light. The results from this study demonstrate that O₂ evolution over Pt/PbCrO₄ proceeds photocatalytically, based on the quantified amounts of both the oxidation and reduction products (O₂ and I⁻, respectively). From the results of DRS, valence XPS, Mott-Schottky plot, and DFT studies, we conclude that PbCrO₄ possesses an attractive electronic structure to photocatalytically promote water oxidation reactions with a redox mediator.

Acknowledgements

This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) (Project no. 26810104).

Notes and references

Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan. E-mail: yugo-miseki@aist.go.jp, k.sayama@aist.go.jp.

† Electronic supplementary information (ESI) available: Fig. S1 to S3 are given. See DOI: 10.1039/c4ee01777c.

- 1 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
- 2 K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, *Chem. Commun.*, 2001, 2416.
- 3 R. Abe, Bull. Chem. Soc. Jpn., 2011, 84, 1000.
- 4 K. Maeda, ACS Catal., 2013, 3, 1486.
- 5 Y. Miseki, H. Kusama, H. Sugihara and K. Sayama, *J. Phys. Chem. Lett.*, 2010, **1**, 1196.
- 6 A. Kudo, M. Steinberg, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber and J. M. White, *Catal. Lett.*, 1990, 5, 61.
- 7 J. Yoshimura, Y. Ebina, J. Kondo, K. Domen and A. Tanaka, J. Phys. Chem., 1993, 97, 1970.
- 8 A. Kudo and S. Hijii, Chem. Lett., 1999, 28, 1103.

- 9 A. Kudo, K. Omori and H. Kato, J. Am. Chem. Soc., 1999, 121, 11459.
- 10 H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 2002, 106, 12441.
- 11 H. G. Kim and D. W. Hwang, J. S. Lee, J. Am. Chem. Soc., 2004, 126, 8912.
- 12 Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi and A. Kudo, *Chem. Lett.*, 2004, **33**, 28.
- 13 E. Bandiello, D. Errandonea, D. Martinez-Garcia, D. Santamaria-Perez, F. J. Manjón, *Phys. Rev. B*, 2012, **85**, 024108.
- 14 B. Cheng, H. Guo, J. Yu and X. Zhao, J. Alloys Comp., 2007, 431, L4.
- 15 W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, *J. Phys. Chem. B*, 2003, 107, 1798.