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Morphological transition from creasing to detachment of a growing biological tube in a confined 

environment with the contacting boundary 
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Morphological Patterns of a Growing Biological Tube in a Confined Environment 

with Contacting Boundary  
 

Mir Jalil Razavi and Xianqiao Wang* 

College of Engineering, University of Georgia, Athens, GA 30602 

Abstract 

Growing soft tissue with a confined boundary is accompanied by a large strain and stress which 

lead to instability and the formation of surface wrinkling, folding or creasing. This paper 

presents the morphological evolution of the growth of a biological tube composed of a neo-

Hookean hyperelastic material within a confined environment. Critical growth ratios for the 

triggering of creases or detachment from the contacting boundary have been investigated both 

analytically and numerically. Results show that compressive residual stresses induced by 

confined growth of the tubular tissue can lead to a variety of surface folding patterns which 

strongly depend on the thickness of the tube. In thick tube creases begin to form at the inner 

surface of the tube and in thin tube the structure detaches from the confining wall. Between 

these two extremes there is a transitional area wherein the tube starts to crease at first and 

then detaches from the confining wall. Further modeling reveals that a gap between the tube 

and the confinement can tune the shape evolution of the growing biological tube. These 

findings may provide some fundamental understanding to growth modeling of complicated 

biological phenomena such as cortical folding of the brain and the growth of solid tumors.  
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1- Introduction 

Growth of soft biological tissues is an important yet highly complex process that has undeniable 

influence both in the normal development of biological tissues and in various pathological 

conditions. Irrespective of growth type, it has been accepted for a long time that growth may 

generate residual stress in tissues
1
. Residual stress has been observed in growing soft biological 

tissues and is believed to play a crucial role in morphogenesis and regulation of the material 

properties of biological systems
2-5

. This stress is essential in preserving the integrity of biological 

structures by inhibiting the body tissue from overlapping with itself and/or external boundaries, 

or by creating cavities
3, 6-8

. Hence, general deformation in biological tissue is related to both 

growth and elasticity in the material
3, 6, 9-11

. It has been proven that, as the compressive residual 

stress exceeds a critical value, by releasing potential energy the tissue buckles into a new 

configuration
8, 12-17

. Beyond the critical condition, three common types of morphological 

instability can be observed: wrinkling, folding, and creasing. Wrinkling refers to wavy surface 

patterns which are achieved by appropriate compression of a stiff layer on a soft compliant 

substrate. Ridges and valleys are detectable in this kind of instability
13, 14, 18-21

. Folds are post-

buckling evolutions of wrinkled surfaces and can be created by further compression of wrinkled 

surface until the formation of localized, deep surface valleys
22, 23

. In contrast, in soft material 

without a hard skin compression beyond the critical value leads to the formation of creases 

with sharp edges. One of the main characteristics of creases is the development of self-contact 

phenomenon after instability
24-27

. The various shapes of plants, rippling of leaves, wrinkling of 

mucosa, corrugation of skin, fingerprint patterns, swell induced surface creasing of hydrogels 

and cortical folding of the brain are all the result of growth and instability in the constituent soft 
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materials
13, 28-31

. Swell induced instability of the hydrogels is an interesting phenomenon 

because it has been controllably used to mimic the growth of soft tissues
32, 33

. A hydrogel swells 

considerably when absorbing a large amount of solvent (e.g., water). However, it is yet a 

debatable question which and how accurately chemical or physical hydrogels can mimic growth 

of biological tissues
34

. Recent studies have showed that controllable surface patterns by 

chemical modification of molecular structures can be generated near the surface
35, 36

. Despite 

of diversity between the soft tissues, remodeling and morphological evolution is an important 

contributor to the healthy behavior of soft biological tissues like the artery, heart, brain and 

airway.  Inappropriate growth processes may cause pathological disorders in organs such as 

asthma, mucosal inflammation, gastroenteritis, chronic bronchitis, autism and tumor invasion
5, 

10, 11, 13, 37, 38
. Many studies have been done to present analytical models for growth and 

bifurcation to complement knowledge about the mechanisms of growing living tissues, e.g. 

Rodriguez et al.
6
 proposed a general continuum formulation for finite volumetric growth in soft 

elastic tissues with the deformation gradient tensor of the tissue described as the multiplication 

of the elastic and growth parts. Ben Ammar et al.
3
 adopted incremental deformation theory to 

include growth effects and showed its application to a growing spherical shell under external 

pressure. Bo li et al.
13, 39

 presented a linear stability analysis to investigate critical conditions 

and characteristic buckling patterns. The results indicate that the wrinkling mode is sensitive to 

the geometry as well as the properties of tissues. Jin et al.
27

, by application of criteria for the 

starting of creases, found critical growth ratios for a tube growing inside a rigid shell and a 

growing shell on a rigid core. Ciarletta et al.
4
 proposed a variational method that gives a 

straightforward derivation of the linear stability analysis for bifurcation analysis. Dunlop et al.
40
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developed a general thermodynamically theoretical model for tissue growth and applied it for a 

simple geometry as isotropically elastic tissue growing inside a circular pore. The study 

extended the model in order to couple tissue growth to the presence of a surface stress
41

. 

Rumpler et al.
42

 showed that geometry had effect on the tissue growth and as a result, local 

curvature strongly influenced the tissue growth rate. Beside these analytical models, numerical 

analyses and especially finite element models are valuable solutions when there is not any 

exact formulation for the buckling and post-buckling analysis
12-14, 16, 30

. Analytical and numerical 

results of these studies reveal that beyond the critical growth ratio the system tends to be 

destabilized and prefers to release its potential energy by developing wrinkles and creases. 

Balance between geometry and material behavior of layer/layers dictates the number of 

wrinkles or creases
4, 13, 24, 27

. Although significant progress has been made in recent years on the 

modeling of morphological instability in soft matter, there remain plenty of interesting 

problems that needs additional experimental and theoretical investigation
15

. In this study we 

will focus on soft material growth in a confined environment, especially with contact properties 

between boundaries, as many growing tissues are in contact with other tissues or consist of 

several layers with different material properties; thus, the existence of confinement has a 

remarkable effect on the stress distribution of the structure, triggering instability and 

remodeling processes. Many living tissues are growing in confined area; e.g.  wrinkling and 

folding of mucosa
13, 37, 39

, wrinkling of solid tumors
34

 and folding of the cortical layer of brain
5, 30

 

are all results of growth and instability in confined conditions. Study of confined growth with 

the contacting boundaries is a core issue due to its great impact on clarifying tumor and brain 

growth. Tumors deform the surrounding tissue due to the stresses imposed on the 
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environment, and the environment in turn alters the tumor growth dynamics. Tumor growth 

inhibition depends on the stiffness of the surrounding environment. In an in vitro setting, this 

corresponds to the stiffness of the agarose gel, and in vivo this corresponds to the stiffness of 

the extracellular matrix environment
43

. Experimental results highlight that geometric 

confinement alters the shape and growth dynamics of a developing tumor. In brain growth, the 

mechanical constraint of the skull regulates the cortical folding process. Cortical development 

with the skull as a constraint is much more convoluted than without
44

. On the other hand, a 

general model of tumor or brain growth accounting for geometric confinement effects on the 

size and shape of a growing tumor or developing brain
5, 45

 is lacking and remains to be further 

exploited. Therefore, study and research in this area is worthy of pursuit and may open new 

windows to the treatment and therapy of severe disorders. In this paper, in contrast to other 

studies, we will discuss the growth of single layer tubular soft tissue in a confined boundary 

with contact properties between tissue and environment. Critical growth ratios, both analytical 

and numerical, will be determined for the formation of creases or detachment of tissue from 

the contact boundary. In a special case the effect of gap magnitude between the outer layer of 

tube and confinement will be evaluated. 

2- Theoretical investigation 

2-1- Basic equations for growth model 

Due to growth, the final state of the system will be different from the initial one. Theoretical 

models have attempted to relate the growth ratio to the deformation and stress field. Any 

point � in the reference state will be mapped by transformation to the final one, �, in the 

current state. For modeling volumetric growth we consider the most famous theory, namely, 
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multiplicative decomposition of deformation gradient
6
. In this theory the deformation 

gradient,	�(�), is decomposed to growth tensor �(�) ,indicating the addition of materials, and 

elastic deformation tensor �(�) describing pure deformation resulting from stress. The growth 

tensor maps the stress-free reference configuration to a grown stress-free state, then the 

elastic deformation tensor maps the grown state to a stressed and final current state
6
. 

Deformation gradient � maps the tissue from the stress free state before the growth to the 

stressed state after the growth.    

 � = �.� (1) 

where = ��
��  . While both �  and �  tensors may be incompatible deformations, their 

multiplication, �, should be a compatible deformation
6
. In general, the elastic deformation of 

living soft tissues yields little volume change, therefore, the nonlinear response of these 

materials can be described by an isotropic incompressible hyperelastic material. The 

incompressibility implies the determinant of the elastic deformation tensor should be equal to 

unit, det� = 1. In general, the growth tensor depends on the stress state, deformation, and 

some other factors. For simplicity, we assume the growth process with a known spatial 

distribution, insinuating that all the biological information is independent of stresses
3
. 

Many biological soft tissues can be modeled by a hyperelastic material with a strain energy 

function �(�).  The Cauchy stress σ is related to the strain energy function by
3
 

 � = ����� − �� (2) 

where � is the hydrostatic pressure and � is a second-order unit vector. In the absence of any 

body force, mechanical equilibrium imposes 
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 div	� = 0 (3) 

where “div” stands for the divergence operator in the current configuration. There are several 

proposed material behaviors for hyperelastic material
46

; here a simple and common model, 

isotropic nonlinear Neo-Hookean, is implemented.  

 � = �2 (��� + ��� + � � + 3) (4) 

 where μ is the shear modulus and	�� , �Ɵ	and �  are the radial, circumferential and axial 

principal stretches, respectively.  

2-2- Residual stress induced by growth 

Consider a tubular soft tissue grown inside a rigid confinement. The outer layer of tissue is in 

contact with the boundary as seen in Figure 1.  

According to Figure 1, the inside and outside radii of the tube are A and B, and the thickness is 

$ − %. The initial and undeformed configuration for the tube is defined by � = (&, (, ))  

 % ≤ & ≤ $,												0 ≤ ( ≤ 2+,										0 ≤ ) ≤ ,, (5) 

where &, ( and ) are cylindrical coordinates in the initial state. ,	is longitudinal length of the 

tube. Due to growth, the tube will deform axisymmetrically before the occurrence of instability 

in the system. The new and current configuration after growth is defined by � = (-, ., /) 
 0 ≤ - ≤ 1,												0 ≤ . ≤ 2+,										0 ≤ 2 ≤ /, (6) 

where -, . and 2 are cylindrical coordinates in the deformed state and / is deformed axial 

length. In the case of axisymmetric and plane-strain deformation, the deformation field after 

growth is just function of radius, - = -(&). So, circumferential and longitudinal coordinates in 

both deformed and undeformed states will be the same. For eliminating longitudinal effect and 

studying in-plane bifurcation the plane-strain assumption has been considered.   
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By application of the deformation gradient in cylindrical coordinates for this specific case, �(�) 
can be determined 

 � =
34
44
5�-�& 0 0
0 -& 0
0 0 167

77
8
 (7) 

On the other hand, the growth tensor � is  

 � = 9:� 0 00 :� 00 0 1; (8) 

where :� and :� are radial and circumferential growth ratios, which :<˃	1 is for growth and 

0˂:<˂1 represents atrophy. In plane-strain condition without deformation and growth in axial 

direction, :  is considered as unit.  

From Eq. (1) the elastic deformation tensor can be extracted 

 � =
34
44
5 �-:��& 0 0

0 -:�& 0
0 0 167

77
8
 (9) 

which shows 

 �� = ?�
@A?B ,          �� = �

@CB ,        � = 1,           (10) 

With incompressibility constraint det� = 1  

 
-:�:�&

�-�& = 1 (11) 

As isotropic growth of soft tissue is interpreted in this paper, hereafter :� = :� = :. So, for 

isotropic growth 
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-& �-�& = :� (12) 

 

Integration of Eq. (12) gives 

 -�−0� = :�(&� − %�)	       for     % ≤ & ≤ $                                (13) 

This shows the deformed field relates to the growth ratio and the initial state. Before instability, 

the outer layer of the tube is in contact with a stiff boundary, so 1 = $. From this constraint 

“0”, inner radius of tube after deformation, is determined and final equation for the deformed 

state is 

 -� = $�+:�(&� − $�)        for     % ≤ & ≤ $ (14) 

For preventing self-contact effects in the inner radius, the isotropic growth ratio should satisfy 

 : ≤ ( $�
$� − %�)D/� (15) 

Based on Eqs. (2) and (4) the Cauchy stress components are derived as 

 F�� = ���� − �,																														F�� = ���� − � (16) 

The equilibrium equation, Eq. (3), is derived as 

 
�F���- + F�� − F��- = 0 (17) 

With Eqs. (10), (14), (16) and (17), the stress distribution is derived to be 

F�� = �2 G/H I-
� + $�(:� − 1)0� + $�(:� − 1)J − /H K-0L

� + $�(:� − 1)(-M� − 0M�)N (18) 

 

F�� = F�� − �(��� − ���) = F�� + � G -�-� + $�(:� − 1) − -� + $�(:� − 1)-� N (19) 
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In Figure 2. the normalized radial and circumferential Cauchy stresses, FO�� = PAAQ  ,		FO�� = PCCQ , 

have been sketched for growth ratio : = 1.15 and %/$ = 0.6.   

Figure 2 shows that the circumferential stress in the inner radius of tube is greater than other 

places. This stress as mentioned in the introduction part may have an important effect on the 

onset of instability. Circumferential stress in the inner radius is also sensitive to the thickness of 

the tube. In a tube with high thickness (when ratio of inner radius to outer radius is small) 

increasing by a small amount the growth ratio, circumferential compressive stress increases 

rapidly in inner surface in comparison to a thin tube, as seen in Figure 3. A thick tube, 

%/$ = 0.6,is more sensitive to the growth ratio and by slightly increasing the growth ratio, 

circumferential compressive stress is increased dramatically, In contrast, in a thin tube, 

%/$ = 0.9, a higher growth ratio is needed to create large compressive stress in the inner 

surface. This observation is based on analytical formulation and without instability 

consideration; hence, instability may change this trend beyond the critical growth ratio. 

3- Instability analysis 

With a large growth ratio, it is observed that circumferential stress in the inner surface of the 

tube will be increased. This stress may trigger instability and remodeling in the tube. A linear 

wrinkling analysis for this system with a fixed boundary condition in the outer layer reveals that 

wrinkles can be formed beyond a specific growth ratio. The critical growth ratio for starting 

instability and number of wrinkles depends on the thickness of the tube
39

. Another attempt 

shows that creases form in the inner side of the tube below the critical growth ratio to initiate 

wrinkling. In other words, the critical growth ratio for formation of creases is less than the 

critical growth ratio for formation of wrinkles
27

. The result for crease formation is based on the 
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analysis of finite-element calculation for incompressible neo-Hookean material. The critical 

condition for onset of crease formation in the circumferential direction (normal to radial 

direction) is that the ratio of principal stretch in the radial direction to the circumferential 

direction in the inner radius should be more than 2.4
26

.  

 
���� = 2.4									& = % (20) 

where, as indicated before, ��  and ��  are the principal stretches in the radial and 

circumferential directions.  

By applying this equation, the critical growth ratio for isotropic growth in radial and 

circumferential direction and with plane-strain condition (� = 1 and : = 1) can be derived.  

From Eqs.(10), (12) and (14) in the inner radius of tube 

 
(:V%)�$�+:�(%� − $�) = 2.4 (21) 

Or 

 
:V� =	 2.4

2.4 − 1.4 K%$L
� 

(22) 

It is clear that the critical growth ratio depends on the initial configuration and thickness of the 

tube. Figure 4 plots the critical growth ratio,	:V, for the onset of creases as a function of %/$.  

Due to the symmetry in the system there is no slip between the outer layer of the tube and the 

stiff confinement. By growth of the tube, confinement pushes the outer layer and creases start 

to form from the inner radius. As it can be seen from Figure 4, in thick tube the critical growth 

ratio for starting instability is low and with a small amount of growth creases can be developed 

in the inner surface of the tube. In contrast, in tube with small thickness, for starting instability 
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higher growth ratios should be applied. This result shows that in the same condition thin tubes 

are more stable than thick ones. It is worthwhile to mention these critical growth ratios have 

been derived based on the assumption that there is not any detachment of the outer layer of 

the tube from the boundary. Since there is contact property between the outer layer and 

confinement in some cases, detachment may change the instability form and lead to a different 

final configuration. This phenomenon will be further demonstrated by application of finite 

element modeling in the following section. 

4- Finite element model 

4-1- Transition from crease to detachment 

For the evaluation of tube growth, formation of creases, and detaching phenomenon several 

non-linear finite element models have been carried out in the commercial finite element 

software. The plane-strain models with neo-Hookean material behavior are performed and 

growth is simulated with thermal expansion
12, 27

. A fixed discrete rigid circle as a confinement is 

modeled around the outer surface of the tube and a frictionless contact relation is employed. 

The inner and outer surfaces of the tube are allowed to self-contact, as the inner surface after 

creasing and the outer surface after detaching will be in a self-contact condition. Figure 5 shows 

the initial and deformed state of tube after a certain amount of growth inside the confined 

boundary, and indicates that stress concentration is higher in the inner surface, which is 

consistent with the analytical results.  

In the plane-strain isotropic growth and with the condition of incompressibility, because 

expansion in the longitudinal direction is neglected, the growth ratio can be defined as the ratio 

of deformed area to initial area. From the growth tensor in Eq. (8) the isotropic growth ratio is 
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 :� = WWX (23) 

where W  is defined as the deformed area and WX  is the initial area. If there is not any 

confinement the tube will expand freely, but stiff confinement prevents growth of the tube on 

the outer surface and causes residual stress. Figure 6 compares the deformed inner radius "0" 
versus growth ratio between the theoretical analysis in Eq. (13) and the finite element model 

for %/$ = 0.6. From the figure it is clear that theory and finite element model result are in very 

good agreement. Since in derivation of Eq. (14) (deformation field) instability and crease 

formation has not been considered, by continuation of growth the inner surface analytically 

keeps its circular pattern, but in the finite element models beyond the critical growth ratio the 

tube starts to form creases and buckles towards an irregular shape.  

When the growth ratio increases stepwise beyond the critical value, the system will lose 

stability and begin to form creases in the inner surface of thick tubes or detach from the 

boundary and snap inwards in thin tubes. There should be a transition area between the two 

distinct instability patterns. The starting point for either crease formation or detachment is the 

critical growth ratio. In Figure 7, different growth patterns of a thick tube in a confined 

boundary can be seen. After the critical growth ratio the system loses stability, and creases in 

order to release a portion of its elastic energy and becomes more stable 

Since the thickness is high, the outer surface does not lose contact from the stiff boundary and 

creases develop only in the inner surface of tube. In contrast, in low thickness tubes, before 

crease formation in the inner surface the tube detaches from the stiff boundary and buckles 

completely towards the inside. Similar phenomena have been seen and modeled using confined 

elastic rings or confined thin-walled cylinders in structural engineering
47-49

. Figure 8 shows 
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expansion and buckling of a thin tube which after the critical point loses contact with the 

confinement. According to Eq. (22), for thin tubes a higher growth ratio is needed to start 

creasing, so thin tubes store more elastic energy and hence before starting to crease they lose 

contact with the confinement surface and snap inwards to release energy. After the critical 

growth ratio, the tube loses contact and buckles towards the inside, and eventually starts to fill 

the area of confinement with further growth.   

It can be anticipated that there is a transition area wherein the tube at first starts to develop 

creases in the inner surface and after further growth loses contact with the boundary with 

snapping inwards. Figure 9 depicts a transition form from creasing to detaching.  

Under contact boundary conditions different patterns of instability of the soft tissue due to 

growth may arise in contrast to fixed boundary
27, 39

. In contact boundary configurations, 

creasing or detaching or both of them can be noticed in models. We can categorize this 

morphological evolution in the three phases: creasing, transition (crease-detach) and complete 

detaching. In Figure 10, critical growth ratios from the theoretical analysis (Figure 4) and finite 

elements models have been compared. It should be mentioned that here the theoretical part is 

based on the fixed boundary assumption. As marked in the figure, there are three phases: A for 

the thicknesses where only creases occur, B for the transition area where at first creases form 

in inner surface and then detachment happens, and C for detachment. In the transition phase 

(B) the lower critical growth ratio is for crease starting and the higher one is for detaching. This 

can be explained: since at the starting point the thickness is larger, a larger growth ratio is 

needed to detach the system from the boundary.  
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4-2- Gap effects 

Current studies have concluded that fixed and contact boundaries exert different effects on the 

morphological changes of a confined tissue tube. The critical growth ratios for creasing or 

detachment sensitively depend on the geometrical parameters. Another effective parameter 

which may cause a change in the instability behavior of the system is an existing gap between 

the outer surface of the tube and the confinement
49

. In the previous models this gap is 

considered as zero and the tube and confinement boundary are in close contact with each 

other. In this section we investigate the gap effect on the stability of a confined tube in only 

one initial configuration, %/$ = 0.6. The gap is showed by Z and for eliminating magnitude 

effects we consider it in dimensionless form Z ℎ⁄  , such that h is the thickness of tube 

(ℎ = $ − %), see Figure 11.  

According to Figure 7, in contact boundary without a gap the tube just forms creases in the 

inside surface and does not lose contact from the confinement. Figure 12 illustrates how the 

gap may change the critical growth ratios and final configuration of destabilized system. In 

contrast to close contact behavior, the existence of a gap changes the instability form and may 

cause detaching phenomenon. With small gaps the tube just forms creases in the inside surface 

and the outer surface will be in close contact to the confinement. By increasing the gap, after 

formation of creases and further growth, the tube loses contact from the confinement and 

detaches. This trend holds for gaps that are comparable to the thickness. For large gaps 

(greater than the thickness) again we will see only creases in the inside surface and no 

detachment from the confinement.  
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For small gaps, after a slight growth, contact between the outer surface and confinement 

occurs where the state of the system is similar to a close contact situation and only creasing on 

the inside surface can be seen. But in larger gaps, when magnitude of the gap is comparable 

with thickness of the tube, balance between the gap magnitude and thickness dictates 

instability forms. The tube at first develops creases and then detaches from the confinement. In 

gaps larger than the tube thickness, after contact the tube starts to form creases in the inner 

surface and the grown thickness prevents the tube from detachment. Figure 13 shows growth 

and instability for a sample of models with an initial gap Z = 0.8ℎ.   

These results have shown that an initial gap has a crucial effect on triggering instabilities and 

stabilizing the final configuration of the system. In a single layer tube, the thickness of the tube 

and magnitude of the initial gap are the most important parameters that control the 

morphogenesis of the soft confined tube. Since the single layer tube has been considered as an 

isotropic hyperelastic material, the magnitude of the shear modulus has no effect on the 

instability and crease formation. In contrast, as has been studied previously, the shear modulus 

ratio for double or multilayer systems is quite an important parameter for the starting and 

developing of buckling or postbuckling
12-14

, which will be explored in future work dealing with a 

confined environment.  

5- Summary and Outlook 

In this paper, we have explored growth induced morphological instability of a soft tube in a 

confined boundary. Results show that for a growing soft tube restricted with a stiff boundary, 

dependent on the tube thickness and the initial gap with the boundary, multiple instability 

patterns may be seen in the structure. Analytical and numerical models revealed that by growth 
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and expansion of a tube, higher compressive stress is observed in the inner surface of the tube 

which is a crucial parameter in triggering instability and crease formation. In tubes with high 

thickness and a small growth ratio, compressive stress arises in high levels and creases start to 

form to release strain energy. In contrast, when tube thickness is small in compare to the mean 

radius of the tube, a higher growth ratio is needed to destabilize the structure and in this 

situation the tube begins to detach from the boundary and buckle towards the interior.  

Between large and small tube thicknesses there is a transition area where the tube at first 

starts to develop creases in the inner surface and with further growth detaches from the stiff 

boundary. Another parameter which has a notable effect on the morphological evolution is the 

existence and size of a gap between the outer layer of the tube and the confined boundary. 

Results for a special case show that dependent on the ratio of gap to tube thickness, all multiple 

bifurcation patterns can happen.  

These preliminary results are suitable to the modeling of confined growth of soft biological 

materials, e.g. brain and tumors. It has proven that mechanical constraints the brain skull exerts 

influence the cortical folding process
50

. Recently, it has been showed that this kind of modeling 

can explain and predict some developing brain abnormalities
51, 52

. These studies showed that 

the thickness ratio of cortex to subcortex in developing brain is a very important parameter just 

as thickness of a growing tube is a main parameter to the determination of evolution path. 

Many of solid tumors create a layered structure during their avascular evolution. For more 

expansion, some tumors such as melanoma or glioblastoma lose their initial symmetries to 

trespass the encompassing tissues
53

 which experimental study for shape transition of these 

tumors showed that formation of creases in outer layer is highly dependent on the thickness 
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ratio
54

. In other words, these biological tissues are growing in confined environments and 

elastic or stiff boundaries can change their shape and performance and in some special cases 

lead to disorders. Therefore, as the continuation of this work, it is worth to study the effect of 

confinement elasticity on the morphological evolution of a growing model. We can expect that 

elasticity of the surrounding area will have a great influence on the morphogenesis of the 

growing tissue.  As another application, it is possible to apply the present analysis, with some 

modifications, to model the swell of hydrogels which is accompanied by diffusion or chemical 

process. For example, an extra term such as concentration of solvent molecules has been 

introduced into Helmholtz free energy density
55

 in addition to deformation gradient tensor. 

Therefore, the nominal stress is a function of deformation gradient and concentration of 

solvent
56

.  

No research, however, provides a perfect answer, with this work being no exception to the rule. 

It is worthwhile to mention that in application of theoretical and computational models there 

are some simplifications and assumptions which impose limitations to our results. For example, 

a simple neo-Hookean hyperelastic material was considered, while in the reality, biological or 

soft chemical materials show anisotropic and complex behaviour, e.g. brain, artery or artificial 

hydrogels
57-59

. Also, a perfect circular model has been considered as the initial geometry for the 

growing tubular structures while in the reality profiles at early stage is not in a regular shape. 

Therefore, an appropriate model with realistic initial geometry may lead to a better depiction of 

morphological patterns. Some recent studies have showed the initial shape has a crucial effect 

on the instability and shape transition of the growing multilayer models
33, 52, 60

. Finally, our 

analysis is based on a simple 2D model, which in contrast, a 3D model would be obviously more 
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realistic as in many cases growth is a three dimensional process
61

. Hence, the application of the 

3D model towards the growing tissue will better present its spatial patterns and evolutions. 

However, despite these limitations we hope our study can open new windows towards 

understanding and treatment of soft biological tissues disorders.  
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Figure 1. Initial and current states of a growing tube inside a confined boundary. 
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Figure 2. Normalized Stress distribution in radial and circumferential directions, g=1.15 and A/B=0.6. 
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Figure 3. Normalized circumferential stress in the inner radius for different growth ratios 
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Figure 4. Critical growth ratio for starting creases 
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Figure 5. a)  Initial state and b) deformed state and Von Mises stress counter of growing tube, 

A/B=0.6 and g= 1.034 
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Figure 6. Comparison between theoretical results and finite element analysis 

for deformed inner radius, A/B=0.6. 
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Figure 7. Evolution of expansion and crease formation induced by the growth, A/B=0.6. 

a) g=1     b)g= 1.122     c) g= 1.189      d)g= 1.234       e) g= 1.246 
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Figure 8. Evolution of expansion and detaching phenomenon induced by the growth, Von Mises stress distribution, 

A/B=0.9. 

a) g=1     b)g=  1.332     c) g= 1.520      d)g= 1.825       e) g= 2.271 
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Figure 9. Evolution of expansion, crease formation and detaching induced by the growth, A/B=0.75. 

a) g=1     b)g= 1.214     c) g= 1.307      d)g= 1.383       e) g= 1.512 
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Figure 10. Phase diagram of critical growth ratio under different thicknesses 
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Figure 11. Initial configuration of tubular tissue, A/B=0.6 with existing gap (^). 
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Figure 12. Critical growth ratio of the tubular tissue versus the dimensionless gap for A/B=0.6 
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Figure 13. Growth and morphological evolution of tube with initial gap (A/B=0.6, δ/h=0.8). 

a) g=1     b)g= 1.247   c) g= 1.504      d)g= 1.659       e) g= 1.824 
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