This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Calcium mitigates the stress caused by \(\text{ZnSO}_4 \) as sulphur fertilizer and enhances sulforaphane formation of broccoli sprouts

Runqiang Yanga, Liping Guoa,b, Yulin Zhoua, Chang Shena, Zhenxin Gua,*

a College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China

b College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China

Corresponding Author

*Tel/Fax: 86-25-84396293.

E-mail: guzx@njau.edu.cn (Zhenxin Gu).
Abstract

In order to improve the growth condition of broccoli sprouts under ZnSO_4 application, exogenous CaCl_2 was added in the cultural medium. Then the growth profiles, key bioactive substances (glucosinolates, sulforaphane, ascorbic acid and phenolic compounds), antioxidant capacity, myrosinase activity and related genes expression of broccoli sprouts were evaluated. Results showed that the stressful condition caused by ZnSO_4 was effectively mitigated by CaCl_2. Consequently, ascorbic acid and total phenolics content as well as antioxidant capacity of broccoli sprouts decreased compared with that of sole ZnSO_4 treatment. However, sulforaphane formation increased since the higher glucoraphanin content, myrosinase activity and the related genes expression induced after CaCl_2 treatment. Glucoraphanin content and sulforaphane formation of the water-treated sprouts decreased steadily during germination. However, sulforaphane formation of sprouts treated by ZnSO_4 plus CaCl_2 increased after germinating for 2 days. These results suggested that CaCl_2 could mitigate the stress caused by ZnSO_4 and enhance the sulforaphane formation of broccoli sprouts.

Keywords: Broccoli sprouts, calcium, ZnSO_4 stress, glucoraphanin, sulforaphane, myrosinase
1 Introduction

Compared with mature counterparts, broccoli sprouts are more globally consumed as a promising food since they are rich in health-promoting compounds such as folic acid, phenolics, ascorbic acid and glucosinolates.1,2 Regular consumption of broccoli sprouts can reduce the risk of developing chronic diseases and different types of cancer.3 These beneficial effects are mainly due to the presence of glucosinolates, especially glucoraphanin that accounts for over 50% of total glucosinolate in most broccoli cultivars.4,5 Upon a disruption of plant tissues, glucoraphanin will be hydrolyzed by myrosinase into sulforaphane. Sulforaphane is proved to be a natural inducer of the phase II detoxication enzyme to detoxify cancer-causing chemicals.3 In plants, sulforaphane formation depends on the content of glucoraphanin biosynthesized by flavin-containing monooxygenase (FMO). Except for being hydrolyzed by myrosinase, glucoraphanin also serves as a precursor for biosynthesis of alkenyl-glucosinolates by AOP2.6 In addition, sulforaphane formation also depends on myrosinase and epithiospecifier protein (ESP) activity. High ESP activity is beneficial for sulforaphane nitrile formation. Hence, it is necessary to investigate these enzymes gene expression and sulforaphane formation of broccoli sprouts.

Glucosinolates as one kind of sulphur-containing compound may be considered as a source of sulphur for sprouts growth under low-sulphur conditions.7 Simultaneously, the biosynthesis of glucosinolates also needs sulphur.7 Hence, sulphur has been applied to broccoli sprouts growth in order to accumulate glucosinolates.8,9 However, the exceeded application of sulphur would decrease broccoli sprouts yield, significantly.8 In our previous study, we compared the 2 mmol/L of ZnSO$_4$, K$_2$SO$_4$ and methionine (Met) on growth and glucosinolates contents of broccoli sprouts. The results showed that only ZnSO$_4$ increased glucosinolate content but inhibited broccoli sprouts
growth, significantly (Fig. S1, Supplementary data). Hence, how to mitigate the stress caused by ZnSO₄ and increase the yield of the sprouts is very important.

Calcium is known to be involved in signal transduction in plant through binding with Ca²⁺-sensors such as calmodulin to induce appropriate physiological cellular responses. Besides, Ca²⁺ plays an important role in maintaining the functional and structural integrity of cell membranes. Epstein clearly demonstrated that the addition of supplemental Ca²⁺ in the growth medium could enhance salt tolerance of plant. Therefore, it is hypothesized that whether Ca²⁺ could mitigate the stress caused by ZnSO₄ during broccoli sprouts growth and further improve the content of bioactive substances.

In the present study, we attempted to add Ca²⁺ in the growth medium of broccoli sprouts paralleled with ZnSO₄ application. Subsequently, the growth profiles, key bioactive substances (glucosinolates, sulforaphane, ascorbic acid and phenolic compounds), antioxidant capacity, myrosinase activity and related genes expression of broccoli sprouts were evaluated. The changing patterns of glucoraphanin content, sulforaphane formation and myrosinase activity of germinating broccoli seeds and sprouts were also investigated.

2 Materials and methods

2.1 Materials and reagents

Seeds of broccoli (B. oleracea L. var. italic) were purchased from Nanjing Jinshengda Seed Co. Ltd. (Jiangsu, China). Standard samples of sulforaphane and glucotropaeolin were purchased from Sigma Chemical Co., (St. Louis, MO, USA). Other chemicals and reagents were of analytical grade and purchased from Shanghai Institute of Biochemistry (Shanghai, China).

2.2 Seed germination
Dry seeds were immersed in 1.5% sodium hypochlorite for 15 min, then drained and washed with distilled water until they reached neutral pH. They were then placed in distilled water and soaked at 30 °C for 4 h. Soaked seeds were germinated on a filter paper in petri dishes (15 cm in diameter) filled with sterilized quartz sand and grew in the incubators at 30 °C in darkness for 4 days. Sprout samples were rapidly and gently collected from the surface of the filter paper. Then the fresh weight (FW) of the broccoli sprouts was weighed, after which they were immediately frozen in liquid nitrogen and kept in polyethylene bags at -70 °C for further experiments.

2.3 ZnSO₄ and CaCl₂ treatment

Seeds in each petri dish were supplied with 60 mL distilled water for the first day of germination and then every 12 h with 20 mL of the following testing solutions respectively: (i) distilled water as the control (Water); (ii) 4 mmol/L ZnSO₄ (Zn); (iii) 11 mmol/L CaCl₂ (Ca); (iv) 4 mmol/L ZnSO₄ plus additional mixture of 11 mmol/L CaCl₂ (Zn+Ca). The ZnSO₄ concentration of 4 mmol/L was pre-selected with the highest sulforaphane formation while inhibited sprouts growth, significantly (Fig. S2, Supplementary data). As for the CaCl₂ concentration, we did a series of concentration including 0, 3, 5, 7, 9, 11, 13 and 15, respectively. Then the 11 mmol/L was chosen since it could get the highest sulforaphane formation of sprouts and also increase the sprouts length under stress of 4 mmol/L ZnSO₄ (Fig. S3, Supplementary data).

2.4 Sprout length measurement

Twenty sprouts were taken as one sample group. Their length was measured using a vernier caliper (Shanghai Precision Instruments Co., Ltd., Shanghai, China), directly.

2.5 Malondialdehyde (MDA) level determination

MDA was determined using the method of 2-thiobarbituric acid reaction. Fresh sprouts (0.5 g)
were homogenized with 5 mL of 5% trichloroacetic acid. The mixture was centrifuged at 10,000 rpm for 17 min (4 °C). The supernatant was used to determine MDA content as described by Yang et al. MDA content was expressed as nmol/g FW.

2.6 Ascorbic acid content determination

Ascorbic acid content was determined according to Volden et al. Fresh broccoli sprouts (0.3 g) were extracted with 5 mL of 1.0% (w/v) oxalic acid. After centrifuged at 10,000 rpm for 15 min, the supernatant was filtered through a 0.45 µm Millipore before injected into HPLC (Agilent 1200, USA) with Agilent 1200 tunable absorbance detector and a reversed-phase C18 column (4.6×250 mm, 5 µm, ZORBAX. Eclips) and detected at 254 nm. Ascorbic acid was calculated by external standard curve and expressed as mg per 100 g FW.

2.7 Total phenolics content determination

Total phenolics of the sprouts (0.2 g) was extracted with 5.0 mL of 50% methanol. The mixture was centrifuged at 10,000 rpm for 15 min. One mL of the supernatant was mixed with 1 mL of 0.2 mmol/L Folin-Ciocalteu reagent and 2.0 mL of 2% Na₂CO₃. The mixture reacted at room temperature in the darkness for 2 h. Its absorbance was read at 765 nm. Gallic acid was used as the standard. Results were expressed as mg of gallic acid equivalent (GAE) per 100 g FW.

2.8 Antioxidant capacity test

The sample extract was prepared the same as that of total phenolics. The antioxidant capacity was evaluated using the T-AOC Kit (Nanjing Jiancheng Biotech Inc., Jiangsu, China). One unit of antioxidant capacity was defined as an increase in absorbance of 0.01 at 520 nm per min per gram at 37 °C of the reaction system.

2.9 Glucosinolates analysis
Glucosinolates were extracted and analyzed as previously reported by Guo et al.15 Briefly, samples (500 mg) were extracted with 2 mL of 75% methanol at 80 °C for 15 min in a temperature-controlled water bath, with vortexing at regular intervals. The supernatant was collected after centrifugation (5 min, 10,000 rpm), and the residues were extracted once again by using 2 mL of 75% methanol, centrifuged. One milliliter of the combined supernatant was applied to a 1 mL DEAE Sephadex A-25 column (acetic acid activated) and rinsed with 2 mL of 0.02 mol/L sodium acetate. After addition of 200 µL of arylsulfatase solution and incubation for 16 h at 35 °C, the desulphoglucoraphanin was eluted with 4 mL of Milli-Q water and filtered through a 0.45 µm membrane filter. Separation and detection were performed on an Agilent 1200 HPLC system (Agilent Technologies Co. Ltd., Palo Alto, CA, USA) equipped with a G1314B UV detector and a G1311A quat pump, using a Eclipse XDB-C18 column (5 µm particle size, 4.6 × 150 mm; Agilent Technologies Co. Ltd.) at 226 nm. Determination was conducted at a flow-rate of 1.0 mL/min in a linear gradient starting with 0% acetonitrile for 1 min, reaching 20% acetonitrile at 21 min, 0% acetonitrile at 26 min. Sinigrin (2-propenyl glucosinolate) (Sigma, St. Louis, MO, USA) was added to each sample as an internal standard before the first extraction. The total glucosinolate and glucoraphanin content was calculated and expressed as µmol/g fresh weight of broccoli sprouts.

2.10 Sulforaphane formation determination

Sulforaphane formation was measured by the method of Gu et al.16 with some modifications. Sprouts (0.2 g) were homogenized with 4.0 mL of distilled water. The mixture was hydrolyzed at 37 °C for 3 h in a shaking water bath. After hydrolyzing, it was extracted three times with 10 mL of ethyl acetate. The ethyl acetate fraction was dried at 37 °C under vacuum on a rotary evaporator. After dissolving in 2.0 mL of 10% acetonitrile, filtered through a 0.45 µm membrane filter before
injected into HPLC. Agilent 1200 HPLC system (Agilent Technologies Co. Ltd., Palo Alto, CA, USA) equipped with a Eclipse XDB-C18 column (5 µm particle size, 4.6 × 150 mm; Agilent Technologies Co. Ltd.) was used.

2.11 Myrosinase activity determination

Myrosinase activity determination was conducted as described previously by Guo et al. The protein content of the supernatant was determined according to Bradford (1976) using bovine serum albumin as the standard. One myrosinase activity unit corresponded to 1.0 nmol glucose formed per minute. The specific activity was expressed as units per milligram of protein.

2.12 Gene expression assay (QRT-PCR, Quantitative Real-Time PCR)

Total RNA from broccoli sprouts was isolated using a E.Z.N.A.™ Plant RNA Kit (OMEGA, R6827-01). Approximately 2 µg total RNA were used as a template for the first strand cDNA synthesis, which was performed with a RT-PCR Kit (TaKaRa: DR027S). First-strand cDNA was synthesized as described previously. The PCR amplification was performed using TaKaRa Ex-Taq™ polymerase for target genes and Actin. For QRT-PCR analysis, the sequence-specific primers used were shown in Table 1. Triplicate quantitative assays were performed on each cDNA with the SYBR® Premix Ex Taq™ (TAKARA: RR420A) with the ABI 7500 sequence detection system according to the manufacturer’s protocol (Applied Biosystems, Foster City, CA, USA). The PCR cycling conditions used were as follows: 1 cycle of 95 °C for 30 s, followed by 40 cycles of 95 °C for 3 s, 60 °C for 30 s.

Table 1 The primers used in the present study

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer name</th>
<th>Primer sequences (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMOGS-OX</td>
<td>Sense</td>
<td>TCGTCTTGGTGTCGCGGTC</td>
</tr>
<tr>
<td></td>
<td>Ant-sense</td>
<td>ATCCTCATAAGCTCCGCAAT</td>
</tr>
<tr>
<td>AOP2</td>
<td>Sense</td>
<td>GAGTAACGGAAGAAAGAAGACAAAGG</td>
</tr>
</tbody>
</table>
2.13 Statistical analysis

Experimental data were expressed as the mean ± standard deviation (SD) with three replications (n = 3) and subjected to statistical analysis with SPSS 18.0 (SPSS Inc., Chicago, IL). Means were performed by Duncan’s multiple-range tests. Differences at p < 0.05 were considered to be significant.

3 Results and analysis

3.1 Growth profiles of broccoli sprouts

![Growth profiles of broccoli sprouts](image)

Fig. 1. The growth profiles of broccoli sprouts grown under different treatments. Values are the means of triplicate analyses. Error bars show the standard deviation. Those with different lower case letters are significantly different at p < 0.05. After 4-day germination, the sprouts were collected and washed, and measured the sprouts length using a vernier calipers, directly.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ant-sense</th>
<th>Sense</th>
<th>Ant-sense</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYR</td>
<td>ATAAGCGTGAAGAGTAGAACGAGGT</td>
<td>AAGGTCATCGAGGAGAAAGGTG</td>
<td>TGTTCAGGGTTTCTTAGG</td>
<td>ACATTGGGACCAGGACG</td>
</tr>
<tr>
<td>ESP</td>
<td>TGTTTGGCAGGGTCTTAGG</td>
<td>ACATTGGGACCAGGACG</td>
<td>TTTCCAATCTACAGGGGTTC</td>
<td>CTGTTCAAATCTACAGGGGTTC</td>
</tr>
<tr>
<td>Actin</td>
<td>GCTCGGCTTGGTGTTG</td>
<td>GCTCGGCTTGGTGTTG</td>
<td>GCTCGGCTTGGTGTTG</td>
<td>GCTCGGCTTGGTGTTG</td>
</tr>
</tbody>
</table>
The growth profiles of 4 day-old broccoli sprouts in photo and sprout length were presented in Fig. 1. ZnSO₄ application significantly ($p < 0.05$) inhibited sprouts growth with the shortest length of 17.3 mm, whereas that of the water-treated was 38.9 mm. After spraying supplementary Ca²⁺, the ZnSO₄-induced stress was significantly mitigated, where the sprouts elongation was accelerated. Interestingly, the application of sole Ca²⁺ also increased the sprout length by 32.4% compared with the control.

3.2 Fresh weight and MDA content of broccoli sprouts

![Graph showing fresh weight and MDA content](image)

Fig. 2. The fresh weight (A) and MDA content (B) of broccoli sprouts grown under different treatments. Values are the means of triplicate analyses. Error bars show the standard deviation. Those with different lower case letters are significantly different at $p < 0.05$. After 4-day germination, the sprouts were collected, washed and sipped up. The fresh weight and MDA level were measured immediately.

The fresh weight of sprouts grown under ZnSO₄ was the least, indicating the growth of sprouts was markedly inhibited ($p < 0.05$) (Fig. 2A). Spraying CaCl₂ alone favored sprout elongation, whose fresh weight increased by 27.9% compared with the control. CaCl₂ addition alleviated the ZnSO₄ stress, generating an increment of 47.0% in fresh weight in comparison with the
ZnSO₄-treated sprouts.

MDA content exhibited an opposite trend of fresh weight (Fig. 2B). ZnSO₄ application led to the highest accumulation of MDA in sprouts compared with the control. After adding CaCl₂ based on ZnSO₄ treatment, the sprouts’ MDA content decreased by 26.9%. Water (Control) and CaCl₂ alone did not cause stress condition, where the MDA content of sprouts kept at a very low level.

3.3 Ascorbic acid, total phenolics content and antioxidant capacity of broccoli sprouts

Fig. 3. Ascorbic acid content (A), total phenolics content (B) and antioxidant capacity (C) of broccoli sprouts grown under different treatments. Values are the means of triplicate analyses. Error bars represent the standard deviation.
bars show the standard deviation. Those with different lower case letters are significantly different at $p < 0.05$. After 4-day germination, the sprouts were collected, washed and sipped up. The ascorbic acid content, total phenolics content and antioxidant capacity of fresh samples were measured immediately.

The sprouts treated with ZnSO$_4$ had the highest contents of ascorbic acid and total phenolics, followed by that of ZnSO$_4$ plus CaCl$_2$, water and CaCl$_2$ alone (Fig. 3A and 3B). CaCl$_2$ treatment alone had no significant effect ($p > 0.05$) on ascorbic acid content while decreased that of total phenolics as compared with the control. The contents of ascorbic acid and total phenolics of broccoli sprouts grown under ZnSO$_4$ were 3.17- and 3.91-fold of the control, respectively. Whereas, additional CaCl$_2$ treatment decreased their contents by 36.47% and 44.23% compared with ZnSO$_4$ treatment, respectively.

As shown in Fig. 3C, the antioxidant capacity of ZnSO$_4$ treated sprouts was the highest, which was 2.55-fold of the control. Adding CaCl$_2$ on the basis of ZnSO$_4$ treatment decreased the antioxidant capacity. Compared with the control, spraying CaCl$_2$ alone also decreased the sprouts antioxidant capacity by 19.1%.

3.4 Glucosinolate content, sulforaphane formation and myrosinase activity of broccoli sprouts

Compared with the control (Water), CaCl$_2$, ZnSO$_4$ and ZnSO$_4$ plus CaCl$_2$ treatments significantly increased total glucosinolate content in broccoli sprouts (Fig. 4A). ZnSO$_4$ led the highest content of total glucosinolate, which was 2.13-fold of the control. However, ZnSO$_4$ plus CaCl$_2$ treatment decreased content of total glucosinolate compared with ZnSO$_4$ treatment. In both hypocotyl and cotyledon, total glucosinolate content in ZnSO$_4$ plus CaCl$_2$ treated sprouts increased
significantly by 1.01- and 0.43- fold, respectively, compared with the control (Fig. 4B). Similar to total glucosinolate content, CaCl$_2$, ZnSO$_4$ and ZnSO$_4$ plus CaCl$_2$ treatments all increased glucoraphanin content, but the treatment of ZnSO$_4$ plus CaCl$_2$ best favored the accumulation of glucoraphanin (Fig. 4C). In both hypocotyl and cotyledon, glucoraphanin content in ZnSO$_4$ plus CaCl$_2$ treated sprouts increased significantly by 1.59- and 0.55- fold, respectively, compared with the control (Fig. 4D).

Fig. 4. Total glucosinolate (A, B) and glucoraphanin (C, D) content, sulforaphane formation (E, F) and myrosinase activity (G, H) of broccoli sprouts under different treatments. Values are the means of triplicate analyses. Error bars show the standard deviation. Those with different lower case letters
are significantly different at $p < 0.05$. * Represents significant differences at $p < 0.05$. After 4-day germination, the sprouts were collected, washed and sipped up. Then frozen in liquid nitrogen. Total glucosinolate and glucoraphanin content, sulforaphane formation and myrosinase activity were measured within 2 days.

Compared with the control, treatments of CaCl$_2$ alone, ZnSO$_4$ and ZnSO$_4$ plus CaCl$_2$ were all beneficial for the formation of sulforaphane (Fig. 4E). They increased sulforaphane formation by 18.9%, 43.5% and 91.2%, respectively. However, ZnSO$_4$ plus CaCl$_2$ decreased sulforaphane formation in hypocotyl by 33.62% and increased that in cotyledon significantly compared with the control (Fig. 4F).

Myrosinase activity of broccoli sprouts was enhanced by 3.40-fold under ZnSO$_4$ treatment in comparison with the control (Fig. 4G). Supplementary CaCl$_2$ further stimulated myrosinase activity by 15.3% compared with ZnSO$_4$ treatment. Spraying CaCl$_2$ alone increased the activity by 75.9% compared with the control. Similar to glucoraphanin content, myrosinase activity increased under ZnSO$_4$ plus CaCl$_2$ treatment significantly and by 0.78 and 2.57-fold in hypocotyl and cotyledon respectively compared with the control (Fig. 4H).

3.5 Genes expression related to sulforaphane formation

ZnSO$_4$ and ZnSO$_4$ plus CaCl$_2$ treatments induced FMO_{GS-OX} expressions which were 2.48- and 2.67-fold of the control, respectively (Fig. 5A). However, they decreased $AOP2$ expression (Fig. 5B), significantly. CaCl$_2$ addition significantly enhanced the expression of ESP (Fig. 5C). ZnSO$_4$ and ZnSO$_4$ plus CaCl$_2$ treatments all induced MYR expression which was 1.97-, 4.12- and 9.45-fold of the control, respectively (Fig. 5D).
Fig. 5. The relative expression of FMO_{GS-OX} (A), $AOP2$ (B), ESP (C) and MYR (D) of broccoli sprouts under different treatments. Each datum is the mean and standard deviation of three replicates per treatment. Values not sharing the same letter are significantly different at $p < 0.05$.

After 4-day germination, the sprouts were collected, washed and sipped up. Total RNA was extracted immediately using a kit.

3.6 Changes of glucoraphanin content, sulforaphane formation and myrosinase activity of broccoli sprouts during germination

Germination brought a significant ($p < 0.05$) decrease in glucoraphanin content both in control and the ZnSO$_4$ plus CaCl$_2$ treatment sprouts (Fig. 6A). Glucoraphanin content of sprouts grown under water and ZnSO$_4$ plus CaCl$_2$ decreased by 96.5% and 90.4% within 4 days of germination, respectively. However, after germinating for 1 day, glucoraphanin content of ZnSO$_4$ plus CaCl$_2$ treated sprouts was significantly ($p < 0.05$) higher than that of the control at the same time point.

Similar to glucoraphanin content, sulforaphane formation of the control sprouts decreased steadily with time elongation (Fig. 6B). Whereas, ZnSO$_4$ plus CaCl$_2$ treatment led to an gradual
increase in sulforaphane formation after 2 days of germination. No significant ($p > 0.05$) difference was observed between the control and ZnSO$_4$ plus CaCl$_2$ treatment at the first 2 days of germination. However, sulforaphane formation of 3 day- and 4 day-old sprouts were significantly ($p < 0.05$) higher than that of the control.

Fig. 6. Glucoraphanin content (A), sulforaphane formation (B) and myrosinase activity (C) of broccoli seeds and sprouts during germination period under control and ZnSO$_4$ plus CaCl$_2$ treatments. Values are the means of triplicate analyses. Error bars show the standard deviation. * Represents significant differences at $p < 0.05$. During germination, sprouts were sampling every day.
and frozen in liquid nitrogen. Glucoraphanin content, sulforaphane formation and myrosinase activity were measured within 2 days.

Myrosinase activity of sprouts sprayed with water increased to 2nd day of germination and decreased afterwards (Fig. 6C). In contrast, the activity increased continuously to 3rd day of germination and kept stable when sprayed with ZnSO\textsubscript{4} plus CaCl\textsubscript{2}. No significant ($p > 0.05$) change occurred at the first day of germination.

4 Discussion

The addition of CaCl\textsubscript{2} to seed germination medium under salinity stress have been reported to enhance germination rate and seedling growth in wimmera ryegrass,18 cotton,19 tomato and cucumber.20 However, the concentration of CaCl\textsubscript{2} should be clearly defined since lower or higher concentration would have significant different effects, which depends upon the salinity stress source and plant species or cultivars. In wimmera ryegrass, the 5.0 mmol/L Ca2+ showed the best effect on NaCl stress, while 10.0 mmol/L Ca2+ was optimal on MgCl\textsubscript{2} stress.18 Besides, the author found that increasing Ca2+ concentration to 10.0 mmol/L under NaCl stress decreased the radicle length compared with that of 5.0 mmol/L. In this study, it was also detected that a concentration higher than 11 mmol/L would decrease broccoli sprout length (Fig. S2, Supplementary data). Apart from directly adding Ca2+ to sprout growth medium, several studies chose to pre-treat seeds through soaking in Ca2+ solutions.21, 22 They both found the salinity tolerance of tested seeds was greatly enhanced. These results suggested that the mitigation effect of Ca2+ might also be achieved via soaking seeds prior to germination.

The salinity environment is usually created by NaCl treatment during sprouts growth.23, 24 In
broccoli sprouts cultivation, in order to enhance glucoraphanin biosynthesis, sulphur-containing chemicals are commonly supplied.7 However, since the sprouts are very salt sensitive,25 it is difficult to find the optimal sulphur concentration without influencing sprouts growth. It has been reported that unsuitable concentrations of sodium thiosulphate8 and K\textsubscript{2}SO\textsubscript{4}25 inhibited sprouts growth and thus decreased the positive effects of sulphur fertilization. Here, the stress was caused by spraying ZnSO\textsubscript{4}, which was originally expected to be a sulphur fertilizer. For one probable reason, the stress of ZnSO\textsubscript{4} was due to the excessive level of Zn2+ because Zn is a micronutrient for sprout growth. The excessive Zn2+ was not utilized promptly and thus created an osmotic stress condition where the water absorption system was interrupted. Another one might be that ZnSO\textsubscript{4} presents a similar negative effect as NaCl does. Hence, towards different broccoli cultivars and growth medium, the optimal sulphur type and concentration should be pre-selected depending on sprouts sulphur uptake abilities and partitioning of sulphur into glucoraphanin.26

Ascorbic acid content and the activities of its regenerating enzymes in plants are highly related to environmental stresses such as light, temperature, salt, and drought.27 Nishikawa et al.28 investigated the ascorbic acid metabolism in postharvest broccoli florets, and found that ascorbate-regenerating system could be activated to protect plant organs from environmental stresses. In this study, the ascorbic acid content in broccoli sprouts was accelerated by ZnSO\textsubscript{4} application, which could also be attributed to the activation of the regenerating enzymes under ZnSO\textsubscript{4} stress.27 Phenolic compounds are secondary metabolites produced when plants are facing environmental stresses.29 In the present study, ZnSO\textsubscript{4} application significantly promoted the biosynthesis of phenolic compounds as a result of the possible osmotic stress (Fig. 3B). However, when the stress situation was likely mitigated by exogenous CaCl\textsubscript{2}, the total phenolics content of
broccoli sprouts was decreased as compared with that of ZnSO₄.

Ascorbic acid and phenolic compounds both have high antioxidant activities in plants, hence, the antioxidant capacity of plant tissues is closely associated with their contents. Significant positive correlation between ascorbic acid, phenolic compounds and antioxidant capacity was observed in radish and broccoli sprouts. In the present study, the antioxidant capacity of broccoli sprouts of the tested four treatments had a same changing trend with the contents of ascorbic acid and phenolic compounds (Fig. 3). The highest antioxidant capacity was observed in sprouts having the highest ascorbic acid and phenolic compounds contents. Exogenous Ca²⁺ decreased the antioxidant capacity since the contents of ascorbic acid and phenolic compounds were decreased. Barillari et al. reported that 4-methylthio-3-butenyl glucosinolate isolated from Raphanus sativus sprouts was related to its total antioxidant capacity. Guo et al. also suggested that glucosinolates in broccoli sprouts had some antioxidant capacity. However, in this study, no obvious relations were observed between total antioxidant and total glucosinolates or glucoraphanin content ($p > 0.05$). The discrepancy could be attributed to different cultivars of broccoli in which the content of antioxidant components is different.

Falk et al. highlighted that sulphur fertilization could lead to an increase in glucosinolate content ranging from 0.25- to more than 50-fold, which relies on sulphur types and treating styles. Here, as a sulphur-containing chemical, ZnSO₄ increased total glucosinolate content, but ZnSO₄ plus CaCl₂ treatment decreased it content (Fig. 4A). Interestingly, the content of glucoraphanin was further enhanced by CaCl₂ addition (Fig. 4C). Applying CaCl₂ alone to sprouts increased glucoraphanin content compared with that of the control. Besides, it was noted that glucoraphanin content of sprouts under sole CaCl₂ treatment was higher than that of sole ZnSO₄ treatment. In
addition, compared with ZnSO$_4$ treatment, ZnSO$_4$ plus CaCl$_2$ treatment increased genes expression related to glucoraphanin biosynthesis (Fig. 5A), but decreased $AOP2$ expression which is related to glucoraphanin degradation (Fig. 5B). These indicated that CaCl$_2$ could induce glucoraphanin biosynthesis in broccoli sprouts.

In both ZnSO$_4$ plus CaCl$_2$ treated and control sprouts, glucoraphanin content decreased steadily with germination time (Fig. 6A), which agreed with previous studies2,36 The decrease in glucoraphanin content might result from ‘dilution effects’ of water absorption during growth.37 Another possibility could be that glucoraphanin was degraded as sulphur supply to support sprouts tissue expansion and formation of other sulphur-containing compounds.7 Under ZnSO$_4$ plus CaCl$_2$ treatment, the decrease of glucoraphanin was delayed to some extent, which was probably a result of sulphur supply. Pérez-Balibrea $et al.$9 had previously reported that glucoraphanin content of broccoli sprouts treated with K$_2$SO$_4$ kept stable when grew from 6 to 12 days.

Sulforaphane is hydrolyzed from glucoraphanin by myrosinase, whose formation largely depends on both glucoraphanin content and myrosinase activity.7 In this study, sulforaphane formation of broccoli sprouts treated with ZnSO$_4$ plus CaCl$_2$ was the highest (Fig. 4D). This might be due to a higher glucoraphanin content (Fig. 4B), myrosinase activity (Fig. 4E) and its higher expression (Fig. 5D). Although the glucoraphanin content of sprouts under sole CaCl$_2$ treatment was higher than that of sole ZnSO$_4$, its sulforaphane formation was less because of a lower myrosinase activity (Fig. 4E) and its lower expression (Fig. 5D) as well as the higher expression of ESP (Fig. 5C). Liang $et al.$38 reported that Zn$^{2+}$ could enhance myrosinase activity and thus increase sulforaphane formation. The finding in the present study was similar to theirs. It was clearly noticed that glucoraphanin content of broccoli sprouts under ZnSO$_4$ plus CaCl$_2$ and the control treatments...
both decreased steadily during germination (Fig. 6A). However, the sulforaphane formation of sprouts treated with ZnSO$_4$ plus CaCl$_2$ did not decrease steadily as expected (Fig. 6B). In contrast, its content increased after germinating for 2 days. This could be due to the fact that myrosinase activity increased to a high level after 1 day of germination. These results suggested that the glucoraphanin-myrosinase system is complicated and needs further investigation.

5 Conclusion

CaCl$_2$ application effectively mitigated stressful condition caused by ZnSO$_4$. Consequently, the antioxidant compounds such as ascorbic acid and total phenolics content decreased. However, sulforaphane formation increased since the higher glucoraphanin content, myrosinase activity and the related genes expression induced after CaCl$_2$ treatment.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

We are grateful to the financial support for this study from the Natural Science Foundation of China (Grant No. 31271912). The present study was also a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

2009, 166, 507-520.

