

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Graphical Abstract

High-dispersive FeS_2 on graphene oxide for effective degradation of

4-chlorophenol

Graphical abstract: High-dispersive FeS₂ particles on graphene oxide (FeS₂@GO) was prepared by a one-pot hydrothermal method for efficient removal and mineralization of aqueous 4-chlorophenol (4-CP) under slightly acidic or alkaline conditions.

1	High-dispersive FeS_2 on graphene oxide for effective degradation of
2	4-chlorophenol
3	
4	Wanpeng Liu ^a , Lili Xu ^a , Xingfa Li ^a , Chensi Shen ^b , Sadia Rashid ^b , Yuezhong Wen ^{a,*} ,
5	Weiping Liu ^a , Xiaohua Wu ^c
6	
7	^a Institute of Environmental Science, College of Environmental and Resource Sciences,
8	Zhejiang University, Hangzhou 310058, China
9	^b College of Environmental Science and Engineering, Donghua University, Shanghai
10	201620, China
11	^c College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 310024,
12	China
13	
14	
15	
16	
17	
18	
19	
20	
21	* Corresponding author: Tel.: +86-571-8898-2421; Fax: +86-571-8898-2421. E-mail
22	address: wenyuezhong@zju.edu.cn (Y.Z. Wen).

1	ABSTRACT
2	A high-dispersive FeS_2 micro-cube crystal on graphene oxide ($FeS_2@GO$) was
3	fabricated by a one-pot hydrothermal method. The catalytic degradation of
4	4-chlorophenol (4-CP) and its mechanism in FeS2@GO-based Fenton system was
5	investigated. Under acidic to slight alkaline conditions, $FeS_2@GO$ demonstrated an
6	excellent capacity to remove 4-CP. More than 97% of 4-CP was eliminated within 60
7	min in pH 7.0 reaction solutions initially containing 0.2 g/L FeS ₂ @GO, 128.6 mg/L
8	4-CP and 100 mM H ₂ O ₂ at 25 ± 1 °C, and the removal of 4-CP was further enhanced
9	with increasing FeS ₂ @GO loadings. In the meantime, the FeS ₂ @GO also achieved a
10	lower iron leaching and a more complete TOC removal compared with pure synthetic
11	FeS ₂ without graphene oxide. Furthermore, acetic acid and oxalic acid were identified
12	as the primary products. The remarkable capacity of the $FeS_2@GO$ -based Fenton
13	system in removing 4-CP displays its potential application in the treatment of organic
14	compound-contaminated water.

1 Introduction

2	Pyrite (FeS ₂) is one of the most abundant metal sulfide minerals on the Earth,
3	possessing the degradation capacity of contaminants ¹ . For example, degradation kinetics
4	and mechanism of aqueous trichloroethylene (TCE) in aerobic pyrite suspensions has
5	been researched with O_2 as the common oxidant ²⁻⁴ . Liang et al. ⁵ investigated oxidative
6	degradation of methyl tert-butyl ether (MTBE) by activated persulfate, using pyrite as
7	the source of ferrous ion activators. Recently, pyrite has been considered as a potential
8	and promising heterogeneous iron source for Fenton-like system to treat various
9	environmental organic pollutants in wastewater and groundwater ⁶⁻¹⁰ . However, for the
10	limitations of pool purity of natural pyrite, its Fenton-like catalytic capacity can't be
11	further improved. It is known that the catalytic activity of catalysts depends on the size
12	distributions and morphologies of the particles ¹¹ . Hence, reducing the diameter of the
13	material to the nanometer or micrometer scale may result in enhanced its efficacy. But,
14	the difficulty in obtaining fine particles because of its high Mons' hardness scale is the
15	other limitation for further improvement in efficiency.
16	The hydrothermal method was an alternative way for obtaining more pure and
17	small particles. Up to now, FeS_2 nanocrystallines with different morphologies have been
18	synthesized via various solven thermal methods. One-dimensional nanowires of \mbox{FeS}_2
19	were synthesized in large quantities by solvothermal process at relatively low
20	temperature with different with morphologies by Kar and Chaudhuri ¹² , and single phase
21	FeS_2 nanocrystals with cubic shapes were synthesized but in a relative complicated
22	solventhermal process ¹³ . Afterward well-defined FeS ₂ micro-cubes and micro-octahedra

RSC Advances Accepted Manuscript

1	with high-yield and good uniformity were synthesized by a more simple
2	polymer-assisted hydrothermal method ^{$14,15$} . However, these FeS ₂ particles are prone to
3	aggregate and form large particles during the hydrothermal synthesis process, thus
4	losing their dispersibility and specific area which eventually diminish their activity.
5	Therefore, it is necessary to prepare high-dispersive FeS_2 on a suitable support to
6	preserve or even improve their unique properties ¹⁶⁻¹⁸ .
7	In the past decade, graphene and its derivatives are widely investigated as promising
8	materials for the immobilization of nanoparticles. However, the lack of surface
9	functionalities in graphene to directly immobilize the nanoparticles onto its surfaces has
10	led to favorable utilization of graphene oxide (GO) as an alternative support for the
11	assembly of graphene based nanocomposites ¹⁹ . GO is fabricated by exfoliating of
12	graphite oxide and is abundant of oxygenated functional groups, such as hydroxyl and
13	epoxides on the plane with carbonyl and carboxyl groups at the edges. These
14	oxygenated functional groups can serve as nucleation sites for metal ions to form
15	GO/nanoparticles composites. As a result, GO used as an attractive material in this field
16	owing to its unique two-dimensional lamellar structure, large surface area, and full
17	surface accessibility ²⁰ . The graphene or GO is not only able to prevent the aggregation
18	of immobilized particles but also improve the overall catalytic activity owing to the
19	synergistic effects between both components ^{21,22} . For example, several recent studies
20	have been reported using GO for the support of Fe ₃ O ₄ NPs in catalysis for the oxidation
21	of cysteine ²³ and 3,3,5,5-tetramethylbenzidine ²⁴ , and the reduction of nitrobenzene ²⁵ .
22	Furthermore, the reported enhancement in catalytic activity was attributed to the

1	synergistic effects between GO sheets and Fe ₃ O ₄ nanoparticles.
2	The objective of the present work was to explore the degradation of 4-CP with
3	FeS ₂ @GO by investigating removal efficacy and influencing factors such as FeS ₂ @GO
4	loading, solution pH, and H_2O_2 concentration. The proposed mechanism was given and
5	the principal reaction intermediates were also identified.
6	
7	Experimental
8	1. Chemicals
9	The 4-chlorophenol (4-CP) standard (purity > 99%) was purchased from Aladdin
10	Chemistry (Shanghai, China). Graphene oxide (purity > 99%, single layer ratio > 99%,
11	diameter 1 ~ 5 μ m, thickness 0.8 ~ 1.2 nm) was purchased from XFNano Inc. (Nanjing,
12	China). Pyrite (purity 95%) was purchased from Strem Chemicals (Newburyport, MA,
13	USA). Triton TM X-100 (TX-100), sulfur (purity 99.5% \sim 100.5%) and
14	2,9-dimethyl-1,10-phenanthroline (DMP) were purchased from Sigma-Aldrich (St.
15	Louis, MO, USA). Other chemicals and solvents used in this study were of analytical
16	grade or high performance liquid chromatography (HPLC) grade. The concentration of
17	the purchased hydrogen peroxide solution (30 wt%) was calibrated by titration with
18	potassium permanganate ²⁶ and the purchased pyrite was grounded, sieved through 150
19	μ m mesh and washed with 0.1 M HCl prior to use. Other chemicals were used as
20	received. Ultrapure water (18.2 M Ω •cm resistivity) was prepared using a Millipore [®]
21	purification system and used throughout the experiments. Stock solution of 1.0 M 4-CP
22	was prepared in methanol. The 1% (w/v) DMP solution was prepared in ethanol in a

1	brown bottle. A 0.01 M copper (II) sulfate (CuSO ₄) solution was prepared by dissolving
2	CuSO ₄ •5H ₂ O in ultrapure water. All solutions were stored at 4 °C prior to use.
3	2. Preparation of FeS_2 and $FeS_2@GO$
4	Iron disulfide microcube crystal (FeS ₂) was synthesized using $FeSO_4$ and sulfur in
5	alkaline solution based on Wang's method ¹⁴ . Briefly, 16 mL of non-ionic surfactant
6	TX-100 was added in 44 mL of ethylene glycol (EG) at room temperature followed by
7	addition of 0.39 g of ferrous sulfate heptahydrate (FeSO ₄ •7H ₂ O), forming a
8	homogenous solution under vigorous stirring. Then 0.4 g of sulfur was added to the
9	solution under magnetic stirring for 1 h, after complete dispersion of sulfur powder, 10
10	mL of 1.5 M NaOH was added and stirred for 30 min. Then the final mixture was sealed
11	in a 100-mL Teflon-lined stainless steel autoclave, and maintained at 180 °C for 12 h,
12	then cooled to room temperature naturally. The resulting black solid was collected by
13	centrifugation, washed alternately with ultrapure water and ethanol several times to
14	remove the excess surfactant and finally dried in vacuum at 50 °C for 10 h before
15	further use. Iron disulfide-graphene oxide composite (FeS2@GO) was synthesized
16	according to the above procedures with appropriate amount of GO (0.03, 0.06, 0.12 g)
17	dispersed in EG by ultrasonication in advance.
18	3. Reaction setup
19	All degradation experiments of 4-CP were carried out in 50-mL glass flasks with a
20	total solution volume of 40 mL under magnetic stirring (400 r/min) and 25 ± 1 °C. A
21	500-W xenon lamp (Trustech Inc., Beijing, China) was used as the light source for the

22 experiments conducted in the presence of visible light. The light radiates to the solutions

1	through a glass slide to obtain visible light without UV wave band. The initial $pH\left(pH_{i}\right)$	
2	of the solutions was adjusted to the designated value with 1 M $\mathrm{H}_2\mathrm{SO}_4$ and 1 M NaOH	
3	standard solution. A 40 μ L aliquot of 1.0 M 4-CP stock solution was added to make a	
4	nominal initial concentration of 1.0 mM (128.6 mg/L) and appropriate volume of $\rm H_2O_2$	
5	solution was injected to make a demanded concentration. Reactions were initiated by	
6	adding a predetermined amount of pyrite, FeS2 or FeS2@GO into the pre-equilibrated	
7	and constantly stirred solutions. Aliquots of 1.0 mL sample were periodically withdrawn	
8	and filtrated through 0.45 μ m syringe filter. The supernatant was transferred to 2-mL	
9	vials containing 10 μ L of <i>tert</i> -butanol (as a radical scavenger) and subjected to HPLC	
10	analysis to determine the remaining 4-CP concentration and the formation of carbonyl	
11	acids. For the runs of cyclic reaction, the post-reaction $FeS_2@GO$ was collected by	
12	filtration and dried in 50°C. For TOC measurement, aliquots of 5 mL sample were	
13	periodically withdrawn and filtrated through 0.45 μ m syringe filter, but no radical	
14	scavenger was added to avoid background TOC interference. All samples were stored at	
15	4 °C and analyzed within 24 h.	
16	To quantify the consumption of H_2O_2 and leaching of Fe ions in the reaction systems,	
17	an additional reaction solution without 4-CP was also prepared. For H_2O_2 consumption	
18	quantification, 100 μ L samples were periodically withdrawn and filtrated through 0.45	
19	μ m syringe filter. Aliquots of 50 μ L supernatant was transferred to 5-mL volumetric	
20	flask and diluted to 500 μ L. The dilution was used for H ₂ O ₂ measurement using a	
21	method according to Kasaka et al. ²⁷ . The determination of H_2O_2 is based on a	
22	spectrophotometric method via the stoichiometric reaction of H ₂ O ₂ with copper (II) ion	

1	and DMP. Briefly, 0.5 mL each of DMP, $CuSO_4$ and phosphate buffer was added to a
2	5-mL volumetric flask containing 0.5 mL diluted sample supernatant and the flask was
3	filled up to 5 mL with water. After mixing, the solution was transferred to 1-cm cells
4	and the absorbance was measured at 454 nm on a Shimadzu UV-2401 PC UV/Vis
5	spectrophotometer (Tokyo, Japan). While, for Fe ions leaching quantification, aliquots 2
6	mL sample were withdrawn and filtrated through 0.45 μ m syringe filter. The supernatant
7	was transferred to 5-mL vials containing 10 μ L HNO ₃ (65 wt%) and subjected to
8	inductively coupled plasma mass spectrometry (ICP-MS) analysis to determine the Fe
9	ions concentration.
10	4. Chemical analysis
11	The 4-chlorophenol and by-products concentrations in reaction samples were
12	determined using a Waters [®] 2695 reverse-phase HPLC coupled with a Waters [®] 2998
13	photodiode array detector (Milford, MA, USA). The detection wavelength was both 210
14	nm. A Waters [®] XBridge TM Phenyl column (250 × 4.6 mm, 5 μ m) was employed for the
15	separation of 4-chlorophenol. The isocratic mobile phase consisted of 70% methanol
16	and 30% water with a flow rate of 0.8 mL/min. The injection volume was 20 μ L. Under
17	these conditions, the typical retention time for 4-CP was 5.5 min. For the products such
18	as carbonyl acids, a Waters [®] Atlantis TM T3 column (250 × 4.6 mm, 5 μ m) was employed
19	for the separation. The isocratic mobile phase was 10 mM NaH ₂ PO ₄ aqueous solution
20	(adjusting pH to 3.0 with H_3PO_4) with a flow rate of 0.5 mL/min. The injection volume
21	was 50 μ L. Under these conditions, the typical retention time for acetic acid, oxalic acid
22	and chloroacetic were 6.1, 12.7 and 14.1 min, respectively.

1	
2	5. Characterization
3	Surface morphology studies of FeS_2 and $FeS_2@GO$ were achieved with a field
4	emission scanning electron microscope (FEI, SIRON) at a voltage of 25.0 kV to test.
5	The sample surfaces were gold-coated before analysis. The microstructures were further
6	examined by transmission electron microscopy (TEM, JEM1200EX, JEOL). X-ray
7	diffraction (XRD) measurements were conducted using a D8 Advance (Bruker,
8	Germany) X-ray diffractometer with Cu Ka radiation ($\lambda = 1.5418$ Å).
9	
10	Results and discussion
11	1. Characterization of FeS_2 and $FeS_2@GO$
12	The morphology and microstructures of synthetic FeS_2 and $FeS_2@GO$ were
13	investigated by a scanning electron microscope (SEM). Fig. 1a and Fig. 1b showed the
14	SEM images of FeS ₂ and FeS ₂ @GO, respectively. It illustrates that the shape of
15	synthetic FeS_2 is irregular, and it is unhomologous in size. Besides, the FeS_2 crystal
16	aggregates as clusters, making an obscure microcube structure and a low surface area
17	(3.48 m ² /g). On the other hand, GO facilitates the dispersion of FeS ₂ during the
18	synthesis process. The FeS_2 synthesized with GO sheets spiking was found to be single
19	crystal with distinct microcubic structures. It is also homologous in size ($800 \sim 1000$
20	nm), which has a much larger surface area (23.26 $m^2/g)$ compared with \mbox{FeS}_2
21	synthesized without GO. The microstructures of FeS_2 and $FeS_2@GO$ were further
22	examined by transmission electron microscopy (TEM) images (Fig. 1c and Fig. 1d) and

1	drawn a same result. Furthermore, the composition and phase purity of natural pyrite	
2	and synthetic FeS_2 were examed by XRD (Fig. 2). It can be seen that all reflection	
3	peaks in the red line can be readily indexed as a pure cubic phase of FeS_2 , which is	
4	consistent with value given in Joint Committee on Powder Diffraction Standards	
5	(JCPDS) diffraction data files (No. 71-2219). However, a lower purity of pyrite can be	
6	easily observed in the black line with relatively poor clearness in reflection peaks.	
7	2. Removal of 4-chlorophenol by $FeS_2@GO$	
8	A typical degradation profile of 4-CP by FeS_2 and $FeS_2@GO$ is given in Fig. 3a. For	
9	verifying and comparing the capacity of iron disulfide in organics removal,	
10	commercially available natural pyrite crystals (the major ingredient is iron disulfide)	
11	were also employed for the removal of 4-CP. According to the results, $FeS_2@GO$	
12	possesses a fairly high capacity in removing 4-CP in H_2O_2 solutions compared to FeS_2	
13	particles and pyrite, both the synthesis and none-synthesis iron disulfide. For example,	
14	86% of 4-CP was removed in 30 min in a pH 5.0 reaction system originally containing	
15	0.8 g/L FeS ₂ @GO, 50 mM H ₂ O ₂ and 1.0 mM 4-CP, while only 58% and 19% 4-CP was	
16	removed by FeS_2 and pyrite under the same conditions, respectively. Up to 99% of 4-CP	
17	disappeared as the reaction was prolonged to 60 min as well as 97% for FeS ₂ . However,	
18	the inevitable aggregation of FeS_2 during the reaction tends to inhibit the removal rate	
19	and can't be ignored. As a result, natural pyrite have the lowest efficiency for 4-CP	
20	removal as compared to FeS_2 and $FeS_2@GO$. And $FeS_2@GO$ possesses the most	
21	remarkable dispersibility as well as 4-CP removal efficiency in the reaction process. To	
22	study the effect of GO content on the efficiency of FeS2@GO for removal of 4-CP and	

RSC Advances Accepted Manuscript

fix an appropriate GO amount during the synthesis process, $FeS_2@GO$ with different GO content was employed for 4-CP removal. As shown in Fig. 3b, efficacy of 4-CP removal by $FeS_2@GO$ in H_2O_2 solutions was slightly improved as the GO content of $FeS_2@GO$ increased. Take both economy and efficiency into consideration, 0.03 g was chosen as the optimal amount for spiking in $FeS_2@GO$ synthesis, and was employed throughout all experiments below.

7 *3. Leaching of iron*

8 The level on the iron leaching is another essential factor to evaluate the Fenton-like 9 catalytic performance. The aqueous iron content in the $FeS_2-H_2O_2$ or $FeS_2@GO-H_2O_2$ 10 suspension was detected by inductively coupled plasma mass spectrometry (ICP-MS) 11 during a 2-h reaction. According to the results, the leaching rate of FeS_2 was a little faster than that of FeS₂@GO (Fig. 4a). For example, after 120 min reaction, the 12 concentration of aqueous iron was 5.4 mg/L for FeS₂, while it was 4.5 mg/L for 13 14 FeS₂@GO, equaling to only 0.81% and 0.68% of the initial iron content. Meanwhile, the total iron content in FeS_2 (a)GO was 98.9% of that in FeS_2 . It is reported that the 15 16 charges on GO surface are highly negative when dispersed in water attribute to the ionization of the carboxylic acid and the phenolic hydroxyl groups²⁸. Hence, the most 17 plausible reason was that Fe^{3+}/Fe^{2+} was adsorbed on the GO surface through static 18 interaction or complex with oxygenated functional groups²⁹. But the leaching iron 19 20 makes fairly finite contribution to 4-CP removal. As shown in Fig. 4b, only 42% of 4-CP was eliminated within 60 min in a Fenton system with 5.4 mg/L Fe^{2+} and 50 mM 21 22 H_2O_2 .

cript
nuso
a Ma
ptec
Acce
ces /
lvan
CAC
RSC S

	RSC Advances	
1	4. Effect of $FeS_2@GO$ loading, pH and H_2O_2 concentration	
2	The removal rate of 4-CP increased with the initial $FeS_2@GO$ content (Fig. 5a). For	
3	example, 4-CP removal at 60 min increased from 76% for a solution with 0.2 g/L	
4	$FeS_2@GO$ to 100% with 0.8 g/L $FeS_2@GO$. Two factors are responsible for the	
5	enhanced removal of 4-CP with increasing loading. It is reported by Bae et al. ⁷ the	
6	hydroxyl radicals (•OH), which are the dominantly oxidant for the decomposition of	
7	organic compounds in pyrite Fenton reaction, were generated through reduction of H_2O_2	
8	by Fe^{2+} dissolved from FeS_2 under aerobic condition (Eq. (1)).	
9	$2\text{FeS}_2 + 7\text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}^{2+} + 4\text{SO}_4^{2-} + 4\text{H}^+$ (1)	
10	The removal of 4-CP in the FeS ₂ @GO-based Fenton system was obviously	
11	pH-dependent. Overall, 4-CP removal rates decreased with increasing pH_i (Fig. 5b),	
12	suggesting that acidic conditions facilitated 4-CP removal. For example, 4-CP removal	
13	rate at 30 min decreased from 86% for the reaction solution with $pH_{\rm i}$ 5.0 to 59% for that	
14	with pH_i 9.0. When pH_i was increased to 11.0, 4-CP removal rate was inhibited to a	
15	relatively low value of 21%, which is attribute to the decreasing formation of \bullet OH	
16	caused by low Fe ²⁺ concentration at high pH ¹ . Similarly, pH was a major factor that	
17	affected the removal of other organics (e.g. trichloroethylene and 2,4,6-trinitrotoluene)	
18	in pyrite Fenton systems ^{7,8} . However, it is well known that in a classic Fenton system	
19	aqueous Fe(II) leading to decomposition of H_2O_2 to hydroxyl radicals was only	
20	efficiently occurred at the pH below 4.5^{30} . In the present work, the FeS ₂ @GO-mediated	
21	removal of 4-CP stayed in a high rate in a slight acidic to alkaline conditions (pH 5.0 \sim	

9.0), even in a strong alkaline solution (pH 11.0), 49% of 4-CP was removed in 60 min 22

1	yet. As reported by Bonnissel-Gissinger ¹ , pyrite suspension pH declined and reached	an
2	acidic equilibrium point during the oxidation by releasing iron and hydrogen, providin	ıg
3	an appropriate pH for the subsequent Fenton reaction. Additionally, the presence of	
4	H_2O_2 extremely exacerbated pH decreasing, since pyrite dissolution kinetics by H_2O_2	is
5	much faster than that by molecular oxygen in suspensions 31,32 , which leaded to a	
6	relatively high removal efficiency for 4-CP under weak acidic to weak alkaline	
7	conditions (pH 5.0 ~ pH 9.0). The similar result was observed by Che et al. ⁷ and Bae	et
8	al. ⁹ in the removal of trichloroethylene and diclofenac, respectively, by pyrite-based	
9	Fenton's reaction. Furthermore, the numerous carboxyl groups (-COOH) and hydrox	yl
10	groups (-OH) on GO surface also provided an acidic interface for the occurrence of	
11	Fenton's reaction ³³ .	
12	It is well know that in a Fenton system H_2O_2 simultaneously plays as the roles of	
13	both of OH• producer (Eq. (2)) and OH• scavenger (Eq. (3)) ^{$34,35$} . Therefore, the	
14	concentration of H_2O_2 is a crucial parameter for 4-CP removal in FeS ₂ @GO Fenton	
15	system.	
16	$H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH^- + HO \bullet$	(2)
17	$H_2O_2 + OH \bullet \rightarrow OH_2 \bullet + H_2O$	(3)
18	As Fig. 5c showed that the removal of 4-CP was increased with the increasing	
19	concentration of H_2O_2 in the FeS ₂ @GO Fenton system. The 4-CP removal rates	
20	declined as the concentration of H_2O_2 varies from $12 \sim 50$ mM. For example, 4-CP	
21	removal rate at 30 min decreased from 17% at the H_2O_2 concentration of 12 mM to 50	5%

22 and 86% at that of 25 mM and 50 mM, respectively. With the reaction proceeding to 60

1	min, 4-CP removal rate was respectively increased to 39%, 93% and 100% for H_2O_2
2	concentrations of 12 mM, 25 mM and 50 mM. As McKibben and Barnes ³¹ reported, the
3	general mechanism of Fe^{2+} dissolution from the pyrite surface in an aerobic $\mathrm{H_2O_2}$
4	solution includes two different pathways (Eq. (1) and Eq. (4) and (5)) and the second
5	pathway with two consecutive reactions is considered as the dominant way for Fe^{2+}
6	generation.
7	$2FeS_2 + 15H_2O_2 \rightarrow 2Fe^{3+} + 4SO_4^{2-} + 2H^+ + 14H_2O $ (4)
8	$FeS_2 + 14Fe^{3+} + 8H_2O \rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+$ (5)
9	Therefore, the increasing of H_2O_2 concentration accelerates the 4-CP removal in the
10	FeS ₂ @GO Fenton system. However, the self scavenging of HO• caused by H_2O_2
11	concentration increasing seemed to be more significant during the reaction. As a result,
12	further addition of H_2O_2 to 200 mM did not significantly affect 4-CP removal rates (data
13	was not shown) and H_2O_2 concentration was fixed at an optimal level in the following
14	experiments.
15	5. The reuse of $FeS_2@GO$
16	The reuse and stability were two major concerns for a catalyst to be used in practical
17	applications $^{36-38}$. In the durability test, the same FeS ₂ @GO samples were repeatedly
18	employed for 4-CP removal for consecutive five times. It showed that there were no
19	obvious attenuation in the extent of 4-CP removal was observed (Fig. 6). However, a
20	slight decline inevitably occurred for the loss of catalyst during the reaction and
21	recovery procedures. For example, the removal rate of 4-CP was over 99% for the initial

reaction, but it slightly dropped to about 95% for the fifth cycling. It is worth noticing

1 that the recovery of $FeS_2(a)GO$ is difficult for its high dispersibility in the reaction 2 solutions. Therefore, further research would still need to be conducted to generate enhanced separation properties for FeS₂@GO. 3 4 6. Identified products 5 It is well known that organic compounds were expected to oxidize to short-chain carboxylic acids (e.g., formic acid, acetic acid, oxalic acid and maleic acid) and then 6 finally minerals, CO_2 and H_2O^{39} . In this study, three carboxylic acids including oxalic 7 acid, acetic acid and chloroacetic acid were identified as the primary intermediates 8 9 through HPLC-DAD analysis and the time profile of the intermediates were given in 10 Fig. 7. It is shown that oxalic acid and acetic acid accumulated in the early stage, and 11 then attenuated after reaching a peak value. For example, oxalic acid accumulated to a peak concentration of 0.35 mM at 5 min and then declined, no oxalic acid was detected 12 13 after 30 min. Similarly, acetic acid accumulated to a peak concentration of 0.89 mM at 14 30 min and was not detected after 60 min. However, the same course was not observed on chloroacetic acid. It kept on a relative low level compared with oxalic acid and acetic 15 acid. To investigate the mineralization of 4-CP, concentrations of TOC were measured 16 during the oxidative degradation of 4-CP by FeS_2 (a)GO Fenton system. It is shown in 17 Fig. 8 that after 60 min reaction 91%, 70% and 12% of TOC was removed for 18 19 FeS₂@GO, FeS₂ and pyrite, respectively.

20 7. Proposed mechanism

Previous study has proved that FeS_2 has a higher optical absorption coefficient than silicon but has a comparable band gap energy ($E_g = 0.95 \text{ eV}$)⁴⁰. Additionally, single

1	layered GO have a high optical transmittance, especially for visible light ⁴¹ . In our
2	experiments, the removal process of 4-CP was exposed to indoor natural light, so we
3	conducted a control experiment in the dark. As a result, no obvious diversity on 4-CP
4	removal was observed under natural light and dark condition, indicating that
5	FeS ₂ @GO-H ₂ O ₂ system also works well in dark. Furthermore, for the photo-oxidation
6	efficiency of photocatalysts was found to generally depend on light intensity ⁴² , the
7	intense light source xenon lamp with a UV-light filter was employed in the experiment
8	for 4-CP removal. Similarly, the concentration of 4-CP declined the same as in dark (Fig.
9	9). Therefore, it is considered that the $FeS_2@GO-H_2O_2$ system without the
10	photo-catalytic process would avoid the drawbacks found in light sensitive system.
11	According to the previous studies ^{4, 7, 8, 10} , the Fenton reaction stimulated by the
12	dissolved Fe^{2+} from pyrite surface is the dominant mechanism for 4-CP removal.
13	Overall, H_2O_2 consumption rates in different reaction systems followed the order of
14	pyrite > $FeS_2@GO > FeS_2$ (Fig. 10), because GO highly facilitated dispersion of FeS_2
15	and provided a huge interface for the transformation of H_2O_2 , enhancing the 4-CP
16	removal.
17	The role of H_2O_2 in the removal of 4-CP was precursor of HO•. Because H_2O_2 itself
18	is not an efficient oxidizer of 4-CP, HO• generated from H ₂ O ₂ are the actual oxidant in
19	the FeS ₂ and FeS ₂ @GO Fenton systems. It is showed in Fig. 11 that addition of
20	methanol as a HO• scavenger substantially retarded the removal of 4-CP both in FeS_2
21	and FeS ₂ @GO Fenton systems. Besides, it is worth to notice that in an anaerobic
22	reaction system 4-CP removal was also inhibited to a certain degree (Fig. 11). Thus, it is

1	believed oxygen played an indispensable role in the $FeS_2(a)GO$ Fenton system for 4-CP
2	removal. First, it is proved that the transformation of halogenated compounds in pyrite
3	suspension was consistent with the finding that pyrite oxidation by O_2 follows a
4	Fenton-like mechanism, in which the reduction of O_2 on the pyrite surface can induce
5	HO• formation ⁴³⁻⁴⁸ . On the other hand, the dissolved O_2 in reaction solutions oxide the
6	$FeS_2@GO$ surface, releasing Fe^{2+} for the further Fenton reaction (Eq. (3)). Therefore,
7	dissolved O ₂ is an essential factor in the FeS ₂ @GO Fenton system. In addition, it is
8	considered that the surface disulfide groups have been the proposed electron donor in
9	reductive dehalogenation ⁴⁹ .
10	
11	Conclusions
12	This study demonstrated that high-dispersive FeS_2 on GO possesses a relatively high
13	oxidative capacity for removing aqueous 4-CP in H ₂ O ₂ solution, offering a good
14	alternative for the treatment of aqueous organic contaminants. The continuous
14 15	alternative for the treatment of aqueous organic contaminants. The continuous dissolution of Fe^{2+} from $FeS_2@GO$ surface is considered as the key factor to achieve the
14 15 16	alternative for the treatment of aqueous organic contaminants. The continuous dissolution of Fe^{2+} from $FeS_2@GO$ surface is considered as the key factor to achieve the oxidation of 4-CP by continuously producing the •OH. And oxygen played an
14 15 16 17	alternative for the treatment of aqueous organic contaminants. The continuous dissolution of Fe^{2+} from $FeS_2@GO$ surface is considered as the key factor to achieve the oxidation of 4-CP by continuously producing the •OH. And oxygen played an indispensable role in the $FeS_2@GO$ Fenton system for 4-CP removal by facilitating the
14 15 16 17 18	alternative for the treatment of aqueous organic contaminants. The continuous dissolution of Fe ²⁺ from FeS ₂ @GO surface is considered as the key factor to achieve the oxidation of 4-CP by continuously producing the •OH. And oxygen played an indispensable role in the FeS ₂ @GO Fenton system for 4-CP removal by facilitating the dissolution of Fe ²⁺ . Besides, no distinguishable diversity on removal of 4-CP was
14 15 16 17 18 19	alternative for the treatment of aqueous organic contaminants. The continuous dissolution of Fe ²⁺ from FeS ₂ @GO surface is considered as the key factor to achieve the oxidation of 4-CP by continuously producing the •OH. And oxygen played an indispensable role in the FeS ₂ @GO Fenton system for 4-CP removal by facilitating the dissolution of Fe ²⁺ . Besides, no distinguishable diversity on removal of 4-CP was observed in presence and absence of visible light. The results obtained from this study
14 15 16 17 18 19 20	alternative for the treatment of aqueous organic contaminants. The continuous dissolution of Fe ²⁺ from FeS ₂ @GO surface is considered as the key factor to achieve the oxidation of 4-CP by continuously producing the •OH. And oxygen played an indispensable role in the FeS ₂ @GO Fenton system for 4-CP removal by facilitating the dissolution of Fe ²⁺ . Besides, no distinguishable diversity on removal of 4-CP was observed in presence and absence of visible light. The results obtained from this study can provide basic knowledge to understand the oxidative degradation mechanism of
14 15 16 17 18 19 20 21	alternative for the treatment of aqueous organic contaminants. The continuous dissolution of Fe ²⁺ from FeS ₂ @GO surface is considered as the key factor to achieve the oxidation of 4-CP by continuously producing the •OH. And oxygen played an indispensable role in the FeS ₂ @GO Fenton system for 4-CP removal by facilitating the dissolution of Fe ²⁺ . Besides, no distinguishable diversity on removal of 4-CP was observed in presence and absence of visible light. The results obtained from this study can provide basic knowledge to understand the oxidative degradation mechanism of 4-CP by high-dispersive FeS ₂ in H ₂ O ₂ solution and to design a high-dispersive and

1	Acknowledgements
2	The authors acknowledge financial support from "The Opening Foundation of the
3	Environmental Engineering Key Discipline", the Fundamental Research Funds for the
4	Central Universities and the Zhejiang Provincial Natural Science Foundation of China
5	(No. LY12B050005).
6	
7	Notes and references
8	1 P. Bonnissel-Gissinger, M. Alnot, J. J. Ehrhardt and P. Behra, Environ. Sci. Technol.,
9	1998, 32 , 2839-2845.
10	2 H. T. Pham, M. Kitsuneduka, J. Hara, K. Suto and C. Inoue, Environ. Sci. Technol.,
11	2008, 42 , 7470-7475.
12	3 H. T. Pham, K. Suto and C. Inoue, <i>Environ. Sci. Technol.</i> , 2009, 43 , 6744-6749.
13	4 R. Weerasooriya and B. Dharmasena, <i>Chemosphere</i> , 2001, 42 , 389-396.
14	5 C. J. Liang, Y. Y. Guo, Y. C. Chien and Y. J. Wu, Ind. Eng. Chem. Res., 2010, 49,
15	8858-8864.
16	6 M. Arienzo, Chemosphere, 1999, 39, 1629-1638.
17	7 H. Che, S. Bae and W. Lee, J. Hazard. Mater., 2010, 185, 1355-1361.
18	8 R. Matta, K. Hanna and S. Chiron, Sci. Total Environ., 2007, 385, 242-251.
19	9 S. Bae, D. Kim and W. Lee, Appl. Catal. B: Environ., 2013, 134, 93-102.
20	10 H. Che and W. Lee, <i>Chemosphere</i> , 2011, 82, 1103-1108.
21	11 L. L. Xu, X. F. Li, J. Q. Ma, Y. Z. Wen and W. P. Liu, Appl. Catal. A: Gen., 2014,
22	485 , 91-98.

RSC Advances Accepted Manuscript

- 1 12 S. Kar and S. Chaudhuri, *Chem. Phys. Lett.*, 2004, **398**, 22-26.
- 2 13 C. Wadia, Y. Wu, S. Gul, S. K. Volkman, J. H. Guo and A. P. Alivisatos, Chem.
- 3 *Mater.*,2009, **21**, 2568-2570.
- 4 14 D. W. Wang, Q. H. Wang and T. M. Wang, *CrystEngComm*, 2010, **12**, 755-761.
- 5 15 D. W. Wang, Q. H. Wang and T. M. Wang, *CrystEngComm*, 2010, **12**, 3797-3805.
- 6 16 S. Q. Song, R. C. Rao, H. X. Yang, H. D. Liu and A. M. Zhang, *Nanotechnology*,
 7 2010, 21, 185602-185607.
- 8 17 D. N. Thi, H. P. Ngoc, H. D. Manh and T. N. Kim, J. Hazard. Mater., 2011, 185,

9 653-661.

- 10 18 A. Prakash, S. Chandra and D. Bahadur, *Carbon*, 2012, **50**, 4209-4219.
- 11 19 H. X. Wu, G. Gao, X. J. Zhou, Y. Zhang and S. W. Guo, *CrystEngComm*, 2012, 14,
 12 499-504.
- 13 20 W. Fan, W. Gao, C. Zhang, W. W. Tjiu, J. S. Pan and T. X. Liu, J. Mater. Chem.,
- 14 2012, **22**, 25108-25115.
- 15 21 Y. Choi, H. S. Bae, E. Seo, S. Jang, K. H. Park and B. S. Kim, J. Mater. Chem.,
- 16 2011, **21**, 15431-15436.
- 17 22 T. Zeng, X. L. Zhang, Y. R. Ma, H. Y. Niu and Y. Q. Cai, *J. Mater. Chem.*, 2012, 22,
 18 18658-18663.
- 19 23 Y. H. Song, Z. F. He, H. Q. Hou, X. L. Wang and L. Wang, *Electrochim. Ac.*, 2012,
 71, 58-65.
- 21 24 Y. L. Dong, H. G. Zhang, Z. U. Rahman, L. Su, X. J. Chen, J. Hu and X. G. Chen,
- 22 Nanoscale, 2012, **4**, 3969-3976.

		RSC Advances
1	25	G. Y. He, W. F. Liu, X. Q. Sun, Q. Chen, X. Wang and H. Q. Chen, Mater. Res. Bull.,
2		2013, 48 , 1885-1890.
3	26	H. Bader, V. Sturzenegger and J. Hoigné, Water Res., 1988, 22, 1109-1115.
4	27	K. Kasaka, H. Yamada, S. Matsui, S. Echigo and K. Shishida, Environ. Sci. Technol.,
5		1998, 32 , 3821-3824.
6	28	D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Nat. Nanotechnol.,
7		2008, 3 , 101-105.
8	29	N. A. Zubir, C. Yacou, J. Motuzas, X. W. Zhang and J. C. D. da Costa, Sci. Rep.,
9		2014, 4, 1-8.
10	30	S. Navalon, M. Alvaro and H. Garcia, Appl. Catal. B: Environ., 2010, 99, 1-26.
11	31	M. A. McKibben and H. L. Barnes, Geochim. Cosmochim. Ac., 1986, 50,
12		1509-1520.
13	32	P. C. Singer and W. Stumm, <i>Science</i> , 1970, 167 , 1121-1123.
14	33	X. M. Ren, J. X. Li, X. L. Tan, W. Q. Shi, C. L. Chen, D. D. Shao, T. Wen, L. F.
15		Wang, G. X. Zhao, G. P. Sheng and X. K. Wang, Environ. Sci. Technol., 2014, 48,

- 16 5493-5500.
- 34 C. K. Duesterberg and T. D. Waite, Environ. Sci. Technol., 2006, 40, 4189-4195. 17
- 35 X. F. Li, X. Liu, L. L. Xu, Y. Z. Wen, J. Q. Ma, Z. C. Wu, Appl. Catal. B: Environ., 18
- 2015, 165, 79-86. 19
- 20 36 C. S. Shen, Y. Shen, Y. Z. Wen, H. Y. Wang, W. P. Liu, Water Res., 2011, 45,
- 5200-5210. 21
- 22 37 C. S. Shen, Y. Z. Wen, X. D. Kang, W. P. Liu, Chem. Eng. J., 2011, 166, 474-482.

- 1 38 C. S. Shen, H. Chen, S. S. Wu, Y. Z. Wen, L. N. Li, Z. Jiang, M. C. Li, W. P. Liu, J.
- 2 *Harzd. Mater.*, 2013, **244-245**, 689-697.
- 3 39 C. S. Shen, Y. Z. Wen, Z. L. Shen, J. Wu, W. P. Liu, J. Harzd. Mater., 2011, 193,

4 209-215.

- 5 40 S. Ogawa, J. Appl. Phys., 1979, 50, 2308-2311.
- 41 V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, *Prog. Mater. Sci.*,
 2011, 56, 1178-1271.
- 8 42 C. S. Shen, S. F. Song, L. L. Zang, X. D. Kang, Y. Z. Wen, W. P. Liu and L. S. Fu, J.
- 9 Harzd. Mater., 2010, 177, 560-566.
- 10 43 M. Berger, M. Hazen, A. Nejjari, J. Fournier, J. Guignard, H. Pezerat and J. Cadet,
- 11 *Carcinogenesis*, 1993, **14**, 41-46.
- 12 44 C. A. Cohn, M. J. Borda and M. A. A. Schoonen, Earth Planet. Sci. Lett., 2004, 225,
- 13 271-278.
- 14 45 C. A. Cohn, R. Laffers and M. A. A. Schoonen, *Environ. Sci. Technol.*, 2006, 40,
- 15 2838-2843.
- 16 46 C. A. Cohn, S. Mueller, E. Wimmer, N. Leifer, S. Greenbaum, D. R. Strongin and
- 17 M. A. A., *Geochem. Trans.*, 2006, 7, open assess.
- 18 47 R. T. Lowson, Chem. Rev., 1982, 82, 461-497.
- 19 48 J. D. Rimstidt and D. J. Vaughan, *Geochim. Cosmochim. Ac.*, 2003, **67**, 873-880.
- 20 49 G. W. Luther, *Geochim. Cosmochim. Ac.*, 1987, **51**, 3193-3199.

1	FIGURE CAPTIONS
2	Fig. 1 SEM image of FeS_2 (a) and $FeS_2@GO$ (b), and TEM images of FeS_2 (c) and
3	$FeS_2@GO(d).$
4	
5	Fig. 2 X-ray diffraction patterns of natural pyrite and synthetic FeS ₂ .
6	
7	Fig. 3 Time profiles of 4-chlorophenol (4-CP) removal by pyrite, FeS ₂ FeS ₂ @GO (a),
8	and time profiles of 4-CP removal by $FeS_2@GO$ with different GO content (b) under the
9	conditions of pH 5.0, 25 ± 1 °C, [4-CP] = 128.6 mg/L (1.0 mM), [H ₂ O ₂] = 50 mM and
10	[catalyst] = 0.8 g/L. Data points are given as means \pm standard deviations ($n = 3$).
11	
12	Fig. 4 Iron leaching of FeS_2 and $FeS_2@GO$ during the reaction with 4-hlorophenol
13	(4-CP) (a) and time profiles of 4-CP in classic Fenton system (b) under the conditions of
14	pH 5.0, 25 ± 1 °C, [4-CP] = 128.6 mg/L (1.0 mM), [H ₂ O ₂] = 50 mM, [catalyst] = 0.8
15	g/L and $[Fe^{2+}] = 5.4$ mg/L. Data for classic Fenton treatment are from single
16	measurement, while the other data points are given as means \pm standard deviations ($n =$
17	3).
18	
19	Fig. 5 Effect of FeS ₂ @GO loading (a), initial pH (b) and H_2O_2 concentration (c) on
20	4-chlorophenol (4-CP) removal at 25 ± 1 °C in pH 5.0 reaction solutions initially
21	containing 128.6 mg/L (1.0 mM) 4-CP and 50 mM H_2O_2 and 0.8 g/L FeS ₂ @GO. Data
22	for FeS ₂ @GO-only treatment are from single measurements, whereas the other data

1	points are given as means \pm standard deviations ($n = 3$).
2	
3	Fig. 6 Reuse of FeS ₂ @GO at 25 ± 1 °C in pH 5.0 reaction solutions initially containing
4	128.6 mg/L (1.0 mM) 4-CP, 50 mM H_2O_2 and 0.8 g/L FeS ₂ @GO. (a-e) show 4-CP
5	residue in five degradation reactions. Data points are from single measurement.
6	
7	Fig. 7 Formation of intermediates oxalic acid, acetic acid and chloroacetic acid.
8	
9	Fig. 8 Removal of TOC at 25 ± 1 °C in pH 5.0 reaction solutions initially containing
10	128.6 mg/L (1.0 mM) 4-CP, 50 mM H_2O_2 and 0.8 g/L FeS ₂ @GO (pyrite or FeS ₂). Data
11	points are from single measurement.
12	
13	Fig. 9 Effect of visible light on 4-chlorophenol (4-CP) at 25 ± 1 °C in pH 5.0 reaction
14	solutions initially containing 128.6 mg/L (1.0 mM) 4-CP, 50 mM H ₂ O ₂ , and 0.8 g/L
15	$FeS_2@GO$. Data for visible light treatment are from single measurement, while the
16	other data points are given as means \pm standard deviations ($n = 3$).
17	
18	Fig. 10 Hydrogen peroxide consumption by pyrite, FeS ₂ and FeS ₂ @GO at 25 ± 1 °C in
19	pH 5.0 reaction solutions initially containing 50 mM H_2O_2 and 0.8 g/L FeS ₂ @GO
20	(pyrite or FeS ₂). Data points are given as means \pm standard deviations ($n = 3$).
21	

Fig. 11 Removal of 4-chlorophenol (4-CP) at 25 ± 1 °C in pH 5.0 reaction solutions in

- 1 the presence of 2.5% wt. methanol (•OH radical scavenger) and in the absent of O_2
- 2 initially containing 128.6 mg/L 4-CP, 50 mM H_2O_2 and 0.8 g/L FeS₂@GO (or FeS₂).
- 3 Data for anaerobic treatment are from single measurement, while the other data points
- 4 are given as means \pm standard deviations (n = 3).

3

Fig. 2

- 1
- 2
- 3

Fig. 3

- 1 2
- 3

Fig. 4

RSC Advances Accepted Manuscript

- 1
- 2

3

Fig. 5

2

Fig. 6

- 1
- 2

Fig. 7

2

3

3

Fig. 9

- 1
- 2

Fig. 10

2

Fig. 11