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An axisymmetric model for the analysis of dynamic surface tension

S.I. Ariasa, J.R. Fernándezb, L. Garcı́a-Rioc∗, J.C. Mejutoa, M.C. Muñizd and C. Núñeze

A quantitative treatment of dynamic surface tension data has been carried out with different mathematical approaches taking

into account a difusion-controlled mechanism. The classical model has been modified in order to achieve a better description

of the experimental conditions by considering a finite diffusion domain. The domain has been fixed keeping the restriction that

the surfactant concentration in this region should remain constant after the adsorption at the air-water interface, in such a way

that the number of surfactant unimers is 30 times the number adsorbed at the interface. The finite diffusion restriction has been

used both in 1D and axisymmetric models, the latter one being the most accurate and needing a smaller diffusion domain since it

considers surfactant adsorption at a sphere resembling the physical experiments. A distorted sphere geometry taking into account

the Laplace-Young equation has also been studied.

1 Introduction

Dynamic surface tension at the air/water interface is an im-

portant property in a wide scope of phenomena, like wetting,

flotation and sedimentation among others. It plays a major role

in several applications like foam production, film creation and

coatings, filtration and cleaning processes1–3.

l= B - b

AdsorptionDesorption
r = b

r = B

subsurface

bulk

interface

Fig. 1 Subsurface and air/water interface

When a new air/water interface is created, the surface con-

centration of unimers is less than at equilibrium, deriving in a

flow of unimers from the bulk solution to the interface. This

flow causes a drop in the surface tension in order to reach its

equilibrium value4. This process can last from milliseconds

to hours or even days, and the time taken depends mainly on

the velocity of diffusion from the bulk solution to the so-called

subsurface —i.e. an hypothetical layer located a few nanome-

ters beneath the interface, see fig. 1— plus the total time taken
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in moving between the subsurface and the interface. If we ini-

tially consider an empty interface, unimers travel a diffusion

length denoted by l, see fig.1, and then they are directly ad-

sorbed in the free interface. As it gets crowded, unimers can

backscatter to the bulk due to the non existence of a vacant site

at the interface.

In the present manuscript we develop two approaches for

the analysis of dynamic surface tension experiments from a

pendant bubble tensiometer. The first approach concerns the

diffusion length, where a finite l-value is considered in agree-

ment with the experimental conditions in the literature5. We

compare the classical spherical model (l = +∞) with that ob-

tained by taking into account a finite diffusion length. The

last model has been performed for a one-dimensional system

where the adsorption-desorption is considered to take place in

a spherical bubble. Secondly, in order to take into considera-

tion that the real geometry for a pendant bubble tensiometer

resembles a distorted sphere, an axisymmetric model account-

ing for the experimental conditions has been developed. We

compare numerical results with experimental dynamic surface

tension ones obtained from the literature for a well known

alkyl poly(ethylene oxide) surfactant, C12E4. Adsorption at

the air-water interface of CiE j surfactants has been widely

studied by different experimental techniques5–16 concluding

that for most of them the adsorption is diffusion-controlled.

Indeed, there are two general models that describe the ad-

sorption into an interface4: the diffusion controlled model in

which monomers adsorb directly because adsorption barriers

are not taken into account, taking more time to travel from

the bulk to the subsurface than the adsorption time, and the

mixed-kinetic model, where monomers do not adsorb directly

but have to overcome a potential barrier, proceed in the correct

orientation or find an empty site to be adsorbed. Maldarelli et

al.13 probed the existence of a shift from the diffusion con-

trolled model to the mixed-kinetic model for increasing bulk

concentrations.
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2 Mathematical Modelling

In the 1940’s Ward and Tordai17 pioneered the mathemati-

cal description of the adsorption-desorption process4 obtain-

ing the well-known Ward and Tordai equation which gives an

explicit relation between the interface and subsurface concen-

trations, both of them unknowns of the problem. Ward and

Tordai17 considered an infinite diffusion length, and many

authors followed that assumption afterwards (see18 for fur-

ther reading), although it is an ideal consideration. Other au-

thors19–22 considered a finite diffusion length offering diffe-

rent approaches in order to estimate it. In the present work,

we carry out an analysis in terms of both finite and infinite

diffusion lengths.

Here, we denote by r the radial distance (see fig.1), and

c(r, t) the concentration of surfactant at point r ∈ [b,B] and

time t ∈ [0,T ]. Moreover, we denote the surface concentration

by Γ(t). The model for the diffusion of surfactant relies on the

Fick’s law written for a spherical coordinate system:

∂c

∂ t
(r, t) =

D

r2

∂

∂ r

(

r2 ∂c

∂ r
(r, t)

)

b < r < B, t > 0, (1)

with boundary conditions:

D
∂c

∂ r
(b, t) =

dΓ

dt
(t) t > 0, (2)

c(B, t) = cb t > 0, (3)

and initial conditions:

c(r,0) = cb b < r ≤ B, (4)

Γ(0) = 0, c(b,0) = 0. (5)

Besides, D is the diffusion coefficient and cb the bulk concen-

tration. Note that r = b represents the subsurface and r = B

a spherical interface far from the former, the diffusion length

l = B−b, see fig. 1, being the distance from the subsurface at

which the unimers behave as in the bulk. This parameter is of

great importance because a longer diffusion length increases

the time taken to reach equilibrium in this system, since the

unimers have to diffuse a longer distance to be adsorbed.

Note that diffusion in the bulk of the solution is described

by eq. (1), which is a simplification of the generalized diffu-

sion equation23 where no convection is considered in the bulk

phase. In this study, we have taken into account surfactant so-

lutions below the cmc (critical micelle concentration), there-

fore D in eq. (1) can be assumed constant. Boundary con-

ditions are given by eqs. (2)-(3). The former describes the

surfactant flux between the subsurface and the spherical air

bubble interface, the direction of which can be either from the

subsurface to the interface (adsorption) or viceversa (desorp-

tion)23; the latter boundary condition describes the fact that,

during the process, the boundary r = B is kept at a constant

bulk concentration, cb.

In terms of initial conditions, eq. (4) states that the bulk

phase is initially at a constant concentration, cb, whereas the

interface and the subsurface are supposed to be empty and, as

eqs. (5) state, both concentrations are zero at the beginning of

the process.

In order to close the system (1)-(5), it is necessary to spe-

cify what kind of adsorption-desorption mechanism follows

the process. A diffusion controlled model governed by the

Frumkin adsorption isotherm is mainly used in the present

work. Frumkin isotherm takes into account the interactions

between the solute and the solvent, being appropriate for non-

ionic surfactants and thus more realistic than the Langmuir

isotherm. Frumkin isotherm is given by the following expres-

sion:

Γ = Γm

cs

cs +aexp(K Γ
Γm

)
, (6)

where Γm is the maximum surface concentration, cs(t) =
c(b, t) for positive t, a is the surfactant activity and K is the

molecular interaction. The parameter a depends on the non-

ideality of the monomer layer formed in the interface. The

constant K shows if the surfactant has a cooperative or an-

ticooperative behaviour. A negative K value would indicate

cohesive intermolecular forces as the surface populates and

therefore the desorption rate is reduced; on the other hand, a

positive K value would indicate an anticooperative adsorption,

hindering adsorption as the interface gets more covered. Be-

sides, when K equals zero, a particular and remarkable case

of the Frumkin equation is obtained: the Langmuir adsorption

isotherm which is given by:

Γ = Γm

cs

a+ cs

, (7)

where a = 1/KL, KL being the Langmuir constant. This

assumption implies that there are neither interactions nor in-

termolecular forces between monomers and the solvent (mo-

delled as a lattice). Thus all adsorption sites are equivalent and

the probability of adsorption in a vacant site is independent of

the neighbourhood occupancy.

In the present study, the Frumkin and Langmuir isotherms

are going to be compared, to test if their use introduces signi-

ficant improvements in the simulations.
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If the solution is considered ideal, a concentration de-

pendant surface equation of state can be obtained, yield-

ing the following expressions for the Frumkin and Langmuir

isotherms, respectively:

γ = γ0 +nRT Γm

[

ln(1−
Γ

Γm

)−
K

2

(

Γ

Γm

)2
]

, (8)

γ = γ0 +nRT Γm ln(1−
Γ

Γm

), (9)

where γ0 is the surface tension of pure water, n a factor

accounting for the adsorption of counter-ions18 (equal to 1 as

C12E4 is non-ionic), R the gas constant and T the temperature.

3 One dimensional diffusion-controlled model

The diffusion-controlled model considers that the timescale

for equilibration of the interface and the subsurface is very

fast compared to the timescale for diffusion, and the ad-

sorption process is described by a thermodynamic adsorption

isotherm24. In this study, the diffusion controlled model and

both the Frumkin and Langmuir isotherms (see (6) and (7),

respectively) have been employed. These two equations es-

tablish a nonlinear dependence between the interface and the

subsurface concentrations. We compare the numerical simula-

tions with the experimental dynamic surface tension data un-

der three different considerations. Firstly, we use an infinite

diffusion length in order to test the existence of convective

currents manifested by “superdiffusive” adsorption kinetics.

Under the assumption of infinite diffusive length we analyze

the influence of the pendant bubble size by considering dia-

meters in the proximity of the pendant bubble one. Finally,

we introduce a finite diffusion length for the one-dimensional

model and compare the numerical results with those obtained

under the classical spherical method.

3.1 Classical spherical method

The classical spherical method describes the adsorption of sur-

factant molecules onto a freshly created air spherical bubble

surface, in an infinite surfactant solution, by considering the

case of one-dimensional diffusion. This simplification comes

from assuming spherical symmetry in the diffusion process

which takes place in the bulk of the solution. That is to say,

the same behaviour is assumed in all radial directions, so it

is only necessary to determine one of them to simulate what

happens in the whole solution.

The model under consideration is established in eqs. (1)

to (5) by taking B = +∞. A solution for the surface concen-

tration is calculated by using the Laplace transform technique,

and the following expression, in terms of the unknown subsur-

face concentration, is obtained5,17,25,26:

Γ(t) =
D

b
[cbt −

∫ t

0
cs(τ)dτ]

+

(

D

π

)1/2

[2cb t1/2 −
∫ t

0

cs(t − τ)

τ1/2
dτ]. (10)

Besides, this equation is coupled with either Frumkin (6)

or Langmuir (7) isotherms in order to obtain both surface and

subsurface concentrations. Once they are known, the surface

tension is calculated using the surface equations of state for

the above isotherms (8) or (9), respectively.

Now we describe the numerical scheme implemented in

MATLAB and we present several numerical results together

with experimental data, taking into account the discretization

of the Ward-Tordai expression (10), together with Frumkin

(6) or Langmuir (7) equations. In order to do that, we use

a uniform partition of the time interval [0,T ], denoted by

0 = t0 < t1 < .. . < tN = T , with time step k = T/N and

nodes tn = nk for n = 0, 1, . . . ,N. For a continuous func-

tion z(t), we use the notation zn = z(tn), n = 0, 1, . . . ,N. So,

the discrete approximation of this problem is considered as

follows27:

Problem Pk. Find Γk = {Γk
n}

N
n=0 and ck

s = {(cs)
k
n}

N
n=0 such

that

Γk
0 = 0, (cs)

k
0 = 0, (11)

and, for n = 1, . . . ,N, Γk
n and (cs)

k
n are the solution to the

following equations:

Γk
n = Γm

(cs)
k
n

(cs)k
n + a exp(K (Γk

n/Γm))
, (12)

Γk
n =

D

b
[cb tn −An]+

(

D

π

)1/2

[2cb t
1/2
n −Bn], (13)

An and Bn being expressions to approximate the integrals of

eq. (10), obtained by means of a piecewise linear interpola-

tion of the subsurface concentration, cs(t), on the discretiza-

tion nodes of the time interval. So, both An and Bn depend on

the concentrations (cs)
k
0,(cs)

k
1, . . . ,(cs)

k
n and are given by the

following expressions27:

An =
k

2

n−1

∑
i=0

((cs)
k
i +(cs)

k
i+1),

and
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Bn =
4

3
k1/2(cs)

k
n +

2

3
k1/2(cs)

k
n−1+

2k1/2
n−1

∑
i=1

[

(cs)
k
n−i αi +(

1

3
θi − iαi)((cs)

k
n−i−1 − (cs)

k
n−i)

]

,

where αi = (i+ 1)1/2 − i1/2 and θi = (i+ 1)3/2 − i3/2. Note

that, at iteration n, the two unknowns of Problem Pk are Γk
n

and (cs)
k
n assembled in a system of two equations and two un-

knowns, eq. (12) and eq. (13), being straightforwardly solved

by substitution in the case of the Langmuir isotherm and by

applying the Newton method for nonlinear systems (see28) if

we consider the Frumkin model.
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Fig. 2 Comparison of experimental surface tension data ◦, reported in

reference 5, with the numerical surface tension obtained with Langmuir (red

curves) and Frumkin (green curves) models taking into account infinite

diffusion length for different concentrations of C12E4 at 25.0oC (γ0 = 0.072

N/m), D = 6.4×10−10 m2/s. The model constants for the Langmuir

isotherm are Γm = 3.905×10−6 mol/m2, a = 4.66×10−4 mol/m3 and K = 0

and for the Frumkin isotherm Γm = 4.663×10−6 mol/m2, a = 3.521×10−4

mol/m3 and K = 1.875. Curve 1: cb = 10−3 mol/m3, curve 2: cb = 2×10−3

mol/m3 , curve 3: cb = 6×10−3 mol/m3, curve 4: cb = 10×10−3 mol/m3,

curve 5: cb = 15×10−3 mol/m3, curve 6: cb = 30×10−3 mol/m3.

Numerical results for different C12E4 concentrations are

shown in fig. 2 and are compared with the literature data ta-

king into account a pendant bubble radius equal to b = 1 mm.

It can be seen that the agreement between the simulations and

the experimental data is quite good.

Fig. 2 shows that the predicted dynamic surface tension pro-

files match the experimentally observed behaviour at higher

surfactant concentrations, while systematic deviations exist at

lower ones (see curves 1 and 2 for C12E4). It should be noted

that although the experimental and predicted dynamic sur-

face tension profiles deviate at low surfactant concentrations,

both the predicted and experimental behaviours approach the

same equilibrium surface tension values. Consequently, the

observed systematic deviations may not be associated with

the equilibrium surfactant adsorption models. Blankschtein

and coworkers29 have showed kinetics of surfactant adsorp-

tion to be faster than the predicted faster rate of surfactant ad-

sorption from a quiescent solution at time scales greater than

100s. In agreement with Blankschtein proposal29, this finding

suggests that the actual surfactant bulk solution, in which the

pendant-bubble dynamic surface tension measurements were

conducted, cannot be considered to be quiescent at time scales

greater than 100s, suggesting the possible existence of con-

vective currents operating at time scales greater than 100s in

the surfactant bulk solution.

3.2 Influence of the bubble radius

Recent studies22,30 in the literature reveal that the time scales

for reaching the equilibrium for surfactants adsorption at the

air-water interface change significantly with pendant bubble

radius. Fig. 3 shows the numerical dynamic surface tension

with different bubble radii by using the classical spherical

method with infinite diffusion length and Frumkin isotherm.

Pendant bubble radii values (b = 0.01− 10 mm) have been

chosen in the vicinity of the actual pendant bubble radius

(b = 1 mm).

When the interface is curved, the characteristic time scale

for molecular diffusion depends on the interface curvature.

The ratio between the bubble surface area and the volume

surrounding the bubble decreases with increasing radius. In

other words, there are more molecules per unit area available

for adsorption near a spherical interface with decreasing radii.

This increases the rate of mass transfer to the sphere. Accord-

ing to the Laplace-Young equation, variations of the radius

of the sphere have a direct effect in the difference of pres-

sures between the inner and outer side of the bubble. If the

radius decreases, the inner pressure of the bubble increases,

and consequently the magnitude of adsorption grows. Indeed,

this increase in the quantity of unimers adsorbed accelerates

the process achieving the equilibrium faster.

The simulations of fig. 3 agree with the above mentioned.

It is plain to see that, for smaller bubbles, the surface tension

achieves equilibrium faster than for bigger ones, due to the

rapid adsorption of unimers caused by the increase of the mag-

nitude of adsorption, to compensate the increase of inner pres-

sure of the bubble. Under the experimental conditions used in

this study, the influence of the bubble radius, b = 1 mm, can

be neglected.
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Fig. 3 Comparison of experimental surface tension data (◦), taken from

reference 5, with the numerical surface tension obtained varying surface of

adsorption radius (Frumkin model and infinite length) for C12E4 at 25.0oC

(γ0 = 0.072 N/m), D = 6.4×10−10 m2/s, Γm = 4.663×10−6 mol/m2,

a = 3.521×10−4 mol/m3 with concentration cb = 10×10−3 mol/m3. Solid

curve: b = 1 mm (green). Discontinuous curves: b = 10−2 mm (green),

b = 10−1 mm (red), b = 5×10−1 mm (blue), b = 5 mm (brown), b = 10

mm (purple).

3.3 One-dimensional spherical model with finite diffu-

sion length

The model presented in this section has been already intro-

duced in eqs. (1) to (5), where a finite diffusion length is con-

sidered and adequately chosen in order to reproduce the bulk

conditions31. We remark that B is the radius of an imaginary

selected sphere, so that the amount of surfactant in the bulk

phase is about 25-30 times greater than the amount of surfac-

tant adsorbed onto the air bubble surface when the solution has

reached the equilibrium. This way we guarantee that the bulk

concentration does not change significantly with the migration

of unimers to the interface, the amount of unimers adsorbed

at the interface being negligible in agreement with Ward and

Tordai. Fig. 4 depicts a sketch of the model.

The Frumkin isotherm is used here instead of Langmuir’s

due to its general extent, although in the present study the

Frumkin isotherm does not offer any advantage over Lang-

muir’s, probably because molecular interactions are not very

significant.

The algorithm developed to obtain the numerical results

with this model has been implemented in MATLAB and it

is based on the finite element method, consisting of, roughly

speaking, approximating the solution of the continuous pro-

blem considering finite dimensional vector spaces. This way

the solution is calculated in a finite set of nodes of the domain

and then a continuous approximate solution is built by inter-

r=
B

r=b

air-water interface

Fig. 4 Sketch of the diffusion region.

polation.

For the time discretization of eqs. (1) to (5) we consider

an implicit Euler method over a uniform partition of the time

interval [0,T ] — see the previous section —, approximating

the time partial derivative of the concentration in eqs. (1) and

(2) by the two-point backward finite difference formula:

∂c

∂ t
(r, tn)≈

cn(r)− cn−1(r)

k
.

In order to obtain the fully discrete approximation of this

problem, we define a non-uniform partition of the spatial do-

main, the interval [b,B], denoted by b = a0 < a1 < · · ·< aM =
B, with hi := ai+1 −ai, i = 0, . . . ,M−1.

Now we briefly describe the numerical scheme which has

been performed to obtain the numerical results. We consider

the finite element space V h defined as follows:

V h = {vh ∈C([b,B]);vh
|[ai−1,ai]

∈ P1([ai−1,ai]),

i = 1, . . . ,M,vh(B) = 0},

where P1([ai−1,ai]) denotes the set of polynomials of degree

less or equal to one in the interval [ai−1,ai], i = 1, . . . ,M and

h := max
0≤ i≤M−1

hi.

Therefore, for n = 1,2, . . . ,N, given chk
n−1 ∈ V h and Γhk

n−1 ∈

R, the discrete concentration of surfactant, chk
n + cb, is ob-

tained by solving the following nonlinear problem:
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∫ B

b
r2chk

n vhdr+Dk

∫ B

b
r2 ∂chk

n

∂ r

∂vh

∂ r
dr+

b2
Γm β hk

n−1 (c
hk
n (b)− chk

n−1(b))

(β hk
n−1 + chk

n (b)+ cb)2 +K β hk
n−1(c

hk
n (b)+ cb)

vh(b) =

∫ B

b
r2chk

n−1vhdr, ∀vh ∈V h,

where β hk
n−1 = a exp(K(Γhk

n−1/Γm)).
To deal with the previous nonlinear problem, we have used

an iterative algorithm based on a fixed-point argument at each

time step. In what follows, we describe this algorithm, which

solves a linear system in each iteration:

1. Initial time step. At the beginning, chk
0 and Γhk

0 are given.

2. (n)th time step. Both the surfactant and the surface con-

centrations at time tn−1, chk
n−1 and Γhk

n−1, respectively, are

known. Then, at time tn, chk
n is obtained with the follo-

wing iterative algorithm:

• Initialization: λn,0 = 1. Then chk
n,0 is computed as

the solution to the linear equation

∫ B

b
r2chk

n,0 vhdr+Dk

∫ B

b
r2

∂chk
n,0

∂ r

∂vh

∂ r
dr+

b2 Γm β hk
n−1 λn,0 chk

n,0(b)vh(b) =

∫ B

b
r2chk

n−1vhdr+b2 Γm β hk
n−1 λn,0 chk

n−1(b)vh(b),

∀vh ∈V h.

• Iteration j: chk
n, j−1 is known. So, we successively

calculate λn, j

λ−1
n, j = (β hk

n−1 + chk
n, j−1 + cb)

2 +K β hk
n−1(c

hk
n, j−1 + cb),

and determine chk
n, j by solving the following linear

system:

∫ B

b
r2chk

n, j vhdr+Dk

∫ B

b
r2

∂chk
n, j

∂ r

∂vh

∂ r
dr+

b2 Γm β hk
n−1 λn, j chk

n (b)vh(b) =

∫ B

b
r2chk

n−1vhdr+b2 Γm β hk
n−1λn, j chk

n−1(b)vh(b),

∀vh ∈V h.

The algorithm stops if the following condition is

fulfilled for a positive parameter ε small enough:

|chk
n, j − chk

n, j−1|

|chk
n, j−1|

< ε.

Now, we know chk
n and then we can calculate Γhk

n by sol-

ving the following equation

Γhk
n = Γm

chk
n (b)+ cb

β hk
n−1 + chk

n (b)+ cb

.

Once the bulk surfactant concentration is known, the sur-

face tension is calculated by means of the Frumkin surface

equation of state (8).

Now, we present the behaviour of this model for the simu-

lation of different C12E4 solutions. First of all, we analyze

the influence of the diffusion length on the dynamic sur-

face tension relaxation. We have performed several simu-

lations varying its value for a solution with concentration

cb = 10×10−3 mol/m3, see fig. 5. Taking into account that the

radius of the bubble, b, is equal to 1 mm, the diffusion length

needed to simulate the infinite boundary condition is B = 3.3
mm. This value31 is calculated so that the amount of surfac-

tant in the volume between the two spheres is 30 times big-

ger than the amount of surfactant adsorbed onto the air bubble

surface when the solution is at equilibrium. With diffusion

lengths below this value, the curve falls faster, so equilibrium

is reached before. On the other hand, considering values of

the diffusion length greater than B = 3.3 mm provides similar

results.

The decrease in the surface tension curves becomes sharper

as we reduce the value of B, reaching the equilibrium surface

tension faster than the experimental data. For diffusion lengths

smaller than B= 3.3 mm the experimental results do not fit the

numerical predictions, since in this case the numerical model

does not describe tightly the experimental conditions; that is

to say, for small values of B the number of unimers being

adsorbed to the interface is not negligible compared to their

number in the spherical volume under consideration.

Fig. 6 shows the relaxation profiles of the surface tension

generated from the Frumkin and Langmuir models, by using

the same diffusion coefficient (D = 6.4 × 10−10 m2/s) and

by considering the one-dimensional spherical model with fi-

nite diffusion length. Discrepancies between both models are

in agreement with predictions from the literature5,32–34, the

Frumkin model being only slightly better than the Langmuir

one. Because of its generality and the very small discrepan-

cies, the Frumkin isotherm is chosen instead of Langmuir’s to

analyze the transfer from the subsurface to the air-water inter-

face.
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Fig. 5 Numerical surface tension calculated with Frumkin model for

different diffusion lengths compared with experimental data taken from 5.

C12E4 at 25.0oC with concentration cb = 10×10−3 mol/m3 (γ0 = 0.072

N/m), D = 6.4×10−10 m2/s, Γm = 4.663×10−6 mol/m2, a = 3.521×10−4

mol/m3, K = 1.875. Curve ◦: experimental data. Discontinuous curves:

B = 1.05 mm (blue), B = 1.5 mm (red), B = 9 mm (light blue). Solid

curves: B = 1.025 mm (red), B = 1.25 mm (green), B = 3.3 mm (black).
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Fig. 6 Comparison of experimental dynamic surface tension data, taken

from 5, for C12E4 at 25.0oC and predictions from the Frumkin (blue lines)

and Langmuir (red lines) isotherms. γ0 = 0.072 N/m; D = 6.4×10−10 m2/s.

Frumkin isotherm: Γm = 4.663×10−6 mol/m2; a = 3.521×10−4 mol/m3

and K = 1.875. Langmuir isotherm: Γm = 3.905×10−6 mol/m2 and

a = 4.66×10−4 mol/m3, K = 0. Curve 1 (cb = 1×10−3 mol/m3; B = 6.22

mm), curve 2 (cb = 2×10−3 mol/m3; B = 5.24 mm), curve 3 (cb = 6×10−3

mol/m3; B = 3.81 mm), curve 4 (cb = 10×10−3 mol/m3; B = 3.30 mm),

curve 5 (cb = 15×10−3 mol/m3; B = 2.87 mm), curve 6 (cb = 30×10−3

mol/m3; B = 2.32 mm).

4 Axisymmetric model with finite diffusion

length

In this section, we work with an axisymmetric model consi-

dering two different geometries. In the first one, the adsorp-

tion takes place onto a spherical bubble hanging from the tip

of the inverted needle inside the solution. However, in order to

be more realistic and reproduce the real situation of the pen-

dant bubble tensiometer, we deal with a second geometry in

which adsorption occurs onto a non perfect sphere but onto a

deformed bubble due to the gravity force.

In order to get the shape of the non spherical pendant bubble

we use the Laplace-Young equation given by the following

expression

γeq 2H +ρ gh =C⋆,

where γeq is the surface tension at equilibrium, H the surface

mean curvature, ρ the density, g the gravitational acceleration,

h the height with respect to the reference position (see fig.

7) and C⋆ denotes a real constant accounting for the pressure

difference. Thus, the bubble shape is determined by a static

balance between surface tension and gravitational forces.

In order to compute the free boundary a system of cylin-

drical coordinates is used with the z−axis coinciding with the

symmetry axis of the bubble as it is depicted in fig. 7. We

assume that the bubble can be obtained as a surface of revo-

lution by rotating the curve r = s(z) about the z−axis. Ta-

king into account the unit normal vector to this surface, n, and

since 2H =−∇ ·n (see35) the Laplace-Young equation can be

rewritten as follows

γeq

1+(s′(z))2 − s(z)s′′(z)

s(z)(1+(s′(z))2)3/2
+ρ g(b− z) =C⋆, (14)

b being the radius of the spherical bubble.

In order to avoid the values where r is zero, we calculate the

deformed bubble from the point P0 —see fig. 7—, assuming

that at this point the bubble is spherical to obtain the value of

the constant C⋆. Notice that the expression (14) is a second-

order ordinary differential equation which can be solved as a

system of two first-order ordinary differential equations:

y′1(z) = y2(z),

y′2(z) =
1+(y2(z))

2

y1(z)
+

d ρ g(b− z)−C⋆ d

γeqy1(z)
,

where y1(z) = s(z), d = y1(z)(1 + y2(z)
2)3/2 and the initial

conditions are given by

y1(z0) = s(z0) = r0,

y2(z0) = s′(z0) =
−z0

(b2 − z2
0)

1/2
.

The solution of the previous system is obtained by means

of the MATLAB function ODE45. In fig. 8 the shape of
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Fig. 12 Comparison of the experimental surface tension taken from

reference 5 with the numerical surface tension calculated with the

axisymmetric model for a solution of C12E4 at 25.0oC (γ0 = 0.072 N/m),

D = 6.4×10−10 m2/s, Γm = 4.663×10−6 mol/m2, a = 3.521×10−4

mol/m3, K = 1.875. We compare the results obtained by considering that

adsorption takes place onto the spherical bubble (green lines) and non

spherical ones (red lines) depicted in figure 8 for the different

concentrations.Curve 1: cb = 10−3 mol/m3, curve 2: cb = 6×10−3 mol/m3,

curve 3: cb = 30×10−3 mol/m3.
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Fig. 13 Comparison of the experimental surface tension taken from 5 with

the numerical surface tension calculated with the different models for a

solution of C12E4 at 25.0oC with concentration cb = 6×10−3 mol/m3

(γ0 = 0.072 N/m), D = 6.4×10−10 m2/s, Γm = 4.663×10−6 mol/m2,

a = 3.521×10−4 mol/m3, K = 1.875. B-value for the 1-D model is

B=3.81mm.

bubble, we take ρ = 997.019 kg/m3 and the surface tension at

equilibrium for concentration cb = 6× 10−3 mol/m3 is com-

puted using equation (9) to get γeq = 0.0466 N/m. Axisym-

metric models with both spherical and non-spherical bubbles

yield almost equal numerical results. This is a consequence of

the fact that small changes in curvature provide almost negli-

gible effects on the adsorption rate supporting the accuracy of

the 1D diffusion model.

Finally, in fig. 14 we present the evolution in time of the nu-

merical surfactant concentration for a solution with bulk con-

centration cb = 6× 10−3 mol/m3 at t = 10 s —fig. 14(a)—,

t = 100 s —fig. 14(b)—, t = 500 s —fig. 14(c)— and t = 1000

s —fig. 14(d)—. Note that the range of the color scale varies at

those pictures. It can be seen that surfactant molecules fill the

air/water bubble surface until the solution becomes homoge-

neous. At t = 1000 s, the system has reached the equilibrium

and so the concentration is nearly uniform in the bulk.

5 Conclusions

The main conclusions reached in this manuscript are related to

the numerical simulation predictions of dynamic surface ten-

sion under consideration of a diffusion-controlled adsorption

mechanism. We have compared the classical spherical method

that considers an infinite diffusion domain with 1D and axi-

symmetric models on the assumption of a more physical rea-

listic finite diffusion domain.

In order to achieve a more detailed description of the phy-

sical experiment, a finite diffusion domain has been consi-

dered through 1D and axisymmetric models. The dimensions

of the diffusion domain were fixed to keep constant the sur-

factant concentration in this region. That is to say, the number

of surfactant unimers in the diffusion domain should remain

constant independently of its adsorption. Consequently, the

dimensions of this domain depend both on the surfactant con-

centration and the size of the air-water interface. The results

obtained with both 1D and axisymmetric models agree with

those from the classical spherical model, being the main ad-

vantage the size of the domain.
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(a) (b)

(c) (d)

Fig. 14 Evolution of the distribution of unimers concentration at different times (in seconds) for a solution with bulk concentration cb = 6×10−3 mol/m3. 3D

views of the axisymmetric numerical results. Note that the range of the color scale varies at those pictures.
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