

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Effects of luteolin on retinal oxidative stress and inflammation in
2	diabetes
3	
4	Hong-e Lu*, Yuan Chen, Xiao-Bo Sun, Bin Tong and Xiao-Hui Fan
5 6	Department of Ophthalmology, the People's hospital of Binzhou city, Binzhou 256610, Shandong province, China
7	Email: <u>helubio@126.com;</u> Fox: +86-543-3361666; Tel: +86-543-3282825
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

1 Abstract

2 Luteolin, a plant flavonoid, has a wide range of therapeutic effects. The aim of this study is to examine the effect of luteolin on diabetes-induced 3 oxidative stress and inflammation in the retina of rats. A diabetic rat 4 model was induced by intraperitoneally given streptozotocin 60 mg/ kg 5 and the rats were orally administration of luteolin 25, 50 and 100 mg/ kg 6 7 for 6 weeks. The results showed that luteolin administration prevented 8 diabetes-induced decrease in the antioxidant capacity, and increase in malondialdehyde (MDA), 8-hydroxy-2' -deoxyguanosine(8-OHdG)and 9 10 nitrotyrosine. Luteolin also inhibited diabetes-induced elevation in the 11 levels of IL-1 β , VEGF and NF- κ B. However, in the high dose group 12 (100mg/kg), retinal glutathione (GSH) levels were restored close to normal levels. The effects of luteolin were achieved without amelioration 13 of the severity of hyperglycemia. These data suggest that luteolin can be 14 effective for protection of diabetes induced retinal neurodegeneration by 15 16 inhibiting the levels of inflammatory markers and oxidative stress.

- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24

25

1 1. Introduction

Diabetic retinopathy (DR) is the leading cause of acquired blindness in 2 working adults around the world.¹Themolecular mechanism by which 3 diabetes damages the retinal microvasculature is thought to be 4 multifactorial, including hyperglycemia-induced polyol pathway 5 activity, increased nonenzy maticglycation and advanced glycation 6 end products, oxidative stress, protein kinase C(PKC) activit.²⁻ 7 ³However, the exact mechanism is still elusive. Diabetes increases 8 oxidative stress in tissues of both humans and animals, and increased 9 oxidative stress play a role in the development of diabetic 10 complications.⁴It has been provided strong evidence in animal models 11 that oxidative stress and inflammatory processes are strongly 12 implicated in development of the vascular lesionscharacteristic of 13 early stages of this retinopathy.⁵ However, the mechanism by which 14 oxidative stress can contribute to the development of diabetic 15 retinopathy remains to be elucidated. 16

Recent studies have proved the pathological involvement of the 17 immune system in diabetic retinopathy.⁶There is a close association 18 between oxidative stress and inflammation in diabetes and we 19 hypothesize that an increase in oxidative stress-derived inflammation 20 is a major mechanism in the pathogenesis and progression of diabetic 21 retina.⁷Many of the molecular and physiologic abnormalities that have 22 been found to develop in the retinain diabetes are consistent with 23 24 inflammation. Moreover, a number of anti-inflammatory therapies have been found to significantly inhibit development of different 25 aspects of DR in animal models.⁸The retinal capillaries become 26 nonperfused and ischemic, and the number of platelet-fibrin thrombi 27 increases in diabetes.⁹The levels of pro-inflammatory cytokines are 28

increased in the retina and vitreous in diabetes.⁶There have shown that 1 intravitreal injection of IL-1 β to the normal rats increases retinal 2 3 capillary cell apoptosis and histopathology, and these IL-1 β -induced changes in the retinal capillaries of normal rats are similar to those 4 observed in diabetes.¹⁰Further, VEGF is implicated in the 5 development of diabetic retinopathy. Increased levels of cytokines 6 (VEGF and IL-1 β) in diabetic retinas activates NF- κ B, which further 7 influences inflammatory stage leading to increased apoptosis of 8 endothelium cells, pericytes and glial cells.¹¹⁻¹³ 9

Luteolin, a 3',4'5,7-tetrahydroxy flavone, has been reported to 10 possess diverse anti-oxidative and anti-inflammatory activities. It 11 significantly decreases lipid peroxidation, inhibits the LPS-stimulated 12 oxidative stress, increases intracellular antioxidant, GSH, regulates 13 enzymatic antioxidants, and scavenges hyperglycemia-induced 14 ROS.¹⁴⁻¹⁵ In addition, luteolin is shown to inhibit the pro-inflammatory 15 transcriptional factor, NF-kB, and inhibit VEGF expression and ROS-16 induced retinal neovascularization.¹⁶⁻¹⁷ However, the beneficial effect 17 of luteolin on diabetic retinopathy remains to be explored. 18

In the present study we have investigated the effect of 19 20 administration of luteolin on oxidative stress and inflammatory markers in the retina of diabetes. The total antioxidant capacity, and 21 the levels of GSH, MDA, 8-OHdG, nitrotyrosine, IL-1 β , NF- κ B and 22 VEGF were quantified in the retina of diabetic rats that was perfused 23 with or without luteolin for 6 weeks, and for comparison, in the retina 24 25 of the normal control rats. The results presented show that luteolin administration for 6 weeks prevents diabetes-induced increase in 26 27 retinal oxidative stress and inhibits the levels of pro-inflammatory markers. 28

Page 5 of 26

1	2. Material and methods
2	2.1 chemicals and reagents
3	Luteolin, the purity was \geq 98% as determined by HPLC, and
4	streptozotocin (STZ) was purchased from Sigma-Aldrich, St. Louis, USA.
5	The asssy kits for tissue malondialdehyde (MDA, batch no. 20140523),
6	GSH (batch no.20140611), nitrotyrosine (batch, no20140509),8-hydroxy-
7	2' -deoxyguanosine(8-OhdG,batch no.20140413) were purchased from
8	Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
9	
10	2.2 Animals
11	Male rats of the Sprague-Dawley strain weighting (200-220g) were
12	procured from Sino-British SIPPR/BK Lab Animal Ltd (Shanghai,
13	China). The experimental rats were maintained in a controlled
14	environment (12:12 \pm 1-h light/dark cycle; temperature, 22 \pm 3°C; relative
15	humidity 55%). Rats were allowed to acclimatize to the laboratory for at
16	least 7 days under climate-controlled conditions. All experimental
17	procedures were carried out in accordance with the NIH Guidelines for
18	the Care and Use of Laboratory Animals, and animal handling followed
19	the dictates of the National Animal Welfare Law of China.
20	
21	2.3Experimental design
22	Diabetes was induced in rats by the intraperitoneal (i.p.) injection of

freshly prepared STZ at a dose of 60 mg/kg of body weight.¹⁸Forty eight

24 hours post STZ injection blood glucose level was measured and rats

showing a blood glucose level above 300 mg/dl were considered as

diabetic and selected for the study. Age-matched normal rats served as
 control. Diabetic rats were randomly divided into4 groups containing
 eight rats per group as follows:
 Group1: Diabetic control rats treated with saline solution for 6weeks
 Group2: Diabetic rats treated with Luteolin (25 mg/kg/d) for 6weeks

6 Group3: Diabetic rats treated with Luteolin(50 mg/kg/d) for 6weeks

7 Group4: Diabetic rats treated with Luteolin (100 mg/kg/d) for 6weeks

8 Diluted the dissolved compound into suitable concentration, then the 9 animals were administered with the saline or drugs intragastrically. After 10 6weeks of diabetes, the rats were euthanized via pentobarbital overdose 11 (60 mg/kg), the eyes were removed, and retina was isolated and frozen 12 immediately in liquid nitrogen for biochemical measurements.

13

14 2.4GSH, Nitrotyrosine, MDA and 8-OHdGmeasurement

15 Partial retina tissues were taken and rapidly broken to pieces in ice-cold

16 normal saline, and the tissue homogenate (10%, w/v) was prepared.

17 Retina GSH, nitrotyrosine, MDA and 8-OHdG activities were determined

18 according to the manufacturer's instructions. We performed all

19 measurements induplicate. The tissue sample concentration was

20 calculated from a standard curve and corrected for protein concentration.

21

22 **2.5 Quantification of mRNA expression**

23 The gene expression levels of IL-1 β , VEGF and p65 subunit of NF- κ B

in the retina tissue were determined by real-time quantitative

1	reverse-transcription polymerase chain reaction with the use of ABI
2	7700 and specific primers as reported previously. ¹⁹⁻²¹ Specific PCR
3	primer pairs for the target genes were:
4	GADPH forward 5'-CCATGGAGA AGGCTGGGG-3'
5	reverse 5'-CAAAGTTGTCATGGATGACC-3'
6	NF-κB forward 5'-CATTGAGGTGTATTTCACGG-3'
7	reverse 5'-GGCAAGTGGCCATTGTGTTC-3'
8	VEGF forward 5'-ACCTCCACCATGCCAAGT-3'
9	reverse 5'-TTGGTCTGCATTCACATCTG-3'
10	IL-1ßforward 5'-TTGGGATCCACACTCTCCAG-3'
11	reverse 5'-AGAAGCTGTGGCAGCTACCT-3'
12	

13 2.5 Western blot analysis

Retina tissue samples were processed for Western blot analysis. 14 Equal amount (50µg) of protein was subjected to 12% SDS-PAGE 15 gel, and transferred onto a PVDF membrane in a semi-dry system 16 (Bio-Rad, USA). The membranes were blocked with 5% non-fat dry 17 milk in Tris-buffered saline containing 0.1% Tween20, and 18 19 incubated with specific antibodies against IL-1B, VEGF and p65 subunit of NF-kB (1:1000 dilution)(Cell Signaling Technology, Inc., 20 Danvers, MA). The signals were developed using Super-Signal West 21 Pico chemiluminescent substrate (Pierce, Rockford, USA) and 22 visualized with Quantity One software 4.6.2. 23 24

25 3. Statistical analysis

The statistical analysis was performed using the SPSS software
package (Version 21). For inter-group comparison, student t -test was
used to compare initial value or absolute (net) differences. For
multiple comparison, the one-way analysis of variance (ANOVA) was
used followed by Tukey's test. All of the results were expressed as the
means ± SEM from the results of eight rats in each group. P values
less than 0.05 were considered as significant.

8 **4. Result**

9 **4.1Blood glucose and body weight**

10 In Figure 1A, blood glucose levels in the diabetic group (342.95 ± 11.63)

11 mg/dl) were significantly higher compared with those of the control

12 group (103.89 \pm 6.84 mg/dl) (P< 0.05) at the end of 6 weeks period.

13 However, these were significantly lower in luteolin-treated rats (50 and

14 100 mg/kg body weight group), being 234.13 \pm 8.82 mg/dl and 196.22 \pm

15 16.56 mg/dl, respectively, compared to untreated diabetic rats (p < 0.05

and p<0.001, respectively).

The base line weight of the rats at the beginning of the study was similar
in all groups. Body weight in diabetic rats was found to be decreased
by46.62% as compared to that in normal rats. However, the weight gains
found in the 25, 50 and100 mg/kg luteolin-treated rats (51.45%, 35.50%
and10.58 % gains in bodyweight, respectively) were significantly higher
(p < 0.05) (Fig.1B) compared to untreated diabetic rats.

23

24 **4.2Antioxidant parameters**

Retinal GSH levels were significantly lower in diabetic rats as compared
to normal rats (p < 0.01). However, in three luteolin-treated groups,

retinal GSH levels were significantly higher than diabetic group (p < 0.01) 1 2 (Fig.2A). The 100mg/kg group was closest to that in the normal control 3 group, a very signicant increase in the GSH level was detected in the 4 model control group (5 times) as compared with the normal control group. Six weeks of diabetes increased nitrotyrosine levels in the retina by 5 about 60% compared to the values obtained from normal control rats 6 7 (Fig.2B). Luteolin supplementation in diabetic rats prevented increase in retinal nitrotyrosine levels, the values in the luteolin-treated diabetic rats 8 9 were significantly lower compared to diabetic rats without luteolin (P <0.05). 10

As shown in Fig.2C, in the model group, MDA levels (6.75 ± 2.14) were significantly increased, and this effect was gradually recovered by luteolin; however, the luteolin group presented the lowest MDA levels compared with the other dose treatments in 100mg/kg group. 8-OHdG levels were elevated by over 56% (Fig.2D) in diabetes compared to the age-matched normal control rats.

17

18 **4.3Inflammatory parameters**

19 At mRNA level, the markedly increased transcripts of IL-1β, VEGF and 20 NF-κB were detected in retina from the diabetes model, whereas luteolin 21 administration significantly reduced the mRNA expression. IL-1β value 22 in diabetic rat retinas was found to be more than 3-fold higher than the 23 untreated normal retinas (p < 0.001) as well as VEGF (Fig.3A, 24 Fig.3B).And NF-κB was elevated by over 2 fold in the retina obtained

from diabetic rats (Fig.3C). By the meantime, western blot showed that

26 IL-1 β values in luteolin-treated rats were significantly lower than

1 untreated diabetics (p < 0.05). Differences were significant between 25 2 mg/kg and 100 mg/kg treated groups (p < 0.05). Supplementation with 3 luteolin prevented diabetes induced increase in VEGF; the values 4 obtained from normal control and diabetes + luteolin rats were not 5 significantly different from each other. The NF- κ B levels in the retinas 6 from luteolin-treated rats were significantly lower than untreated diabetic 7 retinas (p < 0.01, Fig.4B).

8

9 5. Disscusion

Flavonoids are a group of naturally occurring compounds that are 10 widely distributed as secondary metabolites in the plant kingdom.²² It 11 12 has been demonstrated that these compounds have interesting clinical properties, such as anti-inflammatory, antiallergic, antiviral, 13 antibacterial, anticancer and antioxidant activities. ²³⁻²⁴ Luteolin is 14 15 found in vegetables, fruits and Chinese traditional herbs. It can prevent oxidant injury and cell apoptosis by several mechanisms.²⁵ 16 Furthermore, luteolin has been proven to be a potent anti-diabetic 17 agent with an antioxidant and anti-inflammatory profile.²⁶ 18 19 This is the first reported showing that luteolin has beneficial effects on retinal metabolic abnormalities, including oxidative stress and 20 21 inflammation, which are considered to be important in the 22 development of retinopathy in diabetes. The present study showed potential neuroprotective effects of luteolin via its antioxidant and 23 anti-inflammatory mechanisms. 24 Oxidative stress is the keystone in multiple lines of evidence 25

converging on the origin and development of ocular disorders. It can

cause profound damage to the retina through dysregulation of 1 intracellular physiology leading to neurodegenerative disorders.²⁷ 2 3 Strong evidence accumulated over the past 25 years of research indicates correlations between the DR patient and oxidative stress.²⁸ In 4 addition, clinical evidence highlights the role of oxidative stress as 5 previously indicated. The antioxidant capacity of luteolin has been 6 considered to be ediated via its beneficial effects on the antioxidant 7 defense system. Here we provide date showing that the administration 8 9 of luteolin can prevent diabetes-induced decrease in the total antioxidant capacity of the retina. This suggests that luteolin has a 10 potential to inhibit overall oxidative damage experienced by the retina 11 12 in diabetes. GSH is an ubiquitous tripeptide that functions as an important 13 intracellular radical scavenger. It is important in antioxidant defense, 14 15 nutrient metabolism, and regulation of cellular events, including gene expression, apoptosis and cytokine production.²⁹ Decreased GSH 16 levels are observed in the retina in diabetes, and diabetes caused a 17 significant decrease in GSH in their sciatic nerves, indicative of 18 oxidative stress. ³⁰ Here, we provide data demonstrating that luteolin 19 administration has partial beneficial effect on diabetes-induced 20 decrease in retinal GSH. The GSH levels in luteolin-treated diabetic 21 22 rats remained lower than those in the normal control rats, but were 23 significantly higher than diabetic rats. 8-OHdG is one of the most abundant oxidatively modified lesions in 24 25 DNA. It has been implicated in the pathogenesis of diabetic retinopathy. The inhibition of increased retinal capillary cell apoptosis 26

and the development of diabetic retinopathy by lipoic acid are 1 2 considered to be mediated via inhibition of increased retinal 8-OHdG levels.³¹ Administration of luteolin decreases diabetes-induced 3 increase in retinal 8-OHdG levels. Inhibition of diabetes-induced 4 elevated retinal 8-OHdG levels by luteolin suggests that luteolin could 5 inhibit the development of diabetic retinopathy, in part, via inhibiting 6 accumulation of oxidized DNA in the retina. 7 Oxidative stress is considered to regulate diabetes-induced retinal 8 nitrotyrosine levels. Our data clearly show that luteolin administration 9 inhibits increased nitrotyrosine levels in the retina. In support, recent 10 studies by RC Thuraisingham et al³² have shown that diabetes 11 increased nitrotyrosine staining in kidneys from patients with diabetic 12 nephropathy. 13 The process of lipid peroxidation is one of oxidative conversion of 14 15 polyunsaturated fatty acids to products known as MDA, which is usually measured as thiobarbituric acid reactive substances (TBARS), 16 or to lipid peroxides, which is the most studied, biologically relevant, 17 free radical reaction. Lipid peroxidation of cellular structures, a 18 consequence of free radical activity, is thought to play an important 19 role in aging, atherosclerosis and late complications of diabetes.³³ 20 21 According to the results, after 6 weeks' administration of 25, 50, 22 100mg/kg of luteolin, the level of MDA was all very significantly 23 decreased. And the decreasing levels in the 100mg/kg group are the closest to the normal levels. Here we provide data showing that the 24 25 administration of luteolin can prevent diabetes-induced decrease in the total antioxidant capacity of the retina. This suggests that luteolin has 26

Page 13 of 26

RSC Advances

a potential to inhibit overall oxidative damage experienced by the
 retina in diabetes.

3 Inflammation is common events driving the development of various retinal microvascular changes in patients with hypertension, diabetes, 4 and other metabolic disorders.³⁴ There are exciting results showing 5 that the importance of inflammation in retinal pericytes apoptosis and 6 in the metabolic memory phenomenon, and pinpoints the importance 7 of the duration of thereversal in its outcome.⁹ In the pathogenesis of 8 diabetic retinopathy, diabetes has been shown to upregulate various 9 pro-inflammatory mediators in the retina, including IL-1 β , VEGF, NF-10 κ B and localized inflammatory processes is considered to play a role 11 in the development of diabetic retinopathy.^{3,35} 12

IL-1 β induces the expression of various genes whose promoters are 13 regulated through complex interactions with NF-kB. NF-kB is 14 15 considered as a key transcriptional regulator of several genes involved in immune and inflammatory responses, and luteolin is a potent 16 blocker of NF-kB activation.³⁶ In the pathogenesis of diabetic 17 retinopathy activation of NF-kB is reported to active a developing pro-18 apoptotic program in retinal pericytes, and accelerated apoptosis can 19 predict the development of retinopathy in diabetes. ³⁷ Here we provide 20 clear evidence that luteolin administration inhibits the activation of 21 22 NF-kB, accumulation of 8-OHdG and nitrotyrosine in the retina in 23 diabetes. This raises a possibility that luteolin can inhibit apoptosis of retinal capillary cells, a predictor of the development of diabetic 24 25 retinopathy.

26 The therapies that inhibit diabetes-induced VEGF accumulation in the

1 retina are shown to inhibit diabetic retinopathy. It is considered to play 2 a pivotal role in the increased permeability and angiogenesis seen in diabetic retinopathy. ³⁸ Here we demonstrate that luteolin can prevent 3 diabetes-induced increase in VEGF levels in the retina. In support, 4 luteolin has been reported to inhibit diabetes-induced increased VEGF 5 in and also is postulated to exert its neuroprotective effects and 6 7 prevent alcohol-induced liver damage via regulating peroxynitrite levels. 8 Here, we determined mRNA and protein levels of IL-1 β , VEGF and 9 NF-kB using pericytes isolated from the retina. However, luteolin-10 treated retinas showed significantly lower levels of cytokines 11 12 compared to diabetic retinas. Luteolin has been widely studied for its strong anti-inflammatory properties in rats. The present study was 13 carried out at three different doses of luteolin (25, 50 and 100 mg/kg 14 15 body weight). All doses have shown potential neuroprotective effects. 16 However, 100 mg/kg dose level showed better response on antioxidant and anti-inflammatory parameters, though effects were 17 18 comparable with 25 mg/kg body weight treated group on the rest of the parameters, viz., IL-1 β , VEGF and NF- κ B expressions, retinal 19 edema and apoptosis. Further, 50 mg/kg body weight can be 20 21 considered for further investigations, as lower dose is liable to carry 22 on less potential adverse events, though toxicity studies were not 23 carried in the present study. It is well established that both experimental diabetes in rats and 24 25 diabetes mellitus in humans are accompanied by increased apoptosis

of retinal neural cells. The retina contains a robust antioxidant and

1	inflammation defense system with molecules and endogenous
2	enzymes. Oxidative stress and inflammation play a key role in retinal
3	vascular dysfunction during diabetes. Luteolin can protect the retina of
4	diabetes rat. The potential mechanisms of protection may decrease
5	retinal cell apoptosis by anti-inflammation and anti-oxidative.
6	
7	6. Conclusions
8	Luteolin has beneficial effects in experimental studies of the diseases that
9	are characterized by increased oxidative stress and inflammatory
10	reactions supporting its clinical use. Our studies are the first to show that
11	luteolin can inhibit diabetes-induced retinal abnormalities that are
12	postulated in the development of diabetic retinopathy. Thus, luteolin
13	appears to be a useful adjunct therapy to possibly inhibit the
14	development/progression of retinopathy, the sight threatening
15	complication faced by diabetic patients.
16	
17	Acknowledgements
18	This study was supported in parts by grants from the Binzhou medical
19	university, China. The authors sincerely thank Department of
20	Comparative Medicine of Binzhou Medical Laboratory Animal Center
21	for the substantial assistance in the process of the experiments.
22	
23	
24	
25	
26	References

1	1.	J. W. Y. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski, T.
2		Bek, S.J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R. F.
3		Hamman, M. K. Ikram, T. Kamran, B. E. K. Klein, R. Klein, S. Krishnaiah, K.
4		Mayurasakorn, J. P. O'Hare, T. J. Orchard, M. Porta, M. Rema, M. S. Roy, T.
5		Sharma, J. Shaw, H. Taylor, J. M. Tielsch, R. Varma, J. J. Wang, N. Wang, S.
6		West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell and T.Y. Wong, Diabetes care,
7		2012, DC_111909.
8	2.	L. P. Aiello, L. Vignati, M. J. Sheetz, X. Zhi, A. Girach, M. D. Davis, A. M.
9		Wolka, N. Shahri and R. C. Milton, <i>Retina</i> , 2011, 31 , 2084-2094.
10	3.	R. A. Kowluru and M. Kanwar, NutrMetab (Lond), 2007, 4, 1-8.
11	4.	R. A. Kowluru, J. Tang and T. S. Kern, <i>Diabetes</i> , 2001, 50, 1938-1942.
12	5.	Y. P. Du, A. Veenstra, K. Palczewski and T. S. Kern, Proceedings of the National
13		Academy of Sciences, 2013, 110 , 16586-16591.
14	6.	M. Y. Donathand S. E. Shoelson, Nature Reviews Immunology, 2011, 11, 98-107.
15	7.	A. A. Elmarakby and J. C. Sullivan. <i>Cardiovascular therapeutics</i> , 2012, 30 , 49-59.
16	8.	G. Zhao, G. Dharmadhikari, K. Maedler and M. Meyer-Hermann, PLoS
17		computational biology, 2014, 10 , e1003798.
18	9.	D. Boeri, M. Maiello and M. Lorenzi, <i>Diabetes</i> , 2001, 50 , 1432-1439.
19	10	Y. Liu, M. B. Costa and C. Gerhardinge, <i>PloS one</i> , 2012, 7, e36949.
20	11.	R. F. Gariano and T. W. Gardner, Nature, 2005, 438, 960-966.
21	12	H. P. Hammes, X. L. Du, D. Edelstein, T. Taguchi, T. Matsumura, Q. Ju, J. Lin, A.
22		Bierhaus, P. Nawroth, D. Hannak, M. Neumaier, R. Bergfeld, I. Giardino and M.
23		Brownlee, <i>Nature medicine</i> , 2003,9, 294-299.
24	13	M. Y. Song, G. S. Jeong, K. B. Kwon, S. O. Ka, H. Y. Jang, J. W. Park, Y. C.
25		Kim and B. H. Park, <i>Experimental & molecular medicine</i> , 2012, 42 , 628-638.
26	14	M. Madhesh and M. Vaiyapuri, Journal of Acute Medicine, 2012, 2, 70-76.

15. K. Balamurugan and J. Karthikeyan, <i>Biomedicine & Preventive Nutrition</i> , 2012, 2,
86-90.
16. C. M. Park, K. S. Jin, Y. W. Lee and Y. S. Song, European journal of
pharmacology, 2011, 660 , 454-459.
17. G. Zhao, Y. Y. Chen, G. W. Qin and L. H. Guo, Neurobiology of aging, 2012, 33,
176-186.
18. Y. J. Ho, A. S. Lee, W. P. Chen, W. L. Chang, Y. K. Tsai, H. L. Chiu, Y. H. Kuo
and M. J. Su, Cardiovascular diabetology, 2014, 13, 98.
19. C. Ramirez, T. L. Russo, G. Delfino, S. M. Peviani, C. Alcantara and T. F. Salvini,
Brazilian journal of physical therapy, 2013, 17, 244-254.
20. C. Corpechot, V. Barbu, D. Wendum, N. Kinnman, C. Rey, R. Poupon, C.
Housset and O. Rosmorduc, Hepatology, 35, 1010-1021.
21. X. H. Zhang, M. L. Li, B. Wamg, M. X. Guo and R. M. Zhu, World journal of
gastroenterology, 2014, 20 , 10457-10463.
22. T. Ahlenstiel, G. Burkhardt, H. Köhler and M. K. Kuhlman, Kidney international,
2003, 63 , 554-563.
23. J. E. Middleton and C. Kandaswami. Biochemical pharmacology, 1992, 43, 1167-
1179.
24. C. A. Rice-evans, N. J. Miller, P. G. Bolwell, P. M. Bramley and J. B. Pridham,
<i>Free radical research</i> , 1995, 22 , 375-383.
25. H. Ueda, C. Yamazaki and M. Yamazaki, Biological and Pharmaceutical Bulletin,
2002, 25 , 1197-1202.
26. M. Leopoldini , I. P. Pitarch, N. Russo and M. Toscano, The Journal of Physical
<i>Chemistry A</i> , 2004, 108 , 92-96.
27. J. Emerit, M. Edeas and F. Bricaire, <i>Biomedicine & pharmacotherapy</i> , 2004, 58,
39-46.

1	28. A. J. Payne, S. Kaja, Y. Naumchuk, N. Kunjukunju and P. Koulen, International
2	journal of molecular sciences, 2014, 15 , 1865-1886.
3	29. A. C. Chan, C. K. Chow and D. Chiu, Experimental Biology and Medicine, 1999,
4	222 , 274-282.
5	30. S. Ghosh, T. Pulinilkunnil, G. Yuen, G. Kewalramani, D. An, D. Qi and A.
6	Abrahani, American Journal of Physiology-Heart and Circulatory Physiology,
7	2005, 289 , H768-H776.
8	31. L. L. Wu, C. C. Chiou, P. Y. Chang and T. W. James, Clinica Chimica Acta, 2004,
9	339 , 1-9.
10	32. R. C. Thuraisingham, C. A. Nott, S. M. Dodd and M. M. Yaqoob, Kidney
11	international, 2000, 57 , 1968-1972.
12	33. R. Kakkar, J. Kalra, S. V. Mantha and K. Prasad, Molecular and cellular
13	biochemistry, 1995, 151 , 113-119.
14	34. I. N. Mohamed, S. A. Soliman, A. Alhusban, S. Matragoon, B. A. Pillai, A. A.
15	Elmarkaby and A. B. El-Remessy, Molecular vision, 2012, 18, 1457-1466.
16	35. R. A. Kowluru, Q. Zhong and M. Kanwar, Experimental eye research, 2010, 90,
17	617-623
18	36. A. Deorukhkar, S. Krishnan, G. Sethi and B.B. Aggarwal, 2007, 16, 1753-1773.
19	37. Y. Yamamoto and B. Gaynor R, Current molecular medicine, 2001, 1, 287-296.
20	38. B. P. Nicholson and A. P. Schachat, Graefe's Archive for Clinical and
21	Experimental Ophthalmology, 2010, 248,915-930.
22	
23	
24	
25	

1 Figure legend

- 2
- 3 Figure 1. Effect of luteolinon on body weight (A) and blood glucose
- 4 levels (B) obtained from the experimental groups of rats. (Norm =
- 5 Normal, Diab = Diabetes, n=8 per group, values are presented as mean \pm
- 6 SEM, [#]p<0.05 ^{###}p<0.001compared with Normal, and *p<0.05 **p<0.01

7 ***p<0.001 compared with Diabetes, one-way ANOVA)

8

10

9

11

12

1 Figure 2.Effect of luteolinon diabetes-induced oxidative stress in retina.

- 2 (A) Retinal GSH expression level was detected by kit in the
- 3 deproteinizing retinal homogenate. Luteolin significantly decrease the
- 4 oxidative stress in retina, such as nitrotyrosine (B), MDA (C) and 8-
- 5 OHdG (D). (Norm = Normal, Diab = Diabetes, n=8 per group, values are
- 6 presented as mean \pm SEM, p < 0.05 presented with Normal,
- 7 and $p<0.05 \approx p<0.01 \approx p<0.001$ compared with Diabetes, student t-
- 8 test)

9

10

11

12

13

14

15

Figure.2

- 1 Figure 3.Luteolin-dependent regulation of inflammation related genes in
- 2 retina. In retina tissue homogenates of rats, luteolin suppresses
- 3 inflammation related genes. Graphs show RT-PCR measurements of
- 4 three differentially regulated genes, they are NF-KB (A), VEGF (B) and
- 5 IL-1 β (C). (Norm = Normal, Diab = Diabetes, n=3 per group, values are
- 6 presented as mean \pm SEM, ^{##}p<0.05 ^{###}p<0.001compared with Normal,
- 7 and *p<0.05 **p<0.01 compared with Diabetes, student t-test)
- 8

- 10
- 12

11

13

14

- 1 Figure 4.Luteolin decreases the inflammation related proteins retina
- 2 tissue of rats after diabetes induced by STZ. WB analysis was used in
- 3 retina tissue to quantify the expression of NF-κB (A), VEGF (B) and IL-
- 4 1β (C). (Norm = Normal, Diab = Diabetes, n=3 per group, values are
- 5 presented as mean \pm SEM, ^{##}p<0.05 ^{###}p<0.001compared with Normal,
- 6 and $p<0.05 \approx p<0.01$ compared with Diabetes, student t-test.

RSC Advances Accepted Manuscript

7

8

30x22mm (300 x 300 DPI)

30x22mm (300 x 300 DPI)

30x22mm (300 x 300 DPI)

40x54mm (300 x 300 DPI)