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abstract：：：：In this paper, we developed a novel strategy to synthesize nano-size 

Li4Ti5O12 (LTO) by hydrothermal and calcined under low temperature. X-ray 

diffraction and high resolution transmission electron microscopy measurements were 

performed to characterize the structures and morphologies of these samples. Highly 

crystallized and pure-phase Li4Ti5O12 synthesized at low calcinations temperature 

about 500 
o
C was firstly reported. This nanocrystalline LTO was tested as the anode 

material for lithium ion batteries, and exhibited excellent reversible capacities of 166, 

162, 155, 142 and 123 mA h·g
-1

 at current densities of 1 C, 2 C, 5 C,10 C and 20 C, 

respectively. It also demonstrated good capacity retentions and high coulombic 

efficiencies at all current rates. The excellent electrochemical performance makes our 

LTO to be a promising anode material for high energy/power density lithium ion 

batteries. 

Key words: lithium ion battery; lithium titanate; nano-size; high rate performance 
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Recently, rechargeable lithium ion batteries (LIBs) have attracted more and more 

attention as one of the most potential candidates for electric vehicles (EVs), stationary 

power storage devices and portable power source for micro electric devices
1-5

.  

However, the cycle life and safety are the key obstructs that affecting it widely 

applied in this field
6
. Spinel Li4Ti5O12 (LTO) is one of the most attractive negative 

electrode materials that may solve these problems
7, 8

. LTO displays excellent stability 

owing to its volume expansion/contraction (<1%) when lithium ion intercalation and 

deintercalation, compare to approximately 9% volume change if the carbon materials 

used as anodes in commercial LIBs
2
. Furthermore, LTO exhibits a high plateau 

voltage in the Li insertion potential at approximately 1.55 V (versus Li
+
/Li) 

9
. As the 

consequence, it does not form a solid electrolyte interface with high resistance
10

. 

However, Li4Ti5O12 has some disadvantages, such as it has so low theoretical capacity 

of 175 mA h·g
-1

 and pretty low electronic conductivity (ca. 10
-13

 S·cm
-1 

), thus it is 

not satisfied for such applications
2, 11, 12

.  

     In order to solve these problems, several researches have been done such as 

reducing the particle size and coating conductive materials on the Li4Ti5O12 surface, 

or doping some metal ions
9
. Coating conductive materials on the surface enhance the 

electrical contact in the electrode is one of the common methods. Carbon is the most 

inexpensive and widely used material for modifying Li4Ti5O12, because of it could 

increase electrical conductivity
13-15

. The LTO particles doped with different metal ions 

has been widely studied, such as Ag
+
, Ru

2+
, Cr

4+
 and V

5+
, to increase their intrinsic 

conductivity so as to obtain a satisfactory level of power density
16-22

.Decreasing the 
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particle size was one of the most useful ways, which could shorter the diffusion path 

of electrons and lithium ions as well as enlarging the contact area between the 

electrode and electrolyte
23

. For instance, Liu et al. use F127 to prepare the Li4Ti5O12 

with average of 20 nm
23

. Xia et al. prepared a series of Li4Ti5O12 particles with 

average grain sizes of around 50 nm.
9, 24

  Sun et al. reported a micro-sized Li4Ti5O12 

material composed of nanoscale (~100 nm) primary particles
25

. In these reports, 

relatively high calcinations temperatures (>700 
o
C) and complex steps are required to 

obtain highly crystallized Li4Ti5O12, which inevitably induces the growth of Li4Ti5O12 

particles and makes it hard for commercial production. So far, it remains a great 

challenge to develop a facile approach to synthesize nano-sized and highly 

crystallized Li4Ti5O12 in low temperature. 

Here we reported a novel strategy to synthesize highly crystallized Li4Ti5O12 (~20 

nm). To the best of our knowledge, this is the first report about the preparation of 

highly crystallized Li4Ti5O12 with a small particle size of ~20 under low synthesis 

temperature (500 
o
C). The as-derived nanocrystalline Li4Ti5O12 sample was tested as 

the anode material for lithium ion batteries, exhibiting a superior reversible capacity 

of 123 mA h g
-1

 at 20 C and good cycling performance even at high current densities. 

 

Experimental 

Preparation of nano-LTO 

All the reagents were purchased from China National Medicines Corp., Ltd without 

any purification 
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The LTO nanoparticles was fabricated by hydrothermal method .Typically, 

ammonium hydroxide (12.5% v/v, AR) wasdripped into 200 ml TiOSO4 (1 M, AR) 

solution with the aid of ultrasonication, until the pH of solution was about 6. 

Subsequently, the TiO2 was collected by centrifuge and wash with deionized water for 

more than 3 times.  

5.0 g TiO2 (solid content 20%) and 0.5 g LiOH·H2O (AR) was dispersed in 30 ml 

deionized water, and stirring for more than 30 min. Then the suspension was 

transferred into a 50 ml Teflon-lined stainless steel autoclave and kept at 180 
o
C for 

24 h. The precipitate was separated by vacuum-filtered, washed with deionized water 

several times. In order to remove the excess water of the precursor, it was kept in 

vacuum desiccators at -40 
o
C for 24 h. Finally, the LTO persour was calcined at 

different temperature in atmosphere to obtain nanaosize-Li4Ti5O12 materials.  

 

Characterization 

The thermal gravity and differential scanning calorimetry curve of Li4Ti5O12 

precursor was recorded on 2960 SDT from room temperature to 800
 o

C with a heating 

rate of 5 
o
C·min

−1
 under air flow. The crystal structures of the powders were studied 

using an X-ray diffraction (XRD) system (18KW D/MAX2200V PC Rigaku) with 

CuKa radiation from 10 to 70°. High resolution transmission electron microscopy 

(HRTEM, JEOL-2010F) was used to characterize the morphologies of the powders.  

The electrochemistry performances were measured with coin cells, in which 

lithium metal foil was used as the counter electrode. The electrolyte employed was 
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1M solution of LiPF6 in ethylene carbonate and dimethyl carbonate (EC+DMC) (1:1 

in volume). The active materials powder (80 wt%), acetylene black (Super P, supplied 

by Timcal Inc. 10 wt%) and polyvinylidene fluoride (PVDF) binder (10 wt%) were 

homogeneously mixed in N-Methyl pyrrolidinone (NMP) solvent with magnetic 

stirring. After stirring for 24 h, the slurry was coated uniformly on copper foil. 

Finally, the electrode was dried under vacuum at 120 
o
C for 8h. Cell assembly was 

carried out in an argon-filled glove box ([O2] < 1 ppm, [H2O] < 1 ppm). The coin cells 

were cycled under different current densities between cut off voltages from 2.5 to 1.0 

V on CT2001A cell test instrument (LAND Electronic Co. Ltd) at 20 
o
C. And 

electrochemical impedance spectroscopy (EIS) was carried out in the frequency range 

from 100 kHz to 10 mHz with an electrochemical workstation (CHI660E).  

Results and discussion 

Fig.1 showed the TG-DSC curves of the precursor powders with a heating rate of 

5
 o

C·min
-1 

from 25
 o

C to 800 
o
C in air atmosphere. The first step of weight loss, 

observing between room temperature and about 200 
o
C, was mainly due to the 

vaporization of absorbed water. It corresponded to an endothermic peak around 100 

o
C on the DSC curve. The weight loss in the second step (mainly at 500

 o
C) was 

attributed to the decomposition of Ti-OH and Li-OH bonds. When the temperature 

was above 400 
o
C, the thermogravimetry (TG) curve showed nearly constant weight, 

indicating that the reaction is complete. Therefore, it was necessary to sinter the 

precursor mixture above 400 
o
C to get the well crystallized LTO phase. 

<figure 1>  
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Fig. 2 showed the XRD patterns of the Li4Ti5O12 (LTO) precursor calcined at 

different temperatures. From 400 
o
C to 600 

o
C, the diffraction peaks became more 

sharply and well defined, indicating that the crystal intensity improved along with the 

increase of temperature. For the sample calcined at 500 
o
C, the diffraction peaks at 

2θ= 18.4, 35.6, 37.1, 43.3, 47.4, 57.2, 62.8 and 66.1
o
 could be indexed to the cubic 

spinel LTO (JCPDS card no. 49-0207) with Fd-3m space group. In addition, a tiny 

reflections at 2θ= 45.2
o
 was detected, when the LTO precursor calcined at 600 

o
C. It 

suggested the existence of a trace of as impurities and proves the temperature was too 

high. Therefore, a pure-phase and highly crystallized LTO could be obtained at a 

relative low temperature of 500 
o
C. By using Scherer’s formula based on the (111) 

peak, the grain sizes of Li4Ti5O12 (500
 o

C) were estimated to be 17.5 nm, which was 

much smaller than that reported in other publications
26-28

.  

<figure 2> 

The nano-LTO featured a uniform particle size distribution as revealed by the 

typical TEM images, which was showed in Fig. 3. The Fig. 3d indicated that the 

particle size of the prepared LTO-500 was 18 nm, which was consistent with the XRD 

result. And the dimension of LTO-400 was similar to the LTO-500, which was showed 

in figure 3b. However, its lattice fringes were not clear owing to its low crystal degree. 

In the contrast, the size of LTO-600 became almost 50 nm when the temperature 

increased to 600
 o

C, which was showed in Fig.3 e. The HRTEM image of LTO-600 

surface was showed in Fig.3 f. 

<figure 3> 
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It could find that the surface of LTO was melted and the lattice fringe was 

unordered, which meant the calcined temperature was high. This bad surface may 

have bad effect of the Li ion insertion/deinsertion and its contact with electrolyte. Fig. 

3 d showed that the entire grain particle of Li4Ti5O12 was highly crystallized and the 

further revealed that the crystalline region with clear lattice fringes had an inter-planar 

spacing of 0.48 nm, consistent with the (111) atomic planes of the spinel structure. 

These results proved that the diameter of the LTO was affected by the claimed 

temperature. The higher temperature was not only increasing the diameter of the 

grains, but also making it surface liquation. That bad surface structure may lead bad 

electrochemistry performance. 

<figure 4> 

To evaluate the cycle performance of the prepared samples, we measured the 

charge/discharge capacities of LTO-500 and LTO-600 at different current rates (1 C, 2 

C, 5 C 10 C and 20 C). For each stage, the batteries were cycled for 50 times. The 

capacity of LTO-500 was 166, 162, 155, 142 and 123 mAhg
-1

 at 1 C, 2 C, 5 C, 10 C 

and 20 C, and the capacity of LTO-600 was 163, 160, 148, 116 and 74 mAhg
-1

 at 1 C, 

2 C, 5 C, 10 C and 20 C, respectively. In a addition, the capacity of LTO-400 was 164, 

150, 137, 112 and 56 mAhg
-1

 at 1 C, 2 C, 5 C, 10 C and 20 C, respectively. The low 

capacity and bad rate performance of LTO-400 owe to its low crystal degree. 

The capacity difference between the LTO-500 and LTO-400, LTO-600 became 

more pronounced with the increased current rate, respectively. As shown in Fig. 4, 

very stable cycle ability was observed for LTO-500 at each current rate. The capacity 
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loss was less than 0.1% per cycle at all measured current rates, indicating the high 

stability of the nano-LTO in repeated cycles. In addition, the coulombic efficiency of 

nano-LTO approaches 100% for each cycle .Although the capacities of LTO-600 at 

high current rates were lower than those of LTO-500, the capacities kept stable at all 

current rates owing to its high crystallization. The bad rate performance of the 

LTO-600 may owing to its larger particle size and melted surface, which also proved 

that little particle size and good surface could contribute the electrochemistry 

performance of LTO. However, the electrochemical performance of LTO-400 was 

become worse along with the increasing current rate. The reason why the capacity of 

LTO-400 was so poor owning to its lower crystal degree. In a word, the performance 

of LTO-500 was much higher than the other LTO electrodes
2, 29-31

. 

<figure 5> 

The discharge curves of LTO electrode cycled under different current densities 

with the voltages limits of 1-2.5 V were showed in Fig. 5. Flat discharge plateaus at 

about 1.55V were observed, suggesting that the discharge plateau of the LTO-500 was 

better than LTO-600 and LTO-400, owing to its small size and better crystal degree. 

<figure 6> 

We then resorted to electrochemical impedance spectroscopy (EIS) measurements 

to understand their intrinsic origins for the improved high-rate performance of the 

LTO samples. Fig. 6 showed the electrochemical impedance spectroscopy of the 

LTO-500 and LTO-600 measured at a stable voltage of 1.55 V. The data were 

analyzed by using the equivalent circuit model. In this model, Rs represents the ohmic 
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resistance including total resistance of the electrolyte, separator, and electrical 

contacts. Rct was the charge-transfer resistance and CPE was the constant phase-angle 

element involving double layer capacitance. ZW (Warburg impedance) reflects the 

solid-state diffusion of Li
+
 in the bulk of the active material. 

Apparently, the Rct of LTO-500 (119 Ω) was much smaller than that of LTO-600 

(258 Ω). We further calculate the charge-transfer kinetic parameter i
0
 (exchange 

current density) by the following equation (i0=RT/nFRct) where Rct was the gas 

constant, T was the absolute temperature, n was the number of electrons involved in 

the charge-transfer reaction, and F was the Faraday constant. The derived i0 value of 

LTO-500 (0.2 mA·cm
2
), which was higher than that of LTO-600 (0.09 mA·cm

2
). The 

accelerated charge-transfer kinetics of the LTO-500 sample could be ascribed to the 

small size and larger electrode/electrolyte contact area.  

Meanwhile, the nano grain size of LTO-500 dramatically shortens the diffusion 

length of lithium ions, thus significantly improving lithium storage kinetics in the 

bulk of the active material. According to the above analysis, the accelerated 

charge-transfer kinetics and lithium-storage kinetics contribute collectively to the 

promotion of rate performance for the LTO-500. Obviously, the samples calcined at 

600 
o
C suffer from capacity fading. It was also increase the alternating-cureent 

impedance. This phenomenon was caused by the existence of impurities in the surface 

under high calcination temperature. This was because of the increase of calcination 

temperature could induce the grain growth, thus adversely affecting the 

charge/transfer and lithium storage kinetics. 
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Conclusions 

To summarize, we design a novel approach to synthesize nanosize-Li4Ti5O12 

under low temperature. Pure-phase and highly crystallized Li4Ti5O12 with a small 

particle size of ~20 nm was obtained at a relatively low calcination temperature of 

500
o
C. Owing to its small diameter, the LTO anode exhibited a high reversible 

capacity of 123 mA h·g
-
1 at 20 C and excellent cycling performance even at high 

current densities. The intrinsic advantage of Li4Ti5O12 combined with the high-rate 

performance makes our nano-LTO a promising anode material for the development of 

high energy density lithium batteries directed to the plug-in hybrid electric vehicles 

and electric vehicle markets. 
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TOC

 

This is the first report about the preparation of highly crystallized Li4Ti5O12 with a 

small particle size of ~20 under low synthesis temperature (500 
o
C). 
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Figure captions: 

Fig.1 The TG-DSC curves of precursor 

Fig.2 The XRD patterns of LTO calcined at different temperature 

Fig. 3 TEM and HRTEM images of the LTO-400(a,b), LTO-500 (c,d) and LTO-600 

(e,f) 

Fig. 4 the cycle perofomance of LTO-400, LTO-500 and LTO-600 

Fig. 5 the discharge curves of the LTO-400, LTO-500 and LTO-600 electrode 

Fig 6.Electrochemical impedance spectra of pure LTO-500 and LTO-600 

nanocomposites electrodes at the voltage of 1.55 V 
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Fig.1 The TG-DSC curves of precursor 

  

Page 17 of 22 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



10 20 30 40 50 60 70
2θ/θ/θ/θ/theat

∗ ∗ ∗ ∗ impurity

300°C

400°C

500°C

600°C  ∗∗∗∗ (5
3
1
)

(4
4
0
)

(3
3
3
)

(4
0
0
)

(3
1
1
)

(1
1
1
)

In
te
n
si
ty
.a
.u
.

 

 

 49-0207

 

Fig.2 The XRD patterns of LTO calcined at different temperature 
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Fig. 3 TEM and HRTEM images of the LTO-400(a,b), LTO-500 (c,d) and LTO-600 

(e,f) 

a b 

c d 

f e 

0.48 nm 

(111) 
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 Fig. 4 the cycle perofomance of LTO-400,LTO-500 and LTO-600 
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 Fig 5. The discharge curves of the LTO-400, LTO-500 and LTO-600 electrode 
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Fig 6.Electrochemical impedance spectra of pure LTO-500 and LTO-600 

nanocomposites electrodes at the voltage of 1.55 V 
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