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Flower-like In2O3 hierarchical nanostructures: 
synthesis, characterization, and gas sensing 
properties 

Dan Han, Peng Song *, Huihui Zhang, Huihui Yan, Qi Xu, Zhongxi Yang, Qi 
Wang * 

Hierarchical In2O3 nanostructures with flower-like morphology were synthesized by annealing 
In(OH)3 precursor prepared via a one-step hydrothermal method using the mixed solution of N, 
N-dimethylformamide (DMF) and deionized water as solvent. The crystal structure and 
morphology of the obtained samples were characterized by X-ray diffraction (XRD), scanning 
electron microscope (SEM), transmission electron microscope (TEM), and N2 adsorption-
desorption analyses. The results revealed that the synthesized flower-like In2O3 hierarchical 
nanostructures were constructed from In2O3 nanoplates which connected with each other to 
form flower-like architecture. On the basis of experimental results, a possible mechanism for 
the formation of flower-like In2O3 hierarchical nanostructures was speculated. Moreover, gas 
sensing investigation showed that the sensor based on flower-like In2O3 hierarchical 
nanostructures exhibited superior response, good selectivity and stability to ethanol gas. The 
enhancement in gas sensing properties was attributed to their unique structure, large surface 
areas, and more surface active sites. 

Introduction 

Ethanol sensing has been widely applied in various fields, such as in 
ethanol breath analyzers for detecting ethanol vapor in the drivers’ 
breath, in foodstuffs experiments to assess the development of 
bacteria and fungi in food, in monitoring the biomedical and 
chemical processes in chemical industries and so on.1-3 Thus, 
growing concern about air pollution with respect to public health has 
enhanced the demand for gas sensors for monitoring ethanol 
concentration in the environment. Metal oxide semiconductor gas 
sensors have attracted much attention for their diverse applications 
in ethanol detection. Until now, a number of ethanol-sensing sensors 
based on SnO2,

4 ZnO,5 LaFeO3,
6 and WO3

7 have been successfully 
obtained. As an important n-type semiconductor, indium oxide 
(In2O3) with high chemical and thermal stability has attracted 
considerable research efforts in its applicability as gas sensors.8-11 
Recently, In2O3-based sensors have been investigated for the 
detection of ethanol vapor at various concentration levels.12-15 

As we known, the crystal phase, morphologies, as well as the 
porosity have a profound influence on the sensing performance of 
In2O3 nanomaterials. Therefore, the design and tailor of In2O3 
nanomaterials with different morphologies and structures are very 
important in view of both basic fundamental research and the 
development of novel devices. To meet the demand for practical 
applications, various In2O3 nanostructures have been fabricated, 
including nanoparticles,16 nanowires and nanorods,17 nanoplates or 
nanosheets,18 and 3D hierarchitectures.19-20 Being a special kind of 

nanostructure, 3D hierarchical nanostructures have become strategic 
for various applications mainly due to their large specific surface 
area and desirable surface permeability. Actually, these favorable 
properties are also significant for gas sensing, which can allow fast 
diffusion for target gases to interact with the entire sensing layer. To 
date, much effort has been given to prepare the 3D hierarchical In2O3 
structures by many synthetic strategies. For these approaches, the 
hydrothermal synthesis method has been proved to an effective 
technique, which has the obvious advantages of simple, mild, and 
high yields.21, 22 In our previous work, 3D porous In2O3 nanospheres 
consisted of numerous tiny In2O3 nanoparticles were synthesized by 
hydrothermal synthesis method, which exhibited higher response to 
ethanol gas compared with that of commercial bulk In2O3 particles.23 
Hence, it is strongly desirable for the fabrication of the porous In2O3 
hierarchical nanostructures by exploring more simple and effective 
techniques. However, despite this recent progress, there are still 
some difficulties in the organization of 2D building blocks (e.g. 
nanosheets or nanoplates) into 3D superstructures, especially when 
they need to be porous and thus possess a high surface area.  

It is also noted that additive-free synthesis of nanostructures and 
self-assembling them into well-defined structures remains a huge 
challenge. Herein we report a successful facile self-assembly, 
template and additive-free synthesis route toward achieving flower-
like In2O3 hierarchical nanostructures consisted of In2O3 nanoplates 
via an oriented attachment growth mechanism. The synthesis entails 
preparation of the intermediate In(OH)3 precursors under 
hydrothermal conditions using InCl3 as a precursor, a mixed solvent 
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shown in Fig. 9(a). The sensor maintained its initial response 
amplitude without a clear decrease upon three successive sensing 
tests for 100 ppm ethanol. Furthermore, the stability of the sensor 
was also determined at optimal operating temperature for 60 hours. 
Clearly, as shown in Fig. 9(b), the senor has nearly constant response 
to 100 ppm ethanol, which confirmed the high stability of the sensor 
based on flower-like In2O3 hierarchical nanostructures. 
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Fig. 10 Responses of flower-like In2O3 hierarchical nanostructures and bulk 
particles upon exposure to six kinds of target gases (50 ppm) at a working 

temperature of 320 oC 

A comparative gas sensing study between the as-prepared products 
and commercial bulk In2O3 particles prepared by precipitation 
method was performed to demonstrate the superior ethanol-sensing 
properties of flower-like In2O3 hierarchical nanostructures. We have 
measured the response of flower-like In2O3 hierarchical 
nanostructures and bulk In2O3 particles to six kinds of volatile 
vapors with a concentration of 50 ppm, such as ammonia, benzene, 
acetone, methanol, formaldehyde and ethanol at the working 
temperature of 320 oC (Fig. 10). As expected, the sensor based on 
flower-like In2O3 hierarchical nanostructures exhibited enhanced 
responses for each gas compared with that based on bulk In2O3 
particles. Furthermore, the response of sensor based on flower-like 
In2O3 hierarchical nanostructures to ethanol was apparently higher 
than that to other gases, which seems to depend on the interaction 
discrepancy between the sensing layer and different testing gas. 
Furthermore, the response performances of some typical In2O3-based 
ethanol gas sensors were listed in Table 1. It should be pointed out 
that flower-like In2O3 hierarchical nanostructures in present study 
possess superior performance when compared with other 
nanostructured In2O3 sensors reported in previous works. 
Consequently, it was concluded that the sensor based on the as-
prepared flower-like In2O3 hierarchical nanostructures showed 
superior gas sensing performance towards ethanol and it maybe have 
potential applications in the detection of ethanol vapors. 

 
Table 1 Gas-sensing properties of various In2O3 nanostructures to 100 ppm ethanol in the literatures and present study.

Sensing In2O3 nanostructures 
Operating 
temperature (oC)

Sensor 
response 

Response/recovery 
times (s) 

Detection limit 
(ppm) 

Ref 

Flower-like In2O3 nanostructures 320 27.6 18 / 9 2 
This 

work 

In2O3:Er hollow spheres 215 40.3 10 / 23 7 39 

Nanoporous In2O3 hollow spheres 400 137.2 2 / 830 20 40 

In2O3 nanospheres 275 ~21 16 / 24 20 23 

Co-doped In2O3 nanowires 300 ~17 2 / 3 5 41 

In2O3 porous nanoparticles 200 ~4 6 / 15 100 42 

Mesoporous In2O3 220 27.9 74 / 119 0.05 43 

Au-loaded In2O3 nanofibers 140 6.5 12 / 24 10 44 

In2O3 microspheres 200 1.8 27 / 24 100 45 

Conclusions 

In summary, a simple one-step solution route combined with a 
subsequent calcining process was reported for the formation of 
flower-like In2O3 hierarchical nanostructures, which were 
composed of many 2-D nanoplates with high porosity. The 
structure and morphology of In2O3 samples were investigated in 
detail, and a possible growth mechanism was supposed from 
the viewpoint of nucleation and self-assembly of building 
blocks. Moreover, the gas sensing tests exhibited that flower-
like In2O3 hierarchical nanostructures showed superior gas 
sensing performance towards ethanol. The results suggest that 
the as-prepared flower-like In2O3 hierarchical nanostructures 
are promising candidates for good performance ethanol sensor.  
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