RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This *Accepted Manuscript* will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

RSC Advances RSC **Advances** RSCPublishing

PAPER

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2014, Accepted 00th January 2014 DOI: 10.1039/x0xx00000x

www.rsc.org/

Fe3O4@SiO² nanoparticles as high-performance Fenton-like catalyst in neutral environment

Ruihan Wu, Xiaoyang Liu, Hongliang Li, and Zhen Guo

Sheng-Tao Yang, Yu,Zhang, Jingru Xie, Rong Liao, Xiaoliang Zhang, Baowei Yu,
Ruinan Wu, Xiaoyang Liu, Honglang Li, and Zhen Guo
Advanced oxidational Fenton reaction based on Fe²-1H₂Os system requires acide environment Advanced oxidation processes (AOP) have been widely applied in water treatment. However, traditional Fenton reaction based on Fe^{2+} -H₂O₂ system requires acidic environment and generates large amount of Fe^{3+} ions. Herein, we reported that magnetic $Fe^{3}O_4$ core-SiO₂ shell nanoparticles (Fe₃O₄@SiO₂ NPs) could be used as Fenton-like catalyst for the decomposition of H₂O₂, resulting in the decoloration of methylene blue (MB). Fe₃O₄@SiO₂ NPs had much higher activity than bare Fe₃O₄ cores, suggesting the coating of $SiO₂$ enhanced the catalytic activity. Most importantly, the best performance of $Fe₃O₄(QSiO₂ NPs$ was observed at neutral pH values. Higher temperature facilitated the diffusion of MB in solution, thus, promoted the decoloration efficiency. The radical reaction nature was reflected by the electron spin resonance spectrum and the significant inhibition of the decoloration in the presence of radical scavenger tertiary butanol. Fe₃O₄@SiO₂ NPs could be magnetically separated and partially regenerated after the decoloration. The implication for the applications of $Fe₃O₄(QSiO₂ NPs$ in water treatment is discussed.

Introduction

Water pollution is one of the most concerned environmental problems that limit the development of human society nowadays.¹ Organic pollutants cause serious pollution to water environment, including dyes, antibiotics, pesticides, oil and other small organic molecules. To decontaminate the pollution, many technologies, such as advanced oxidation process (AOP), adsorption, activated sludge method and electrolysis, are developed and applied.²⁻⁵ Of particular interest and importance is the AOP method, which produces highly active radicals to oxidize the electron-enriched organic pollutants.^{4,5} AOP can handle diverse pollutants, especially for those not suitable for activated sludge, so AOP has been widely adopted in laboratory and industry.

Fenton reaction is the most studied and used AOP method, where H_2O_2 is decomposed under the catalysis of $Fe^{2+}(6,7)$ Unfortunately, Fe^{2+} -H₂O₂ system has several drawbacks that hinder its applications. The stoichiometric amounts of iron are added to the system, which consequently are oxidized into $Fe³⁺$ ions and require further treatment to get removed. The optimal condition for the production of hydroxyl radicals is pH 3, thus large quantities of acid are essential and a neutralization step is required afterward.

To these regards, heterogeneous Fenton-like catalysts based on iron or other metals are extensively researched to overcome the aforementioned drawbacks of Fe^{2+} -H₂O₂ system.8-15 Many studies have demonstrated that under sonication or irradiation, Fe₃O₄ nanoparticles (NPs) could decontaminate many organic pollutants.^{16,17} Very recently, we showed that upon coating Fe₃O₄ NPs with a thin layer of carbon, Fe3O⁴ NPs catalyzed the Fenton-like reaction effectively

without external energy supply.¹⁸ However, the carbon coated Fe3O⁴ NPs only worked well in acidic environment. Therefore, designing suitable core-shell structure of $Fe₃O₄$ NPs as Fentonlike catalyst in neutral environment becomes the major challenge.

.6,7 water treatment is discussed. In this study, we reported the preparation of silica coated Fe₃O₄ NPs (Fe₃O₄@SiO₂ NPs) as high-performance Fenton-like catalyst in neutral environment for the decoloration of methylene blue (MB). Silica was deposited on $Fe₃O₄$ NPs by the hydrolysis of tetraethyl orthosilicate (TEOS). The decoloration efficiency of MB was measured. Influencing factors were investigated to optimize the parameters, where $Fe₃O₄(Q)SiO₂$ NPs showed even higher performance at neutral pH than under acidic conditions. The magnetic separation and regeneration were also performed. The implication to the applications of $Fe₃O₄(Q)SiO₂$ NPs as Fenton-like catalyst in

Experimental

Materials

TEOS was bought from Jinshan Chemical Reagent Co., Ltd, China. FeCl₂ was purchased from Damao Chemical Reagent Co., Ltd, China. FeCl₃ was bought from Bodi Chemical Engineering Co., Ltd, China. MB was obtained from Sinopharm Chemical Reagent Co., Ltd, China. 5,5-dimethyl-1 pyrroline-N-oxide (DMPO) was purchased from Sigma Co., America. They were used without further purification. Other chemicals were of analytical grade.

Preparation of Fe3O4@SiO² NPs

FeCl2∙4H2O (0.131 g) and FeCl3∙6H2O (0.269 g) were added to 50 mL water and the pH was adjusted to 12 under vigorous stirring. The mixture was further stirred for 1 h to allow the full precipitation. After the co-precipitation, $Fe₃O₄$ NPs were collected and washed with deionized water for three times. The coating of $SiO₂$ layer was achieved by the hydrolysis of TEOS in the presence of NH₃⋅H₂O. Briefly, Fe₃O₄ NPs (0.1 g) were added to 1 mL of water, and then 10 mL of isopropanol was added. The mixture was sonicated for 10 min before the addition of TEOS. The mass ratios of $Fe₃O₄$ NPs: TEOS were in the range of 10:1~1:10. The mixture was shaken at 100 rpm under 35 °C for 5 h. The obtained $Fe₃O₄@SiO₂$ NPs were washed by water for three times and alcohol twice. The final product was dried under vacuum overnight.

Transmission electron microscopy (TEM, JEM-200CX, JEOL, Japan), X-ray photoelectron spectroscopy (XPS, Kratos, UK), Brunauer-Emmett-Teller (BET) technique (ASAP2010, SEOL, Japan), A-ray photoetectron spectroscopy (ATS, Kratos,

UK), Brunauer-Emmett-Teller (BET) technique (ASAP2010,

Micromeritics, USA), infrared spectrometer (IR, Magna-IR 750,

Nicolet, USA) and magnetometer (MPMS XL-Nicolet, USA) and magnetometer (MPMS XL-7Tesla, Quautum Design, USA) were adopted to characterize $Fe₃O₄(a)$ $SiO₂$ NPs.

Decoloration of MB

To decolorize MB, 20 mL of MB (pH 6.5, 50 mg/L) was 10 decolorize MB, 20 mL of MB (pH 6.5, 50 mg/L) was
incubated with 20 mg of Fe₃O₄@SiO₂ NPs for 2 h (100 rpm at $\sum_{n=1}^{\infty}$ TFM (1) 1JP (D) 35 °C) on a thermostat shaker (CHA-S, Jintan Hankang Electronic Co., China), during which the adsorption of MB reached the equilibrium. Before the addition of H_2O_2 , 50 μ L of the supernatant was collected for the absorbance (*A0*) measurements (664 nm) on a UV-Vis spectrometer (UV1800, PGeneral, China). Then, 1.5 mL of $H₂O₂$ was added to the mixture and incubated. At each time interval, 50 μL of the supernatant was collected for absorbance (A_t) measurements. The decoloration efficiency was calculated as $(1 - A_t/A_0) \times 100\%$. The decoloration efficiency of $Fe₃O₄(Q)SiO₂$ NPs of different compositions was also measured.For comparison, the activity of Fe3O⁴ NPs was evaluated following the same protocol. As a control, the protocol was performed without adding catalyst. The chemical oxygen demand (COD) was determined using Hach reagent (low range $3{\sim}150$ mg/L) on Hach DR900. The kinetic constant *k* of decoloration was calculated following equation 1. product was dred not necessary (TEM, JEM-200CX,

Transmission electron microscopy (TEM, JEM-200CX,

LRG, Japan), X-ray photoelectron spectroscopy (XPS, Krdos,

MK), Hamanar-Timmeti-Teller (BET) technique (ASAP2010,

MK),

Influencing factors

To investigate the influence of H_2O_2 , 20 mg of Fe₃O₄@SiO₂ NPs was used to decolorize 20 mL of MB (pH6.5, 50 mg/L) at 35 °C in the presence of different volumes of H_2O_2 .

To investigate the influence of catalyst amount, Fe₃O₄@SiO₂ NPs of different amounts and 1.5 mL of H_2O_2 were used to decolorize 20 mL of MB (50 mg/L) of different pH values $(3.5-8.5)$ at 35 °C.

To investigate the influence of pH, 20 mg of $Fe₃O₄(QSiO₂)$ NPs and 1.5 mL of H_2O_2 were used to decolorize 20 mL of MB (50 mg/L) of different pH values $(3.5-8.5)$ at 35 °C. Similarly, the influence of pH on the performance of $Fe₃O₄$ core was investigated.

To investigate the influence of temperature, 20 mg of Fe₃O₄ $@SiO₂$ NPs and 1.5 mL of H₂O₂ were used to decolorize MB (20 mL, pH6.5, 50 mg/L) at different temperature (0-45 $^{\circ}$ C).

To investigate the influence of inhibitor, 20 mg of Fe₃O₄ $@SiO₂$ NPs and 1.5 mL of H₂O₂ were used to decolorize 20 mL of MB (pH6.5, 50 mg/L) at 35 \degree C in the presence of different amounts of tertiary butanol.

Magnetic separation and regeneration

Fig. 1 TEM (A) and IR (B) spectrum of Fe3O4@SiO₂ NPs.
 Fig. 1 TEM (A) and IR (B) spectrum of Fe3O4@SiO₂ NPs.
 Fig. 1 TEM (A) and IR (B) spectrum of Fe3O4@SiO₂ NPs.
 Fig. 1 TEM (A) and IR (B) spectrum of Fe3O To recycle $Fe₃O₄(*a*)SiO₂ NPs$, the used $Fe₃O₄(*a*)SiO₂ NPs$ were magnetically separated with a magnet. The separated $Fe₃O₄($\hat{\omega}$ SiO₂ NPs were washed with deionized water by stirring$ for 20 min. After washing for three times, the recycled Fe₃O₄ $@SiO₂$ NPs were dried and the catalytic activity was determined following aforementioned protocol. The procedure was repeated to reach the cycles of 6. Separately, the used Fe₃O₄ \overline{Q} SiO₂ NPs were reduced by vitamin C (10 mg/mL) for 2 h. After washing, the reduced $Fe₃O₄(QSiO₂ NPs$ were subjected to activity measurement as aforementioned.

Electron spin resonance (ESR) assay

For ESR assay, 100 μL sample was collected from the reaction solution $(Fe₃O₄(a)₈SiO₂ NPs/H₂O₂ system)$ at 5 min and immediately mixed with 20 μ L of 0.2 mol L⁻¹ DMPO to form DMPO-·OH adduct. The ESR spectrum was obtained on a JEOLJES FA200 facility with microwave bridge (receiver gain: 1×10^5 ; modulation amplitude: 2 Gauss; microwave power: 4 mW; modulation frequency: 100 kHz).

Results and discussion

Characterization of Fe3O4@SiO² NPs

 $Fe₃O₄($\hat{\omega}$ SiO₂ NPs were spherical particles with diameters of 20-$ 40 nm. The core-shell structure could be roughly distinguished in Fig. 1a, where the resolution was limited by the magnetic interference to reach a clear verification of the core-shell

 $a_{1.0}$

 0.8

 0.6 \overline{C}

 0.4

 0.2

 $D_{1.0}$

 0.8

 0.6

 0.4

 0.2

ပ္ပံ

 $\mathbf 0$

 $10:1$ $8:1$ $4:1$

> $3:1$ $2:1$

 $1:1$

 $1:2$

 $1:10$

25

50

 t (min)

75

100

Fe O @SiO +H O

Fe, 0, +H, 0,

 H_aO_a alone

125

Fig. 2 Nitrogen adsorption isotherm (A) and magnetic hysteresis loop (B) of $Fe₃O₄(ω)SiO₂ NPs.$

structure. The IR spectrum in Fig. 1b was similar to those of typical $SiO₂$ materials. The peak at 3419 cm⁻¹ was attributed to the antisymmetric stretching vibration of -OH. The peak at 1641 cm⁻¹ was attributed to the bending vibration of -OH. The peak at 1031 cm-1 was attributed to the antisymmetric stretching vibration of -O-Si. The chemical components were further analyzed by XPS. There were 24.5 wt% of Si and 34.6wt% of Fe in $Fe₃O₄(ω)SiO₂ NPs.$

The BET measurement indicated that the specific surface area of Fe₃O₄@SiO₂ NPs was 124.3 m²/g, and the total pore The corresponding volume was 0.405 cm³/g. The surface area of $Fe₃O₄(Q₈S₁O₂ NPs$ after decolora was larger than that of Fe₃O₄ core (112.7 m²/g). The large calculated as 0.0 surface area and the amorphous $SiO₂$ would benefit the preconcentration of pollutants around $Fe₃O₄(QSiO₂ NPs, because$ amorphous $SiO₂$ is good adsorbent for many pollutants. The N₂ adsorption/desorption isotherm curve followed type IV (Fig. 2a), suggesting the nature of adsorption hysteresis. The magnetic property measurement found that the saturated magnetization was 57 emu/g, weaker than that of bulk $Fe₃O₄$ (92.8 emu/g) ,¹⁹ which could be attributed to the small size of NPs.²⁰ The magnetic hysteresis loop indicated that $Fe₃O₄(ω)SiO₂$ NPs was ferromagnetic (Fig. 2b). The outstanding magnetic property allowed the magnetic separation of $Fe₃O₄(a)₂S₁O₂ NPs$ after the water treatment.

neutral pH. (A) the effect of initial Fe₃O₄:TEOS mass ratio on the decoloration; (B) the comparison between $Fe₃O₄(∂ SiO₂ NPs$ and bare Fe₃O₄ cores.

Catalytic activity of Fe3O4@SiO² NPs

Fig. 3
 Fig. 3
 Fig. Fig. Fig. The catalytic activity of $Fe₃O₄(@SiO₂ NPs$ was reflected by the decoloration capability of MB. We optimized the parameters of the preparation protocol. As shown in Fig. 3a, different initial ratios of TEOS: Fe3O⁴ led to different catalytic efficiency. The optimal ratio was1:4, with a decoloration efficiency of 91%. The corresponding COD decreased from 101 mg/L to 25 mg/L after decoloration. The kinetic constant *k* at this ratio was calculated as 0.020 min-1 (Figure S1). This was competitive to those of the high-performance nanocatalysts in the literature.21- ²³ For example, Hsieh et al. reported the *k* value of FePt NPs- H_2O_2 -MB system was 0.0033~0.023 min⁻¹ at pH 5.5.²¹ When more TEOS was added, the decoloration efficiency decreased. A possible explanation could be that more TEOS induced a compact coating of Fe3O⁴ core, which hindered the diffusion of MB toward the $Fe₃O₄$ surface. Beyond that, too much $SiO₂$ might also block the electron-transfer from iron to MB. On the other hand, when less TEOS was added, the pre-concentration effect of $SiO₂$ shell was not dominating. Correspondingly, the promotion in catalytic activity was less.

Fig. 4 Influence of H_2O_2 (A) and Fe_3O_4 ($@SiO_2$ NPs (B) on the decoloration of MB in $Fe₃O₄(QSiO₂-H₂O₂$ system.

Nevertheless, coating SiO₂ was very effective in enhancing the catalytic activity of $Fe₃O₄$. Although bare $Fe₃O₄$ cores had similar specific surface area, bare Fe₃O₄ NPs had no catalytic activity in the decomposition of H_2O_2 at near neutral pH (Fig. 3b). The kinetic constant *k* was calculated as 0.00020 \min^{-1} , suggesting the much slower decoloration kinetics (Figure views of kinetics S1). Bare Fe₃O₄ NPs only worked at pH 3.5 ($k=0.0046$ min⁻¹) and 8.5 $(k=0.0041 \text{ min}^{-1})$ in our experiments (Figure S2), where the kinetics were still much lower than that of $Fe₃O₄(QSiO₂ H₂O₂$ system. The comparison clearly indicated that $SiO₂$ coating was vital for the high performance of $Fe₃O₄(\partial_{0}SiO₂ NPs)$. $SiO₂$ at least had two important effects on Fe₃O₄@SiO₂ NPs. Firstly, amorphous $SiO₂$ could adsorb MB, which led to the preconcentration of MB around $Fe₃O₄$ cores.^{24,25} When radicals were generated, more radicals could reach MB before the selfextinction. Another effect might be that $SiO₂$ facilitated the electron-transfer from iron to MB.26-28 Collectively, these effects resulted in the high catalytic activity of $Fe₃O₄(Q)SiO₂$ NPs in neutral environment.

Influencing factors

We investigated the influencing factors for $Fe₃O₄(Q)SiO₂$ NPs. As indicated in Fig. 4a, more H_2O_2 was favorable in promoting the decoloration efficiency. Adding 1.5 mL and 2.0 mL of H_2O_2

decoloration of MB in Fe₃O₄@SiO₂-H₂O₂ system.

showed the highest decoloration efficiency. To save H_2O_2 , we recommended 1.5 mL H_2O_2 . More $Fe₃O₄(a)₂SiO₂$ NPs also benefited the decoloration (Fig. 4b). 20 mg of $Fe₃O₄(@SiO₂ NPs$ showed competitive activity to 40 and 60 mg. Thus,20 mg was used through our experiments. It was reasonable that more $H₂O₂$ and Fe₃O₄@SiO₂ NPs promoted the decoloration from the views of kinetics and equilibrium.

In the evaluations of pH, $Fe₃O₄(a)SiO₂$ NPs showed very high activity at near neutral pH values (Fig. 5a). From pH 4.5 to pH 8.5, the decoloration efficiencies were all over 80%. At pH 6.5 the decoloration achieved 90% and the ratio was 94% at pH 7.5. The results indicated an important merit of $Fe₃O₄(∂ SiO₂)$ NPs that $Fe₃O₄(QSiO₂$ NPs could be used in neutral environment without external energy supply.²³ It was somehow surprising that $Fe₃O₄(QSiO₂ NPs showed less activity at pH 3.5,$ which was the optimal pH for traditional Fe^{2+} -H₂O₂ system. This might imply that the fundamental mechanism of the catalysis was changed. Similar phenomena were reported in literature, too.^{29,30} However, the mechanism of such changes still requires future investigations.

In the evaluations of temperature, the decoloration performance of $Fe₃O₄(QSiO₂ NPs$ showed a temperaturedependent manner (Fig. 5b). Obviously, higher temperature benefited the decoloration. This was consistent with our previous observation of $Fe₃O₄(a)C$ NPs, where higher temperature facilitated the diffusion of MB and generation of

RSC Advances Paper

Fig. 6 (A) DMPO spin-trapping ESR spectrum of ·OH radicals in Fe₃O₄ $@SiO₂-H₂O₂$ system; (B) influence of tertiary butanol on the decoloration of MB in $Fe₃O₄(QSiO₂-H₂O₂$ system.

radicals.¹⁸ It should be noted that the decoloration efficiencies at 35 °C and 45 °C were very close, although the decoloration efficiency reached the maximum much faster.

The presence of radical scavenger (tertiary butanol) inhibited the decoloration. Mechanistically, the decoloration was achieved by the attack of radicals generating during the decomposition of H_2O_2 . As shown in Fig. 6a, the ESR spectrum confirmed the presence of ·OH radicals upon the catalysis of $Fe₃O₄(QSiO₂$ NPs. The ESR spectrum in the presence of $Fe₃O₄(QSiO₂ NPs displayed a 4-fold characteristic peak of the$ typical DMPO-·OH adduct with an intensity ratio of 1:2:2:1. When the radicals were eliminated before they reached the pollutants, the decontamination would be blocked. To this regard, we suggested that radical scavengers should be avoided during the decontamination. Again, $SiO₂$ coating was much better than C coating.¹⁸ In our previous report, only 100 μL of tertiary butanol could completely inhibit the decoloration. In this study, the performance of $Fe₃O₄(@SiO₂ NPs$ was only inhibited by 13%. Even when 2 mL tertiary butanol was added, the decoloration efficiency was retained as 39%. A possible explanation could be that the affinity of MB to $Fe₃O₄(@SiO₂)$ NPs was stronger than that of tertiary butanol, which resulted in the accumulation of MB rather than tertiary butanol around

MB.

Fe3O4@SiO² NPs. Therefore, the radicals reached MB before the scavenging by tertiary butanol. Further investigations on the mechanism are highly encouraged.

Separation and regeneration

Fig. 7 Recycling of Fe3O₄@SiO₂ NPs after the decoloration of MB.
 Fe₅O₄@SiO₂ NPs. Therefore, the radicals reached MB before the scavenging by tertiary butanol. Further investigations on the mechanism are hig After the decoloration, $Fe₃O₄(QSiO₂ NPs$ could be magnetically separated with an external magnet. The used $Fe₃O₄(a)₂SiO₂ NPs$ were washed with deionized water to remove most remnant MB. The regenerated $Fe₃O₄(QSiO₂ NPs$ was used directly after the wash or dried for storage. The catalytic activity of recycled $Fe₃O₄(∂ SiO₂ NPs was determined (Fig. 7). At cycle one, the$ catalytic activity of $Fe₃O₄(@SiO₂ NPs$ was well retained without obvious loss. Thereafter, the recycling led to moderate decrease of activity of $Fe₃O₄(Q₃S₁O₂$ NPs. The decrease became slow when the cycle number reached 3. Despite the decrease of catalytic activity, the results indicated that $Fe₃O₄(\partial_{0}SiO₂)$ NPs could be partially regenerated after the Fenton-like reaction. Thus, $Fe₃O₄(∂)SiO₂ NPs were more environment-friendly than$ traditional Fe^{2+} -H₂O₂ system.

There might be a possibility that $Fe₃O₄$ core was oxidized during the treatment and the oxidation of $Fe₃O₄$ resulted in the activity loss. To exclude this, we reduced the recycled $Fe₃O₄(∂ SiO₂ NPs with Na₂S₂O₃ (Fig. 7). The reduction did not$ improve the regeneration, implied that the oxidation of $Fe₃O₄$ was not the main reason of the activity loss. Similar phenomena were observed when vitamin C and hydrazine hydrate were used as the reducer (data not shown). Herein, we speculated that the loss of catalytic activity might be due to the destruction of some vulnerable domains of Fe3O4@SiO2 NPs. After 3 cycles, the relative stable sites survived and the catalytic activity became almost constant.

Conclusions

In summary, $Fe₃O₄(QSiO₂ NPs$ was prepared as highperformance Fenton-like catalyst for the decoloration of MB, where neutral pH was the optimal condition. $SiO₂$ coating is crucial in promoting the catalytic activity and shifting the optimal pH toward neutral. Higher temperature was preferred and the radical scavengers should be avoided in the applications of Fe₃O₄@SiO₂ NPs. The magnetic separation of Fe₃O₄@SiO₂ NPs after the decoloration made the process environment-

Paper RSC Advances

friendly. We hope that our results will stimulate more interests on the applications of high-performance nanocatalysts for the environmental remediation.

Acknowledgements

We acknowledge financial support from Science & Technology Department of Sichuan Province (Pillar Program No. 2013FZ0060), the China Natural Science Foundation (No. 21307101), and the National Training Programs of Innovation and Entrepreneurship for Undergraduates (No. X201410656008).

Notes and references

College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, China. Email: yangst@pku.edu.cn

† Electronic Supplementary Information (ESI) available: decloloration kinetics constants; catalytic performance of Fe₃O₄ core under different pH values. See DOI: 10.1039/b000000x/

- 1 M. G. Dosskey, *Environ. Manage.*, 2001, **28**, 577-598.
- 2 I. Sires, E. Brillas, *Environ. Int.*, 2012, **40**, 212-229.
- 3 A. Bhatnagar, F. Kaczala, W. Hogland, M. Marques, C. A. Paraskeva, V. G. Papadakis, M. Sillanpaa, *Environ. Sci. Pollut. Res. Int.*, 2014, **21**, 268-298.
- 4 L. Feng, E.D. van Hullebusch, M. A. Rodrigo, G. Esposito, M. A. Oturan, *Chem. Eng. J.,* 2013, **228**, 944-964.
- 5 J. Naumczyk, J. Bogacki, P. Marcinowski, P. Kowalik, *Environ. Technol.,* 2014, **35**, 541-548.
- 6 E. Neyens, J. Baeyens, *J. Hazard. Mater.,* 2003, **98**, 33-50.
- 7 S. Caudo, G. Centi, C. Genovese, S. Perathoner, *Top Catal.,* 2006, **40**, 207-219.
- 8 N.N. Tusar, D. Maucec, M. Rangus, M. Popova, *Adv. Fun. Mater.,* 2012, **22**, 820-826.
- 9 S. Liu, Y. Gu, S. Wang, Y. Zhang, Y. Fang, M. D. Johnson, Y. Huang, *Chin. Sci. Bull.,* 2013, **58**, 2340-2346.
- 10 R. Huang, Z. Fang, X. Yan, W. Cheng, *Chem. Eng. J.,* 2012, **197**, 242-249.
- 11 H. Zhang, G. Zhang, X. Bi, X. Chen, *J. Mater. Chem*., 2013, **1**, 5934-5942.
- 12 X. Zhang, S. Gong, Y. Zhang, T. Yang, C. Wang, N. Gu, *J. Mater. Chem.*, 2010, **20**, 5110-5116.
- 13 D. He , C. J. Miller , T. D. Waite, *J. Catal.*, 2014, **317**, 198-205.
- 14 M. L. Rache, A. R. Garcia, H. R. Zea, A. M. T. Silva, L. M. Madeira, J. H. Ramirez, *Appl. Catal. B: Environ.*, 2014, **146**, 192-200.
- 15 A. D. Bokare, W. Choi, *J. Hazard. Mater.*, 2014, **275**, 121-135.
- 16 R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, *J. Mater. Chem.*, 2011, **21**, 18645-18652.
- 17 Z. Hu, B. Chen, T. Lim, *RSC Adv*., 2014, **4**, 27820-27829.
- 18 X. Zhang, M. He, J.-H. Liu, R. Liao, L. Zhao, J. Xie, R. Wang, S.-T. Yang, H. Wang, Y. Liu, *Chin. Sci. Bull.* 2014, **59**, 3406-3412.
- 19 Z. Zhang, H. Duan, S. Li, Y. Lin, *Langmuir,* 2010, **26**, 6676-6680.
- 20 C. Luna, M. P. Morales, C. J. Serna, M. Vazquez, *Mater . Sci.Eng. C*, 2003, **23**, 1129-1132.
- 21 S. Hsieh, P. Lin, *J. Nanopart. Res.*, 2012, **14**, 956.
- 22 X. Hua, Y. Deng, Z. Gao, B. Liu, C. Sun, *Appl. Catal. B: Environ.*, 2012, **127**, 167-174.
- 23 W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She, *Environ. Sci. Technol.*, 2010, **44**, 1786-1791.
- 24 Y. Xu, Y. Zhou, W. Ma, S. Wang, S. Li, *J. Nano. Res*., 2013, **15**, 1716.
- 25 N. Bayal, P. Jeevanandam, *J . Nano. Res*., 2013, **15**, 2066.
- 26 L. Xie, C. Shang, *Environ. Sci. Technol.,* 2005, **39**, 1092-1100.
- 27 D. Colon, E. Weber, J. Anderson, *Environ. Sci. Technol.,* 2008, **42**, 6538-6543.
- 28 S. Kang, W. Choi, *Environ. Sci. Technol.,* 2009, **43**, 878-883.
- 29 R. Huang, Z. Fang, X. Yan, W. Cheng, *Chem. Eng. J.,* 2012, **197**, 242–249.
- 30 J. Jiang, J. Zou, L. Zhu, L. Huang, H. Jiang, Y. Zhang, *J. Nanosci. Nanotechnol.,* 2011, **11**, 4793–4799.

RSC Advances RSC and RSCPublishing

PAPER

Table of Contents

Fe₃O₄@SiO₂ could be used as high-performance Fenton-like catalyst for dye decoloration in neutral environment.