

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Table of Contents

Biophysical insight of Thymoquinone Binding to 'N' and 'B'-isoforms to explore the Interaction Mechanism and Radical Scavenging Activity

Mohd Ishtikhar¹, Gulam Rabbani¹, Shawez Khan² and Rizwan Hasan Khan^{1*}

¹Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh – 202002, India ²Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India

1	
2	Research Article
3	
4	
5	Biophysical investigation of thymoquinone binding to 'N' and 'B' isoform of
6	human serum albumin and explore the interaction mechanism and radical
7	scavenging activity
8	
9 10	Mohd Ishtikhar ¹ , Gulam Rabbani ¹ , Shawez Khan ² and Rizwan Hasan Khan ¹ *
11	¹ Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh – 202002, India
12	² Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
13 14 15 16 17 18 19 20 21 22 23	
24	*To whom correspondence should be addressed
25	Prof. Rizwan Hasan Khan
26	Interdisciplinary Biotechnology Unit,
27	Aligarh Muslim University,
28	Aligarh-202002
29	E-mail: <u>rizwanhkhan@hotmail.com</u>
30	<u>rizwanhkhan1@gmail.com</u>
31	Phone: +91-571-2727388
32	Fax: +91-571-2721776
33	

RSC Advances Accepted Manuscript

1 Abstract

2 Thymoquinone (TQ) is the main constituent of *Nigella sativa* and is traditionally used 3 as folk medicine. Our aim was to investigate the binding mechanism of TQ to human serum albumin (HSA) isoforms ('N' form at pH 7.4 and 'B' form at pH 9.0) using 4 5 biophysical methods such as intrinsic tryptophan fluorescence quenching, isothermal titration calorimetry (ITC), circular dichroism (CD), dynamic light scattering (DLS), 6 7 Förster resonance energy transfer (FRET) and antioxidant activity in the absence and presence of TQ. We have calculated the binding and thermodynamic parameters from 8 9 spectroscopic and calorimetric methods. CD and DLS were respectively used to monitor the changes in the secondary structure and hydrodynamic radii of HSA as a 10 result of its interaction with TQ. The esterase and antioxidant or radical scavenging 11 12 activities of both the isoforms of HSA were investigated in the absence/presence of TQ. The antioxidant activity of TQ was remarkably enhanced upon its interaction with 13 HSA.. Therefore, the efficiency of HSA to scavenge the free radical ions was increase 14 in the presence of TQ which are generated in the body by various metabolic processes. 15

- 16
- 17
- 18
- 19

Abbreviations: HSA: Human serum albumin; TQ: Thymoquinone; ABTS: 2,2'-Azino bis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt; DLS: Dynamic light
 scattering; FRET: Förster resonance energy transfer; BHA: Butylated hydroxyanisole;
 MRE: Mean residual ellipticity.

Keywords: Antioxidant activity; Esterase activity; Fluorescence spectroscopy; Human
 serum albumin; Radical scavenging activity; Thymoquinone; Isothermal titration
 calorimetry.

4

5 Introduction

Thymoguinone (TO), a main constituent of Nigella sativa (Ranunculaceae) essential 6 7 oil, has been traditionally employed in folk medicine and is now recognized as a herbal remedy by a number of pharmacopoeias 1 . It is an annual plant that grows in the 8 mediterranean area of India and Pakistan. The biochemical activities of N. sativa has 9 been ascribed to quinones specifically TQ or 2-isopropyl-5-methyl-1, 4-benzoquinone 10 ². TO shows antimicrobial ³, anti-inflammatory ⁴, neuroprotective ⁵, antidiabetic, 11 anticancerous ⁶, antihypertensive, and mast cell stabilizing effects ⁷, in addition to a 12 protective role against *in vitro* induced ischemia^{8,9}. Moreover, the therapeutic potential 13 of TQ has been confirmed in cancer research also ¹⁰⁻¹⁵. TQ has a promising role as 14 antineoplastic growth inhibitor against various tumor cell lines ^{16, 17}. It has protective 15 effects against rheumatoid arthritis¹⁸, induces telomere shortening, DNA damage, 16 apoptosis in human glioblastoma cells¹⁹ and triple-negative breast cancer (TNBC) 17 cells²⁰. TQ also shows anti-oxidative properties against oxidative damage induced by a 18 variety of free radical generating agents (including carbon tetrachloride, *cis*-platin, 19 doxorubicin and recently HIV-1 protease inhibitor) 2, 21, analgesic and anti-20 inflammatory role against renal injury ²². Because of its immense biological 21 importance, there is an escalating interest to test it in pre-clinical and clinical researches 22 for assessing its health benefits. 23

Human serum albumin (HSA) is a highly abundant serum protein that comprises 50-1 60% of the total plasma protein in humans ²³. Albumin is responsible for the transport, 2 storage and metabolism of many therapeutic drugs in the blood stream thereby 3 restricting their free, active concentrations and therefore can significantly affect their 4 pharmacokinetics ²⁴. There are four pH dependent isoforms of HSA that have been 5 characterized in the past. At physiological pH 7.4, HSA assumes the normal form (N) 6 7 which changes to fast migrating form (F) at pH < 4.3 and at pH < 2.7 it changes to the fully extended form (E). Whereas on the basic side at pH > 8 the N form changes to 8 basic form (B) ²⁵. Polyphenols interact with HSA through its binding sites at different 9 domains. HSA has two primary binding sites for various ligands commonly referred as 10 binding site I and II which are located in subdomain IIA and IIIA, respectively ¹⁰. HSA 11 binds a variety of molecules, a property that can have profound effects on their 12 pharmacokinetics and pharmacodynamics²⁶. Binding of polyphenols to albumin alters 13 the pattern and volume of distribution, lowers the rate of clearance, and increases the 14 plasma half-life of the drug. 15 The work presented here was focused on dissecting the spectroscopic and 16 thermodynamic basis of HSA-polyphenols interactions investigating the mode and 17 forces responsible for binding. Specifically, the aim of this study was to explore the 18 binding of polyphenols to HSA under normal as well as alkaline conditions. Trp 19 fluorescence quenching was monitored at different temperatures to elucidate the 20

21 mechanism of TQ binding to HSA. CD and DLS were used to study the effect of TQ 22 binding on the overall conformation of HSA, while ITC was used to determine the 23 thermodynamic of TQ-HSA interaction. We have also monitored the esterase activity

1	and radical scavenging activity of HSA in the presence of TQ. Antioxidant property of
2	TQ plays an important role in various types of diseases and it also dependent on
3	condition such as alkalosis where it's antioxidant activity increases and esterase activity
4	reduces. Therefore, the binding and thermodynamic studies of TQ-HSA interaction
5	shall provide useful information on the structural features that determine the therapeutic
6	efficacy of TQ.
7	Materials and methods
8	Materials
9	Fatty acid free human serum albumin (A1887), Thymoquinone (274666), Glycine
10	(G8898), p-nitrophenyl acetate, 4-p-NPA (N8130), 2,2'-Azino-bis (3-ethyl
11	benzothiazoline-6-sulfonic acid) diammonium salt, ABTS (A1888), potassium
12	peroxodisulfate, $K_2S_2O_8$ (P5592), Trolox (238813) were purchased from Sigma Aldrich
13	and MOPS (134894) buffer was purchased from SRL.
14	Sample preparation
15	A stock solution of HSA was made in 20 mM MOPS pH 7.4 and glycine-NaOH pH 9.0
16	buffers and the protein concentrations was determined spectrophotometrically using
17	$E_{280 \text{ nm}}^{1\%}$ of 5.30 at 280 nm ^{7, 8} on a Perkin-Elmer Lambda 25 spectrophotometer.
18	Buffers used throughout the experiments were filtered by 0.45 μ m Millipore Millex-HV
19	PVDF filter and pH was measured using Mettler Toledo (model S20) pH meter. The
20	stock solution of TQ (5mM) was prepared in 10% ethanol and finally adjusted to 1.0 ml
21	by diluting with respective buffers.

RSC Advances Accepted Manuscript

UV-visible spectra were recorded between 250 and 350 nm on Perkin-Elmer Lambda 25 double beam spectrophotometer attached with Peltier temperature programmer

3 (PTP-1) to maintain temperature at 37 °C throughout the experiments. HSA (6 μ M) was 4 titrated by 0-30 μ M TQ in a 1 cm path length cuvette of 3 ml. All HSA-TQ absorbance 5 spectra were corrected with respective blank, which consist same concentration of TQ 6 in buffer in the absence of HSA.

7

1

2

Fluorescence quenching measurements

All the fluorescence measurements were carried out on Schimadzu (RF-5301PC) 8 fluorescence spectrophotometer equipped with a constant temperature holder attached 9 with Neslab RTE-110 water bath with an accuracy of ± 0.1 °C. Intrinsic fluorescence 10 was measured by exciting HSA (2 μ M) at 295 nm and the emission spectrum was 11 12 measured in the range of 300-450 nm, because tryptophan fluorescence is used as a probe of local environment in a protein for determination of protein structure, dynamics 13 as well as ligand binding. The decrease in fluorescence intensity at particular 14 wavelength was analyzed according to the Stern-Volmer equation 1⁸: 15

$$\frac{F_o}{F} = K_{sv} [Q] + 1$$

where F_o and F were the fluorescence intensities in the absence and presence of quencher (TQ), K_{sv} is the Stern-Volmer quenching constant. Binding constants and binding stoichiometry were obtained from equation 2²⁷:

$$K_{sv} = \mathbf{k}_{q} \cdot \boldsymbol{\tau}_{o}$$
⁽²⁾

RSC Advances Accepted Manuscript

3

1 where k_q is the bimolecular rate constant of the quenching reaction and τ_0 is the average

2 integral fluorescence life time of tryptophan which is $\sim 5.78 \times 10^{-9}$ s²⁸.

$$\log\left(\frac{F_{o}}{F} - 1\right) = \log K_{b} + n \log[Q]$$
(3)

4 where K_b is the binding constant and *n* is binding stoichiometry.

5 The thermodynamic parameters i.e. change in enthalpy (ΔH°) and change in entropy 6 (ΔS°) were determined after measuring K_b at different temperatures and the results were 7 analyzed according to van't Hoff equation 4:

8
$$\ln K_{\rm b} = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$
(4)

9 where R is universal gas constant (1.987 cal mol⁻¹ K^{-1}).

The change in Gibbs free energy (ΔG°) can be further determined from separate terms
 of enthalpy change (ΔH°) and entropy change (ΔS°) according to the equation 5:

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ ⁽⁵⁾

The three-dimensional fluorescence measurement were performed on Hitachi F-4500 spectrofluorometer under the following condition: the emission wavelength was recorded between 200 and 600 nm, the initial excitation wavelength was set to 200 nm with increment of 5 nm, the excitation and emission slit widths were fixed at 10 nm²⁹.

17 Isothermal titration calorimetric measurements (ITC)

The energetics of the binding of TQ to HSA at 37 °C was measured by using a VP-ITC titration microcalorimeter (MicroCal Inc., Northampton, MA). Prior to begin the titration experiment, all samples were degassed on a thermovac. The sample cell loaded with 20 μ M HSA dissolved in pH 7.4 and pH 9.0 and reference cell filled with the respective buffer. Multiple injections of 10 μ L of TQ solution (3.0 mM) were made into

the sample cell containing serum albumin. Each injection was made over 20 s with an interval of 180 s between successive injections. The reference power and stirring speed were set at 16 μ cal s⁻¹ and 307 rpm, respectively. Heats of dilution for the ligands were determined by the control experiments, and these were subtracted from the integrated data before curve fitting. The first derivative of temperature dependence of enthalpy change is used for the calculation of experimental heat capacity change calculated from equation 6³⁰:

$$\Delta C_{\rm p}^{\rm exp} = \frac{{\rm d}\Delta H}{{\rm d}T} \tag{6}$$

9 Temperature dependent van't Hoff enthalpy (ΔH_{vH}) at particular temperature is 10 calculated by the equation:

11
$$\Delta H_{vH} = \left[\frac{\left\{ \ln \frac{K(T_2)}{K(T_1)} - \frac{\Delta C_P}{R} \ln \frac{T_2}{T_1} + \frac{\Delta C_P T_1}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \right\} \times R}{\left(\frac{1}{T_1} - \frac{1}{T_2} \right)} \right]$$
(7)

where, T₁ and T₂ are the maximum and minimum experimental temperature, K(T₁) and
K(T₂) are the values of binding constant at respective temperatures.

14 Circular dichroism (CD) measurements

15 CD measurements were carried out with a Jasco spectropolarimeter (J-815) attached 16 with a Peltier-type temperature controller. The instrument was calibrated with D-10-17 camphorsulfonic acid. All The CD measurements were carried at pH 7.4 and pH 9.0 at 18 physiological temperature 37 °C. Spectra were collected with a scan speed of 50 19 nm/min, data pitch 0.1 nm and a response time of 2 s. Each spectrum was the average 20 of 2 scans. Far-UV CD spectra (190-250 nm) were taken at TQ concentrations from 01 50 μ M with protein concentrations of 2 μ M and 0.1cm path length cells. The results 2 were expressed as mean residue ellipticity (MRE) in degree cm² dmol⁻¹, which is 3 defined as:

4

$$MRE = \frac{\theta_{obs} (m \deg)}{10 \times n \times C \times l}$$
(8)

5 where θ_{obs} is the observed ellipticity in degrees, *C* is the molar concentration of HSA, *n* 6 is the number of amino acid residues (585-1= 584) and *l* is the pathlength of cuvette in 7 centimeter. Helical content of HSA was calculated from the MRE values at 222 nm 8 using the following equation as described by Chen *et al.*³¹:

9 %\alpha - helix=
$$\left(\frac{MRE_{222nm} - 2,340}{30,300}\right) \times 100$$
 (9)

10 The thermal denaturation experiments were carried between 25-90 °C with 1 °C min⁻¹ 11 temperature slope probed by far-UV CD at 222 nm. The curves were normalized, 12 assuming a linear temperature dependence of the base lines of native and denatured 13 states.

14 Data analysis of thermal denaturation

Thermal denaturation data from CD spectroscopy were analyzed on the basis of twostate unfolding model. For a single step unfolding process, $N \rightleftharpoons U$, where N is the native state and U is the unfolded state, the equilibrium constant K_u is:

$$K_{\rm u} = \frac{f_{\rm u}}{f_{\rm n}} \tag{10}$$

19 with f_u and f_n being the molar fraction of U and N, respectively.

20
$$f_{\rm d} = \frac{(Y_{\rm obs} - Y_{\rm n})}{(Y_{\rm u} - Y_{\rm n})}$$
(11)

1 where Y_{obs} , Y_n and Y_u represent the observed property, the property of the native state,

2 and the property of unfolded state, respectively.

3 Dynamic light scattering measurements

DLS measurements were carried out at 830 nm by using DynaPro-TC-04 dynamic light 4 5 scattering equipment (Protein Solutions, Wyatt Technology, Santa Barbara, CA) equipped with a temperature-controlled micro sampler. HSA (30 µM) was incubated 6 7 with the different concentration of TQ for 8 h, before scanning the samples were spun at 10,000 rpm for 10 min and were filtered serially through 0.22 and 0.02 µm Whatman 8 syringe filters directly into a 12 µl quartz cuvette. For each experiment, 20 9 measurements were taken. Mean hydrodynamic radius (R_h) and polydispersity were 10 analyzed using Dynamics 6.10.0.10 software at optimized resolution. The R_h was 11 12 estimated on the basis of an autocorrelation analysis of scattered light intensity data based on translation diffusion coefficient by Stoke's-Einstein relationship-13

14
$$R_{\rm h} = \frac{kT}{6\pi\eta D} \tag{12}$$

15 where R_h is the hydrodynamic radius, k is Boltzmann constant, T is the absolute 16 temperature, η is the viscosity of water and D is the diffusion coefficient ³².

17 Tryptophan fluorescence resonance energy transfer (FRET) to TQ

The fluorescence spectra of HSA (2 μ M) and absorption spectra of TQ (2 μ M) between 300 to 400 nm were scanned in similar way as given in method sections 'Fluorescence quenching' and 'UV-visible' experiments at 37 °C. If the emission spectrum of donor (Trp214) significantly overlaps with the absorption spectrum of acceptor (TQ), these donor-acceptor pairs will be considered in Förster distance and then we could ascertain the possibility of energy transfer ³³. Therefore, the degree of energy transfer depends upon the area of overlap and the distance between these donor-acceptor molecules. The
 efficiency of energy transfer (E) is calculated using the following equation ³⁴:

3

$$E_{FRET} = \left(1 - \frac{F}{F_o}\right) = \frac{R_o^6}{R_o^6 + r^6}$$
(13)

where F_o and F were the fluorescence intensities of HSA in absence and presence of TQ
respectively; r is the distance between donor and acceptor and R_o is the critical distance
at which transfer efficiency equals to 50% which can be calculated from the following
equation:

$$R_{o}^{6} = 8.79 \times 10^{-25} K^{2} n^{-4} \varphi J$$
(14)

9 where K^2 is the orientation factor related to the geometry of the donor and acceptor of 10 dipoles, *n* is the refractive index of the medium, φ is the fluorescence quantum yield of 11 the donor in absence of acceptor; and J expresses the degree of spectral overlap 12 between the donor emission and the acceptor absorption which can be evaluated by 13 integrating the overlap spectral area in between 300 to 400 nm from following 14 equation:

15
$$J = \frac{\int_{o}^{\infty} F(\lambda)\varepsilon(\lambda)\lambda^{4}d\lambda}{\int_{o}^{\infty} F(\lambda)d\lambda}$$
(15)

16 where $F(\lambda)$ is the fluorescence intensity of the donor at wavelength range λ which is 17 dimensionless, and $\varepsilon(\lambda)$ is the molar absorptivity (extinction coefficient) of the acceptor 18 at wavelength λ in M⁻¹ cm⁻¹. In the present study, K^2 , *n* and φ were taken as 2/3, 1.336 19 and 0.118, respectively ³⁵.

20 Molecular docking parameters

RSC Advances Accepted Manuscript

1 The three dimensional X-ray crystal structure of HSA (PDB ID: 1AO6, resolution 2.5 Å) was downloaded from the RCSB Protein Data Bank. The three dimensional 2 structure of TQ was retrieved from pubchem [CID: 10281]. We performed docking 3 studies using docking program AutoDock version 4.0^{36, 37}. AutoDock works on 4 5 Lamarkian genetic algorithm and calculate all possible conformations of the ligand that binds to the protein. Polar hydrogen atoms, Kollman charges were merged to the 6 7 protein and Gasteiger charges were added to the ligands using graphical user interface program AutoDock Tools (ADT) and then prepared file was saved in PDBQT format. 8 9 For the preparation of the grid map using a grid box Auto-Grid was used. Size of grid was set to 70 Å \times 70 Å \times 70 Å xyz points with spacing of 0.375 Å, which covers all the 10 available active site residues. To encompass two binding sites (subdomain IIA and 11 12 IIIA, respectively) during the docking process, the two different grid centers along the x-, y-, z-axes were set for subdomain IIA and for subdomain IIIA, respectively. To 13 achieve our goal the complex showing lowest binding energy with best fitness score 14 was used. For visualization purpose we used Pymol version 1.3 and chimera version 15 1.8 ³⁸. 16

17 Enzyme activation kinetics by esterase activity (*Determination of esterase-like* 18 *activity*):

19 The reaction of *p*-nitrophenyl acetate with HSA was followed spectrophotometrically 20 by monitoring the appearance of *p*-nitrophenol ³⁹ at 405 nm for time duration of 2 min 21 on Perkin-Elmer Lambda 25 double beam spectrophotometer attached with Peltier 22 temperature programmer (PTP-1) to maintain temperature at 25 °C throughout the 23 experiments. The reaction mixtures contained 5 μ M *p*-nitrophenyl acetate and 5 μ M

Page 15 of 54

4

protein in 20 mM MOPS (pH 7.4) and 20 mM glycine-NaOH (pH 9.0) buffers. The
 Michaelis-Menten equation was used to get the rectangular hyperbolic pattern of a
 typical enzyme-substrate reaction-

RSC Advances

$$\mathcal{V}_{\circ} = \frac{\mathbf{V}_{\max} \cdot [\mathbf{S}]}{\mathbf{K}_{m} + [\mathbf{S}]} \tag{16}$$

where V_o and V_{max} is the initial and maximum velocity respectively, [S] is the substrate
concentration, K_m is the Michaelis-Menton constant. The reciprocal of catalytic
velocity was plotted against the reciprocal of substrate concentration at a constant
activator concentration according to the equation 18 (Lineweaver-Burk plot):

9
$$\frac{1}{V_{\circ}} = \frac{K_{m}}{V_{max} + [S]} + \frac{1}{V_{max}}$$
 (18)

10 **Antioxidant or Free radical scavenging activity** (*a decolorization assay*):

The antioxidant activity experiments were performed on the Perkin-Elmer Lambda 25 11 double beam spectrophotometer attached with Peltier temperature programmer (PTP-1) 12 to maintain temperature at 37 °C throughout the experiments. The TEAC assay was 13 performed as described by Re et al.⁴⁰ with minor modifications. ABTS was dissolved 14 in respective buffers (pH 7.4 and pH 9.0) to a 7 mM concentration. ABTS radical 15 cation (ABTS⁺⁺) was produced by reacting ABTS stock solution with 2.45 mM 16 potassium persulfate (final concentration) and allowing the mixture to stand in the dark 17 at room temperature for 12-16 h before use. Because ABTS and potassium persulfate 18 react stoichiometrically at a ratio of 1:0.5, this will result in incomplete oxidation of the 19 ABTS. Oxidation of the ABTS commenced immediately, but the absorbance was not 20 maximal and stable until more than 6 h. The radical was stable in this form for more 21 than two days when stored in dark condition at room temperature. For the study of 22

phenolic compounds, the ABTS⁺⁺ solution was diluted with respective buffers (pH 7.4
and pH 9.0) to an absorbance of 0.71 (±0.02) at 734 nm and equilibrated at 37 °C. After
addition of antioxidant the absorbance was measured at 734 nm at 37 °C exactly 30 min
after initial mixing. Appropriate solvent blanks were run in each assay and subtracted,
respectively. All determinations were carried out at least three times, and in triplicate,
on each occasion and at each separate concentration of the standard and samples.

7 **Results and discussion**

8 UV-visible absorption studies

Ultraviolet/visible absorption spectroscopy is a powerful tool for steady-state studies of 9 protein-ligand interaction. In proteins, we distinguish different internal chromophores 10 that give rise to electronic absorption bands. From Fig. 1 we can see that the absorption 11 12 peak of HSA centers at ~ 280 nm mainly due to absorption of tryptophan residue. However, after addition of the TQ, the maximal absorption peak as well as absorption 13 intensity of HSA is slightly affected. We observed that upon increasing the 14 concentration of TQ, the conformation of HSA was slightly affected. It was evident 15 from the disrupted absorption spectra of HSA around 280 nm (corresponding to Trp 16 residue) and 256 nm (corresponding to transition region of disulphide bond and Phe 17 residues absorption) in the presence of TQ. 18

19

Tryptophan fluorescence quenching by TQ

To avoid the effect of phenylalanine, we explored Trp fluorescence quenching experiments to determine the interaction of TQ with 'N' and 'B' isoforms (at pH 7.4 and pH 9.0, respectively) of HSA at 37 °C. We observed a strong fluorescence peak of HSA around 340 nm when excited at 295 nm in the absence of TQ. The fluorescence of TTO

RSC Advances

C TO

.1

1	HSA was quenched in the presence of increasing concentrations of TQ, clearly
2	indicating an interaction between TQ and HSA (Supplementary Fig. S1). The intensity
3	of tryptophan fluorescence emission decreases continuously and gets saturated at higher
4	TQ concentrations, proving that TQ binding sites on HSA was fully occupied. The
5	decrease in fluorescence intensity upon addition of polyphenols was analyzed
6	according to the Stern-Volmer equation 1. There is a linear dependence between F_0/F
7	and molar concentration of the TQ (1:1). The qualitative emission spectral features
8	were slightly affected upon interaction of TQ to HSA which suggests about the minor
9	ligand-induced conformational changes in the protein occurs due to increase in
10	molecular closeness of TQ. The same experimental procedures were also followed at
11	15, 25 and 45 °C where we found that upon increasing the temperature, the quenching
12	also decreases, or in other words, the extent of lowering in fluorescence emission was
13	higher at lower temperatures (Fig. 2 A-I and B-II). The K_{sv} values for TQ at different
14	temperature as well as at different pH are given in the Table 1.

15 Determination of binding constant and binding stoichiometry

The binding constant (K_b) and the number of binding sites (n) can be calculated using 16 the equation 2. A plot of $\log [(F_o/F) - 1]$ vs log [TQ] gives a straight line, whose slope 17 equals to binding stoichiometry (n) and the intercept on y-axis equals to binding 18 constant (K_b), respectively (Fig. 2A-II and B-II). The values of K_b and n at 15, 25, 37 19 and 45 °C are listed in Table 1. For TQ, the values of K_b and *n* at pH 7.4 and 9.0 were 20 calculated at different temperatures as well as in presence of salt (NaCl). The data 21 shows that K_b decreases on increasing the temperature in both 'N' and 'B' isoforms but 22 these values are greater for 'N' $(1.63 \times 10^4 \text{ M}^{-1})$ than the 'B' $(0.28 \times 10^4 \text{ M}^{-1})$ form at 23

RSC Advances Accepted Manuscript

Fage 10 01

physiological temperature. It implies that under basic conditions the binding capacity of
TQ reduces up to ~6 times than that under neutral (physiological) conditions.
Conclusively, it shows that pH induced conformational change in the protein affects the
mode and mechanism of quenching and hence TQ binding to the HSA molecules.
Moreover, in the presence of NaCl, the extent of binding was not significantly changed
thus giving the clues that the electrostatic force doesn't play any role in TQ-HSA
interactions.

8

Mechanism of HSA-TQ interaction

9 Fluorescence quenching can be either dynamic or static in nature. To know about the quenching mechanism of HSA by TQ, the values of k_q obtained from equation 3 was 10 closely observed and found that it was of the order of 10^{12} , which was 100 times higher 11 than the maximum scatter collision guenching constant of various guenchers with 12 biopolymers $(2 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1})^{41}$. This shows that quenching is not initiated by 13 dynamic diffusion but occurs by formation of a strong ground state complex between 14 HSA and TQ. Further, the temperature dependency of K_{sv} was studied and we observed 15 that the slopes (K_{SV} values) decreased with increase in temperature, further confirming 16 that the binding of TQ to HSA was due to complex formation (static quenching). In 17 static quenching, K_{sv} decreases due to the formation of complex between ligand and 18 protein, which undergoes dissociation on increasing temperature ²⁹. 19

20

Thermodynamics of HSA-TQ interaction

According to the binding constants of TQ to HSA at all the four temperatures, the thermodynamic parameters were determined from linear van't Hoff plot (equation 4) and the observed data are shown in Table 1 and supplementary Fig S2. For the

1	determination of enthalpy-entropy relation in protein-ligand interaction we considered
2	only three temperatures viz. 15, 25 and 37 °C (NOT 42 °C) to ensure that the integrity
3	of protein conformation was not affect, otherwise it would to lead false interpretation of
4	thermodynamic parameters for the interaction studies. It is very well documented that at
5	42 °C, the domain III of HSA starts to melt, hence, major structural changes occurs
6	beyond this temperature. But we had included the data of 45 °C to assumed the
7	property of protein unchanged ²⁷ . In other words, obtained enthalpy-entropy changes
8	are mainly caused by the binding of the TQ molecule to HSA. The negative values of
9	ΔG^{o} manifested in each condition suggest that the interaction was spontaneous. ΔH^{o}
10	and ΔS° for the complex formation between TQ and HSA were found to be -5.10 kcal
11	mol ⁻¹ and 0.80, 0.83, 0.87 and 0.89 kcal mol ⁻¹ K ⁻¹ , respectively at 15, 25, 37 and 45 $^{\circ}$ C
12	at pH 7.4 and a similar pattern was also obtained at pH 9.0. Thus, the formation of TQ-
13	HSA complexation is an exothermic reaction accompanied by positive ΔS° value. The
14	role of bound water to the protein molecule in or near the binding pockets may be
15	disturbed as a positive $T\Delta S^{\circ}$ value is a strong indication that water molecules have been
16	excluded from the binding site interface. From the point of view of water structure,
17	these thermodynamic signatures of protein-ligand interactions impersonate the type of
18	forces responsible for ligand association. A positive ΔS° value is frequently taken as a
19	typical evidence for hydrophobic interaction whereas a negative ΔH^o is taken for
20	hydrogen binding ⁴³ . Therefore, binding of TQ to HSA might involve H-bonding as
21	well as hydrophobic interaction as evidenced by the above thermodynamic signatures
22	(Supplementary Fig S2). Furthermore, it was found that the major contribution to ΔG°
23	arises from the ΔH° rather than from ΔS° , so binding process was enthalpy driven.

1 Isothermal titration calorimetric measurements

The associated thermodynamic and binding parameters were further investigated 2 through ITC measurements. Representative calorimetric measurements to determine the 3 mode of binding of TQ with HSA isoforms at 37 °C are shown in Fig. 3. In the ITC 4 5 profiles, the lower panel shows the plot of heat librated per injection as a function of molar ratio of the drug to the protein and upper panel, each peak represents the binding 6 7 isotherm of a single injection of the drug into the protein solution. The titration of TQ to HSA shows negative heat deflection indicating that the reactions were mainly 8 9 exothermic. The association constant (K_a) and enthalpy change (ΔH°) were directly obtained after the best fitting for the integrated heats was obtained using single set of 10 binding model with lowest χ^2 value. The Gibbs free energy and entropy changes were 11 12 calculated from equations 6 and 7, respectively and obtained thermodynamic or binding parameters are summarized in Table 1. The binding of TQ shows exothermic process 13 that are the characteristics of hydrogen bond and conformational changes ⁴⁴ and the 14 values of binding constant were varying in the range of 10^3 to 10^4 . Moreover, the 15 negative value of ΔG° suggests that the TQ-HSA complex formation was spontaneous 16 at both pH values (pH7.4 and pH 9.0). The negative values of ΔH° and positive value 17 of ΔS° values advocate that the involvement of hydrogen bond and hydrophobic 18 interaction in the formation of the protein-TQ complex ⁴⁵, which indicates the 19 occurrence of enthalpy-entropy compensation effect in which enthalpy loss due to the 20 deformation of H-bond is counter balanced by entropic penalty due to the burial of 21 involved groups. This effect is common in protein-ligand interactions ⁴⁶. 22

23 Circular dichroism measurement

RSC Advances

It is possible to estimate the contents of secondary structure of protein using far-UV CD	
spectra (190-250 nm). A positive peak near 195 nm and two negative peaks near 208	
and 222 nm is characteristic feature of α -helical protein. The far-UV CD studies were	
performed on the protein and protein-TQ complexes in order to investigate the	
possibility of any structural change of the protein upon complexation with the TQ. Fig	ot
4-I shows that the CD spectra of HSA with various TQ concentrations at pH 7.4 and	ij
9.0. From Fig. 4-IA (pH 7.4) and 4-IB (pH 9.0) the spectra of HSA in the absence and	ISC
presence of TQ, as the TQ concentration increases a notable spectral rearrangement	IUC
occurs in HSA with increase in major minima (208 nm) as well as slight changes in the	Z
shape of spectra due to intramolecular H-bonding rearrangement as justified by	D
fluorescence quenching experiments. The TQ induced alterations in secondary	pte
structures of HSA were quantified by Chen et al. method ³¹ , and the calculated values	Ce
are summarized in Table 2. In the presence of TQ, a significant increase in the α -helical	AC
content of both HSA isoforms was observed. Using equation 9, the α -helical content in	S
'N' isoform of HSA was calculated. It increased from 4% and 9% while in case of 'B'	Ce
isoform of HSA it increased from 9% and 18% as compared to native structure,	an
correspondingly. Overall, the 'B' isoform of HSA is more stable in the presence of TQ.	dv V
Thermal stability of albumin was enhanced by TQ	A C
The existence of intermediates in the thermal unfolding pathway of a protein can also	SC

2 spectra (190-250 nm). A positive peak near 195 nm and two n and 222 nm is characteristic feature of α -helical protein. The fa 3 performed on the protein and protein-TQ complexes in or 4 5 possibility of any structural change of the protein upon complex 4-I shows that the CD spectra of HSA with various TQ concer 6 9.0. From Fig. 4-IA (pH 7.4) and 4-IB (pH 9.0) the spectra of H 7 presence of TQ, as the TQ concentration increases a notable 8 9 occurs in HSA with increase in major minima (208 nm) as well shape of spectra due to intramolecular H-bonding rearrang 10 fluorescence quenching experiments. The TQ induced alt 11 structures of HSA were quantified by Chen et al. method ³¹, an 12 are summarized in Table 2. In the presence of TQ, a significant 13 content of both HSA isoforms was observed. Using equation 9, 14 'N' isoform of HSA was calculated. It increased from 4% and 9 15 isoform of HSA it increased from 9% and 18% as compar-16 correspondingly. Overall, the 'B' isoform of HSA is more stable 17

Thermal stability of albumin was enhanced by TQ 18

The existence of intermediates in the thermal unfolding pathwa 19 be evidenced by observing the changes in its secondary structure. Fig. 4-II shows the 20 change in the ellipticity at 222 nm of the HSA:TQ at molar ratios 1:0, 1:5 and 1:25, 21 respectively as obtained from CD experiments. The mid-point temperature (T_m) was 22 23 determined by fitting the ellipticity values in to a two-state folding-unfolding model

1 equation 10 and 11. This shows that the protein loses a considerable fraction of its 2 secondary structure during thermal denaturation. The decrease in ellipticity at 222 nm of HSA is shown as a function of temperature and the denaturation profile is found to 3 be consistent with the earlier reports ⁴⁷. It is noted that the presence of intermediate 4 5 unfolded states in the thermal denaturation of bovine serum albumin (BSA), which is structurally similar to HSA, has already been indicated by calorimetric studies ⁴⁸. The 6 7 CD thermal profiles, including the 1:25 molar ratio of HSA:TQ showed more thermal stability, indicating that the protein is more stable in the presence of TQ as compared to 8 9 the native condition. Thus, the higher stability of HSA in the presence of 1:25 molar ratio corresponds to increase in the secondary structure. The obtained T_m values of TQ-10 bound HSA are significantly higher than the native one (Table 2). Denaturation of HSA 11 12 at high temperature occurs by weakening of hydrophobic as well as polar interactions, which may also facilitate the TQ binding property of HSA. Here, enhancement in 13 thermal stability is also implied by better interaction of TQ at high temperature which 14 induces to more helical structure formation in unordered protein segments of 'B' 15 isoform as compare to 'N' isoform of HSA. 16

17

Dynamic light scattering studies

Unfolding of a protein is usually marked by a change in the secondary and globular structure of the protein. The change in the globular structure of a protein can be studied by DLS measurements. It is clear from the above findings that the interaction of TQ with HSA causes conformational changes. So, we decided to measure the molecular sizes of HSA in the absence and presence of TQ by determining the hydrodynamic radii using DLS. The Fig. 5-I & 5-II shows that the change in the globular structure of the

10.4

. 1

1	protein at 25 °C. The hydrodynamic radii (R_h) of native HSA and HSA in the presence
2	of TQ were calculated and values are shown in Table 3. The R_h values of native HSA
3	were 4.0 nm and 3.6 nm at pH 7.4 and 9.0, respectively. These results are in excellent
4	agreement with previous observations at pH 7.4 and pH 9.0, respectively 49 . The $R_{\rm h}$
5	values of HSA complexed with TQ were higher than the native one. The increase in
6	hydrodynamic radii upon ligand binding may be due to the "expansion of domains"
7	which may lead to an increase in the molecular volume as a result of conformational
8	changes. Similar results were also observed previously in the presence of atropine
9	(4.1%), propranolol (11.1%), clonidine (14.4%), phenylephrine (16.6%) and carbachol
10	(15.5%) 50 The lower values of polydispersity (< 20) were indicative of homogenous
11	species in the solution. Fig. 5-II shows the characteristic examples of the dependencies
12	of globule size and compressibility upon the HSA:drug molar ratios. The principal
13	structural rearrangements were displayed at each HSA:drug molar ratios and it
14	increased with an increase in HSA:drug ratio. We observed that at extremely higher
15	molar ratio of HSA:drug (1:25), the hydrodynamic radii were either slightly changed or
16	remain unaffected (Fig. 5-II).It suggested that the structural changes in HSA occurred
17	only by the molecules which were bound to the protein and affected its secondary
18	structures near the binding site ⁵¹ .

19

Energy transfer between TQ and HSA

In order to estimate the binding of TQ to the model transporter protein HSA, we have also explored the possibility of energy transfer between donor to acceptor using Förster's resonance energy transfer (FRET) method. In Fig. 6, the emission spectrum from the single tryptophan (Trp214) of HSA and the absorption spectrum of TQ are

1	snown. According to FRE1 theory as describe in the method section, efficiency of
2	energy transfer (E _{FRET}), spectral overlap (J), Förster's distance (R _o) of the donor
3	(Trp214), and r value were derived from the overlaid spectra and the value of energy
4	transfer between TQ and HSA was calculated from the equations 13-15. At pH 7.4, the
5	energy was efficiently transferred from Trp214 of HSA to the bound TQ as indicated
6	by a large spectral overlap between the emission spectra of Trp214 and the absorption
7	spectrum of TQ. Hence, the probability of TQ binding was stronger with the 'N' isomer
8	of HSA at pH 7.4. Further, it is evident from the Fig. 6B that the spectral overlap of the
9	HSA-TQ system was significantly lower at pH 9.0due to minimum contribution from
10	the Trp214. We calculated the energy transfer parameters and found that E_{FRET} =
11	0.3048, J= 3.24×10^{-14} cm ³ M ⁻¹ , R _o = 2.981 nm, r = 3.42 nm for HSA at pH 7.4 and
12	$E_{FRET} = 0.1400$, J= 2.72×10 ⁻¹⁵ cm ³ M ⁻¹ , R _o = 1.97 nm, r = 2.66 nm for HSA at pH 9.0,
13	respectively (Table 4). The average distance between the donor and acceptor
14	fluorophores was on the 2-8 nm scale and $0.5R_o < r < 1.5R_o$. In our study, the donor to
15	acceptor distance was less than 8 nm, indicating that the energy transfer from HSA to
16	TQ occurred with high probability. These results were also in accordance with a static
17	quenching mechanism.
18	Three-dimensional conformational investigation of TQ binding with HSA

19 Three-dimensional fluorescence spectroscopy is a new analytical technique that is 20 applied to investigate the conformational changes of proteins. The excitation and 21 emission wavelength of the fluorescence intensity can be used as the axes rendering the 22 investigation of the characteristic conformational changes of proteins more scientific

23

23

and credible ²⁹. The maximum fluorescence emission wavelength of amino acid

1 residues in a protein is related to the polarity of the environment. Experiments have 2 suggested that the fluorescence emission spectrum wavelength and the synchronous fluorescence spectrum wavelength of HSA in the absence and presence of drugs show 3 distinct differences and sharp changes, which provide relative information on the 4 configuration of the protein ⁵². The three-dimensional spectra and contour maps of HSA 5 and HSA-TQ complexes are presented in Fig. 7 and supplementary Fig. S3 and the 6 7 obtain values are listed in supplementary Table T-1. In the figure of three-dimensional spectra, two characteristic fluorescence peaks of HSA (peak 1 and peak 2) were clearly 8 observed, while peak 3 and peak 4 represents Rayleigh scattering peak ($\lambda_{ex} = \lambda_{em}$) and 9 second-order scattering peak ($\lambda_{em} = 2\lambda_{ex}$)^{29, 52}, respectively. The peak 1 represents 10 fluorescence arising mainly from tryptophan and tyrosine (negligible contribution of 11 12 phenylalanine fluorescence) when the protein is excited at 280 nm. On the other hand, peak 2 is the characteristic fluorescence peak representing polypeptide backbone 13 structure. In our study, the decrease in the intensities of peaks 1 and 2 clearly indicated 14 that the fluorescence of HSA was quenched as a result of TQ binding and the 15 conformation of the protein was also altered as a result of it. 16

17 Molecular docking

Main aim of the study was to presumptive binding site of TQ in HSA as reported earlier by G. Lupidi *et al.*¹³. We used X-ray structure of HSA with high resolution (PDB ID: 1AO6, res. 2.5 Å) as a template and the prediction of binding mode of TQ was done using AutoDock software package. To comprise the subdomain IIA and IIIA of HSA, the two regions of interest used for molecular docking were defined to determine the binding residues and their positions and their energy score was compared. The docking

RSC Advances Accepted Manuscript

RSC Advances

results showed that TQ binds to HSA within the binding pocket of subdomain IIA with
an estimated docking energy of about -5.83 kcal mol⁻¹, while for the second binding site
subdomain IIIA the free energy of binding was found to be -5.62 kcal mol⁻¹.

Therefore we can argue that TQ has a better binding preference for the drug binding 4 5 site I (subdomain IIA) of HSA. This result is in agreement with earlier published data, as it is reported that quinone-related derivatives bind to subdomain IIA of HSA. The 6 7 binding of TQ to subdomain IIA of HSA was also confirmed by the drug-displacement experiments 54, 55. This binding site for TQ at subdomain IIA was located 8 predominantly in a hydrophobic cleft walled by the amino acid residues Tyr150, 9 Leu199, Trp214, Leu219, Arg222, Leu238, Arg257, Leu260, Ala261, Ile264, Ser287, 10 Ile290, and Ala291 (as shown in Fig.8A). One of the oxygen from TQ was interacting 11 12 with Tyr150 through hydrogen bonding, and its methyl group was found to interact with Trp214 through hydrophobic interactions (Fig. 8B). 13

14 Esterase-like activity of HSA-isoforms in presence of TQ

HSA has an esterase-like activity for the deglucuronidation of acyl-glucuronide of 15 fenoprofen, etodolac, ketoprofen and gemfibrozil ⁵⁶⁻⁵⁹. The double-reciprocal plots for 16 substrates were characterized by a family of linear, nonparallel lines that converged to 17 the left of the y-axis (Supplementary Fig. S4). In presence of TQ, the K_m increased at 18 pH 7.4 from 6.66×10^{-6} M to 9.37×10^{-6} M. The higher value of K_m obtained for the 19 20 HSA incubated at pH 7.4 in the presence of TQ showed a lower substrate affinity for the substrate. The incubated enzyme besides showing higher K_m for substrate also 21 showed a higher k_{cat} value yielding overall a decrement in catalytic efficiency (k_{cat}/K_m) 22 relative to the HSA in the absence of TQ. Altogether, our results indicated that addition 23

of TQ alters both K_m and V_{max} values of HSA. Increase in K_m and V_{max} indicated that 1 2 the esterase activity of HSA was inhibited in a competitive manner because TQ was directly competing with the substrate for a fixed number of active sites on enzymes. 3 The large increase in K_m upon the binding of TQ indicated changes in the tertiary 4 structure of HSA that might lead to steric effects resulting from limitation of the 5 6 accessibility of substrate to the active site. The catalytic efficiency value, which is the ratio of $k_{\text{cat}} \, \text{over} \, K_m$ was also different for free HSA and HSA-TQ complex. As shown 7 in Table 5, the catalytic efficiency of HSA-TQ was lower than the free enzyme 8 9 indicating that the enzyme was poorer on the substrate in the presence of TQ. We have obtained opposite pattern of K_m and V_{max} at pH 9.0, decrease in K_m from 10 8.55×10^{-5} M to 4.09×10^{-5} M and V_{max} 6.70×10^{-7} to 5.12×10^{-7} M/min revealed that 11 HSA in the presence of TQ at pH 9.0 had an improved affinity and tighter substrate 12 binding capability as compared to that at pH 7.4 (Table 5). The second order rate 13 constant k_{cat}/K_m ratio indicates the catalytic efficiency and kinetic perfection of the 14 enzyme in transforming substrates. The higher the k_{cat}/K_m ratio, the better the enzyme 15 works on that substrate. A comparison of k_{cat}/K_m ratio for the same enzyme with 16 substrates in different conditions is widely used as a measure of enzyme effectiveness. 17 TQ induced the catalytic activation of HSA at pH 9.0 and allowed the reaction to 18 approach the limit of maximum diffusion just like in an ideal enzyme (acetyl 19 cholinesterase) where every interaction with substrate yields a product and for these 20 enzymes, from the diffusion theory, the value of k_{cat}/K_m ranges 6×10^{9} - $6 \times 10^{10} \text{ M}^{-1} \text{ min}^{-1}$ 21 ¹. Our enzyme kinetics results suggested that the TQ acts as an activator of the esterase 22 23 activity of HSA in alkaline conditions. The k_{cat} values were strikingly dependent on pH

and showed that the susceptibility of the active sites to nucleophilic attack increases 1 with pH. It has been reported that pH dependent conformational changes ('N' \leftrightarrow 'B' 2 transition) occur in albumin when going from neutral to slightly alkaline pH 25 . 3 Therefore, alteration in nucleophilic attack in active sites and in the affinity to p-NPA 4 5 could be due, totally, or partly, to changes in the tertiary structure of albumin, which convoy the pH-dependent N-B transition. From all of our experiments dealing with the 6 7 secondary and tertiary structure of HSA in the presence of TO molecules, it becomes apparent that upon interaction between TQ and HSA, the affinity of the protein for its 8 9 substrate is enhanced in alkaline condition.

10 Antioxidant or Radical scavenging activity of HSA in presence of TQ

has several important functional properties, out of them we have evaluated the TO 11 12 free radical scavenging activity because of its deleterious job in the food and biological systems ⁶⁰. Some of its properties were previously demonstrated by several 13 pharmacological studies as membrane lipid peroxidation, reduction of eicosanoid 14 generation ⁶¹, anti-inflammatory and analgesic ^{2, 62}, protection of body organs against 15 oxidative damage induced by various type free radical generating agents ⁶³⁻⁶⁵. Oral 16 intake of TQ is capable of protecting numerous organs against oxidative damage 17 induced by free radical-generating agents including doxorubicin-induced cardiotoxicity 18 ^{66, 67}. TQ act as scavenger of superoxide, hydroxyl radical and singlet molecular oxygen 19 ⁶⁸. HSA itself have a very good antioxidant activity that plays an important role in 20 human health. In alkaline condition, antioxidant property of HSA increases due to its 21 conformational change and the activation of antioxidant activity is also thiol-dependent 22 ⁶⁹. The carboxyl group modification of HSA causes approximately 40-fold increase in 23

1 the antioxidant activity. These chemical modification studies indicate that the addition to functional cysteine(s) or cationic amino acid residues such as arginine, histidine and 2 lvsine involve in antioxidant reactions. These results recommend 3 that the activation of thiol-dependent antioxidant activity of HSA at alkaline pH is due to 4 5 the conformational change which was favorable for the functional cysteine(s)-mediated catalysis. HSA shows specific antioxidant property is also due to its multiple ligand-6 7 binding and free radical-trapping properties and are directly connected to the conformational change in structure and the redox state of molecule^{70, 71}. Currently 8 various methods are used to described the antioxidant activity of plant derived phenolic 9 compounds. These chemical assays are based on the ability to scavenge the free radical 10 by various radical generating system and method for decolorization. ABTS⁺⁺ radical 11 12 scavenging method is most appropriate format for decolorization assay and very common spectrophotometric procedure to determine the antioxidant capacity of plant 13 derived components due to its sensitive, sample, rapid and reproducible procedure ⁷². 14 Biochemical assay are based on the scavenging ability of synthetic free radicals which 15 are generated by different radical-generating systems. Free radicals are generating prior 16 to reactions that involve in the production of blue/green ABTS⁺⁺ chromophores that was 17 formed due to reaction between ABTS and potassium persulphate. 18

19

 $ABTS' + AH \rightarrow ABTS' + A'$

The extent of inhibition of the absorbance of the ABTS^{•+} is plotted as a function of 20 concentration in order to determine the TEAC, that can be assessed as a function of 21 time. The dose-response curve obtained by analysis of a range of concentrations of 22 23 antioxidant compounds, was plotted as the percentage inhibition of the absorbance of

RSC Advances Accepted Manuscript

the ABTS^{*+} solution as a function of concentration of antioxidant (Fig. 9A). Trolox and
BHA were used as standard reference compounds (Fig. 9B). To calculate the TEAC,
the gradient of the plot of the percentage inhibition of absorbance vs. concentration plot
for the antioxidant in question is divided by the gradient of the plot for Trolox and
BHA. The scavenging capability of ABTS⁺ radical was calculated using the following
equation:

$$ABTS^{o^{+}}scavenging \; effect (\%) = \left(1 - \frac{As}{Ac}\right) \times 100$$
⁽¹⁹⁾

8 where, Ac is the initial concentration of the $ABTS^+$ and As is absorbance of the

9 remaining concentration of $ABTS^+$ in the presence of TQ ⁷³.

10

11

7

Thymoquinone

Dihydro thymoquinone

This gives the TEAC at the specific time point and the calculated results for the flavonoids are given in supplementary Table T-2. All the tested compounds exhibited admirable radical cation scavenging activity. As seen in Fig. 9C, TQ had effective radical scavenging activity in a concentration-dependent manner (16.42-164.2 μg/ml). TQ undergoes reduction process and gets converted into its more anti-oxidative form i.e. dihydrothymoquinone (DHTQ). TQ and DHTQ inhibited non-enzymatic process in liver that was also dose dependent ⁶⁷. There was a significant increase in the overall

concentration of ABTS⁺⁺ due to the scavenging capacity of TQ concentrations. Also, the scavenging effect of TQ and standards, on the ABTS⁺⁺ decreased in that order: at pH 7.4 HSA-TQ > HSA (100 μ M) > TQ (2500 μ M) > trolox (100 μ M), which were 81.39%, 50.37%, 47.45% and 43.76%, and at pH 9.0 HSA-TQ > HSA (100 μ M) > TQ (2500 μ M) > trolox (100 μ M), which were 100%, 99.97%, 96.19% and 88.39% at the concentration of 100 μ L/ml respectively.

7

8 Conclusion

In the present study, we evaluated the binding properties of 'N' and 'B' isoform of 9 HSA (at pH 7.4 and pH 9.0, respectively) with TQ, an important constituent of Nigella 10 sativa. The binding affinity and thermodynamics parameters were higher for 'N' 11 12 isoform as compared to 'B' isoform of HSA. The interaction of TQ with HSA was favored by H-bonding and hydrophobic interactions. The molecular size and thermal 13 stability of HSA were increased in the presence of TQ. We found that the esterase 14 activity of HSA is enhanced in 'N' isoform in the presence of TQ as compared to 'B' 15 isoform, while the antioxidant activity is quite significant in 'B' isoform. The overall 16 antioxidant activity of HSA is enhanced in the presence of TQ. Thus, the phenolic 17 compound TQ which is a component of Nigella sativa has a great potential to bind 18 HSA and induces its free radical scavenging activity. This study provides insight into 19 HSA-TQ interaction, which is of great importance in understanding the chemico-20 biological interactions for drug-designing, pharmacy and biochemistry. 21

- 22
- 23

MI is highly thankful to Indian Council of Medical Research (ICMR), New Delhi, for

1 Acknowledgement

3		financial support in the form of senior research fellowship (BIC/11(12)/2013) and
4		Grant (No. BMS-58/14/2006). GR is highly thankful to Council of Scientific and
5		Industrial Research, New Delhi, India for financial support in the form of Research
6		Associateship. The authors would like thank to Interdisciplinary Biotechnology Unit,
7		Aligarh Muslim University for providing instrumental facilities.
8		
9		Reference
10	1	M M Abukhader Pharmacoon Rev 2013 7 117-120
11	2	M. Fl. Gazzar, R. Fl. Mezaven, I. C. Marecki, M. R. Nicolls, A. Canastar and S. C.
12	2.	Dreskin Int Immunonharmacol 2006 6 1135-1142
13	3	D Dev R Ray and B Hazra <i>Phytother Res</i> 2013
14	4	Y S Chen H M Yu J J Shie T J Cheng C Y Wu J M Fang and C H Wong
15		<i>Bioorg Med Chem</i> 2014 22 1766-1772
16	5.	R. Sedaghat, M. Roghani and M. Khalili, Iran J Pharm Res. 2014, 13, 227-234.
17	6.	K. S. Siveen, N. Mustafa, F. Li, R. Kannaivan, K. S. Ahn, A. P. Kumar, W. J. Chng
18		and G. Sethi, Oncotarget, 2014, 5, 634-648.
19	7.	K. Wallevik, J Biol Chem, 1973, 248, 2650-2655.
20	8.	J. R. Lakowicz, 1983, Plenum Press, New York, London, p.237.
21	9.	N. El-Najjar, R. A. Ketola, T. Nissila, T. Mauriala, M. Antopolsky, J. Janis, H. Gali-
22		Muhtasib, A. Urtti and H. Vuorela, J Chem Biol, 2010, 4, 97-107.
23	10.	G. Sudlow, D. J. Birkett and D. N. Wade, Mol Pharmacol, 1976, 12, 1052-1061.
24	11.	X. Z. Feng, Z. Lin, L. J. Yang, C. Wang and C. L. Bai, Talanta, 1998, 47, 1223-
25		1229.
26	12.	W. C. Johnson, Jr., Proteins, 1990, 7, 205-214.
27	13.	G. Lupidi, A. Scire, E. Camaioni, K. H. Khalife, G. De Sanctis, F. Tanfani and E.
28		Damiani, <i>Phytomedicine</i> , 2010, 17 , 714-720.
29	14.	J. M. Salmani, S. Asghar, H. Lv and J. Zhou, <i>Molecules</i> , 2014, 19 , 5925-5939.
30	15.	S. S. Ulasli, S. Celik, E. Gunay, M. Ozdemir, O. Hazman, A. Ozyurek, T. Koyuncu
31		and M. Unlu, Asian Pac J Cancer Prev, 2013, 14, 6159-6164.
32	16.	H. Gali-Muhtasib, M. Diab-Assaf, C. Boltze, J. Al-Hmaira, R. Hartig, A. Roessner
33		and R. Schneider-Stock, Int J Oncol, 2004, 25, 857-866.
34	17.	S. E. Hassanien, A. M. Ramadan, A. Z. Azeiz, R. A. Mohammed, S. M. Hassan, A.
35		M. Shokry, A. Atef, K. B. Kamal, S. Rabah, J. S. Sabir, O. A. Abuzinadah, F. M. El-
36		Domyati, G. B. Martin and A. Bahieldin, <i>C R Biol</i> , 2013, 336 , 546-556.

1 2	18.	S. P. Vaillancourt F, Shi Q, Fahmi H, Fernandes JC, Benderdour M., J. Cell Biochem. 2010.
3 4	19.	R. L. Gurung, S. N. Lim, A. K. Khaw, J. F. Soon, K. Shenoy, S. Mohamed Ali, M. Javapal, S. Sethu, R. Baskar and M. P. Hande, <i>PLoS One</i> , 2010, 5 , e12124.
5 6	20.	K. M. Sutton, A. L. Greenshields and D. W. Hoskin, <i>Nutr Cancer</i> , 2014, 66 , 408-418
7	21	A A Found and I Iresat Andrologia 2014
v Q	21. 22	A Ragheb A Attia W S Eldin E Elbarbry S Gazarin and A Shoker Saudi L
0	22.	Kidney Dis Transpl 2000 20 741 752
9 10	22	T. Dotors. Ir. Adv. Duotoin Chom. 1095. 27, 161.245
10	23.	1. Fetels, JL., AUVI Folein Chem, 1965, 5 7, 101-245. M. Jahtilthar, C. Dahhani and D. H. Khan, Calloida Sunf. D. Disintanfasor, 2014
11	24. 25	M. Ishtikhai, G. Kabbani and K. H. Khan, Collolas Surj. D. Diolinerjaces, 2014.
12	25.	A. varsnney, M. Kenan, N. Subbarao, G. Rabbani and K. H. Knan, <i>PLoS One</i> , 2011,
13	26	0, 01/250.
14	26.	J. Hodgson, <i>Nat Biotechnol</i> , 2001, 19 , 897-898.
15 16	27.	E. Ahmad, G. Rabbani, N. Zaidi, S. Singh, M. Rehan, M. M. Khan, S. K. Rahman, Z. Quadri, M. Shadab, M. T. Ashraf, N. Subbarao, R. Bhat and R. H. Khan, <i>PLoS</i>
17		<i>One</i> , 2011, 6 , e26186.
18	28.	U. Anand, C. Jash and S. Mukherjee, <i>J Phys Chem B</i> , 2010, 114 , 15839-15845.
19	29.	M. Ishtikhar, S. Khan, G. Badr, A. Osama Mohamed and R. Hasan Khan, Mol
20		<i>Biosyst</i> , 2014, 10 , 2954-2964.
21	30.	J. E. Ladbury and M. A. Williams, Curr Opin Struct Biol, 2004, 14, 562-569.
22	31.	Y. H. Chen, J. T. Yang and H. M. Martinez, <i>Biochemistry</i> , 1972, 11 , 4120-4131.
23	32.	G. Rabbani, E. Ahmad, N. Zaidi, S. Fatima and R. H. Khan, Cell Biochem Biophys,
24		2012, 62 , 487-499.
25	33.	F. r. T, Ann Phys, 1948, 2 , 55-75.
26	34.	P. J. Il'ichev YV, Simon JD, J Phys Chem B, 2002, 116, 452-459.
27	35.	G. M. Zhao Hongwei, Zhang Zhaoxia, Wang Wenfeng, Wu Guozhong,
28		Spectrochemica Acta: A, 2005, 65, 811-817.
29	36.	R. K. Belew, & Olson, A. J., Journal of Computational Chemistry, 1998, 19, 1639–
30		1645.
31	37.	M. F. Sanner, <i>J Mol Graph Model</i> , 1999, 17 , 57-61.
32	38.	E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C.
33		Meng and T. E. Ferrin. J Comput Chem. 2004. 25, 1605-1612.
34	39	M T Rehman H Shamsi and A U Khan <i>Mol Pharm</i> 2014 11 1785-1797
35	40	R Re N Pellegrini A Proteggente A Pannala M Yang and C Rice-Evans Free
36	10.	Radic Riol Med 1999 26 1231-1237
27	<i>I</i> 1	G Rahhani E Ahmad N Zaidi and R H Khan Coll Riocham Rionhys 2011 61
27 20	71.	551 560
20	12	7 I Vassaan I II Hammad and A I IIA Spectrachim Leta A Mal Pierral
39	42.	L. J. Lasseen, J. H. Hammad and A. L. HA, spectrochim Acia A Mot Diomot
40	12	D D D D D D D D D D D D D D D D D D D
41	43.	P. D. Ross and S. Subramanian, <i>Biochemistry</i> , 1981, 20, 5090-5102.
42	44.	A. A. Inoppil, K. Snarma and N. Kisnore, <i>Biopolymers</i> , 2008, 89 , 831-840.
43	45. 46	L. Uni and K. Liu, <i>Biomacromolecules</i> , 2011, 12 , 203-209.
44 45	40.	G. ZOIOTIITSKY, U. COgan, N. Adir, V. Solomon, G. Shoham and Y. Shoham, <i>Proc</i> Natl Acad Sci USA, 2004, 101 , 11275-11280.

47. K. Takeda, A. Wada, K. Yamamoto, Y. Moriyama and K. Aoki, J Protein Chem, 1 1989, 8, 653-659. 2 48. C. Giancola, C. De Sena, D. Fessas, G. Graziano and G. Barone, Int J Biol 3 Macromol, 1997, 20, 193-204. 4 49. S. S. Sinha, R. K. Mitra and S. K. Pal, J Phys Chem B, 2008, 112, 4884-4891. 5 50. A. I. Luik, N. Naboka Yu, S. E. Mogilevich, T. O. Hushcha and N. I. Mischenko, 6 Spectrochim Acta A Mol Biomol Spectrosc, 1998, 54A, 1503-1507. 7 51. L. A. Hushcha TO, Naboka YN., Talanta, 2000, 2, 29-34. 8 52. Y. J. Hu, Y. Liu, T. Q. Sun, A. M. Bai, J. Q. Lu and Z. B. Pi, Int J Biol Macromol, 9 2006, 39, 280-285. 10 11 53. J. N. Miller, Proc Anal Div Chem Soc, 1979, 16, 203-208. S. Bi, Song, D., Kan, Y., Xu, D., Tian, Y., Zhou, X., Zhang, H., Acta A Mol. Biomol. 12 54. Spectrosc, 2005, 62, 203-212. 13 Y. Li, X. Yao, J. Jin, X. Chen and Z. Hu, Biochim Biophys Acta, 2007, 1774, 51-58. 14 55. 56. S. H. Volland C, Dammeyer J, Benet LZ, Drug Metab Dispos, 1991, 19, 1080-1086. 15 P. C. Smith, W. Q. Song and R. J. Rodriguez, Drug Metab Dispos, 1992, 20, 962-57. 16 17 965. B. C. Sallustio, B. A. Fairchild and P. R. Pannall, Drug Metab Dispos, 1997, 25, 55-58. 18 19 60. 20 59. L. F. Dubois-Presle N1, Maurice MH, Fournel-Gigleux S, Magdalou J, Abiteboul M, Siest G, Netter P., Mol Pharmacol, 1995, 47, 5647-5653. 21 K. Staniek, T. Rosenau, W. Gregor, H. Nohl and L. Gille, Biochem Pharmacol, 22 60. 2005, 70, 1361-1370. 23 H. Hosseinzadeh, S. Parvardeh, M. N. Asl, H. R. Sadeghnia and T. Ziaee, 24 61. Phytomedicine, 2007, 14, 621-627. 25 26 62. S. Padhye, S. Banerjee, A. Ahmad, R. Mohammad and F. H. Sarkar, Cancer Ther, 27 2008. 6. 495-510. Z. Solati, B. S. Baharin and H. Bagheri, J Am Oil Chem Soc, 2014, 91, 295–300. 28 63. 64. H. Gali-Muhtasib, A. Roessner and R. Schneider-Stock, Int J Biochem Cell Biol, 29 30 2006, 38, 1249-1253. S. Chandra, S. N. Murthy, D. Mondal and K. C. Agrawal, Can J Physiol Pharmacol, 31 65. 2009, 87, 300-309. 32 33 66. M. N. Nagi and M. A. Mansour, *Pharmacol Res*, 2000, **41**, 283-289. M. N. Nagi, K. Alam, O. A. Badary, O. A. al-Shabanah, H. A. al-Sawaf and A. M. 34 67. al-Bekairi, Biochem Mol Biol Int, 1999, 47, 153-159. 35 O. A. Badary, R. A. Taha, A. M. Gamal el-Din and M. H. Abdel-Wahab, Drug 36 68. Chem Toxicol, 2003, 26, 87-98. 37 69. H. Lee, M. K. Cha and I. H. Kim, Arch Biochem Biophys, 2000, 380, 309-318. 38 39 70. K. Oettl and R. E. Stauber, Br J Pharmacol, 2007, 151, 580-590. 71. M. Taverna, A. L. Marie, J. P. Mira and B. Guidet, Ann Intensive Care, 2013, 3, 4. 40 72. B. O"zcelik, Lee, J.H., Min, D.B., Journal of Food Sciences, 2003, 68, 1361-1370. 41 42 73. I. Gulcin, Life Sci, 2006, 78, 803-811. 43

	101 111	1 emp. (°C)	$\frac{\mathbf{K}_{sv}}{\times 10^4 (\mathrm{M}^{-1})}$	$k_{q} \times 10^{12} (M^{-1} s^{-1})$	п	${\bf K_b} \times 10^4 ({ m M}^{-1})$	ΔG° (kcal mol ⁻¹)	$\frac{\Delta \mathbf{H}^{\circ}}{(\text{kcal mol}^{-1})}$	$T\Delta S^{\circ}$ ccal mol ⁻¹ K ⁻	Dominating force ¹) Involve (inferre
pH 7.4	/N	15	2.45	4.23	1.01	3.08	-5.90		0.80	Dic
		25	2.11	3.65	1.00	2.30	-5.93	-5.10	0.83	hoł
		37	1.15	1.98	1.02	1.63	-5.97		0.87	ob
		45	0.85	1.47	0.99	0.82	-5.99		0.89	Iydr tior
NaCl (0.15 M)	37	0.98	1.69	1.01	1.24	-5.80			ng, F nterac
рН 9.0	/B	15	0.55	0.09	0.98	0.44	-4.79		1.08	ibno ir
p== > . o,	2	25	0.35	0.06	0.99	0.34	-4 82	-3 71	1 11	[-pe
		37	0.27	0.04	1.01	0.28	-4.87	0111	1.16	Т
		45	0.08	0.01	1.08	0.27	-4.90		1.19	
obtain TC	pH 7.4/N	37				1.01 ± 0.14	-127.55	-63.50 ± 2.48	-63.55*	nding, nationa nges
Values by I	pH 9.0/B	37				0.58 ± 0.07	-75.01	-37.05 ± 1.58	-37.51*	H-boı Conforr chaı
	$K_{SV} = Stern-Vc$	olmer consta	$\operatorname{int}; k_{\mathfrak{q}} = \operatorname{bimolec}$	ular rate constant;						
	n = stoichiomet	ry of bindin	g;							
	$K_b =$ binding co	onstant;								
	$\Delta G^{\circ} = change in$	n free energ	y;							

1					
2					
3					
4					
5					
6					
0					
7					
8					
9					
10	Table 2: Second	dary structural ana	lysis to deterr	nine the percent structural ch	ange in the isoforms
11		of	2H bac A2H	Δ -TO complexed	
11		01	1157X and 1152	A-1Q complexed.	
12	pH/isoform	HSA(µM)	ΤQ (μM)	% increment in α-helix	T _m (°C)
13		02	00	0	60.10
14 15	pH /.4/IN	02	00 10	0 4	08.18 72 35
16		02	50	9	72.66
17	рН 9.0/В	02	00	0	72.81
18	-	02	10	9	74.24
19		02	50	18	75.02
20					
21					
22					
22					
23					
24					
25					
25					
26					

Table 3: Cha	ISA solution in	absence and p	resence of TQ at pH 7.4	and pH 9.0.
pH/isoform	HSA:TQ	R _h (nm)	Change in R _h (%)	<i>P</i> _d (%)
pH/isoform pH 7.4/N	HSA:TQ 1:00	R _h (nm) 4.0	Change in <i>R</i> h (%) 100	P _d (%) 16.0
pH/isoform pH 7.4/N	HSA:TQ 1:00 1:05	R _h (nm) 4.0 4.2	Change in <i>R</i> h (%) 100 105	P _d (%) 16.0 16.2
pH/isoform pH 7.4/N	HSA:TQ 1:00 1:05 1:25	R _h (nm) 4.0 4.2 4.4	Change in R _h (%) 100 105 110	P _d (%) 16.0 16.2 19.6
pH/isoform pH 7.4/N pH 9.0/B	HSA:TQ 1:00 1:05 1:25 1:00	R _h (nm) 4.0 4.2 4.4 3.6	Change in <i>R</i> _h (%) 100 105 110 100	P _d (%) 16.0 16.2 19.6 17.4
pH/isoform pH 7.4/N pH 9.0/B	HSA:TQ 1:00 1:05 1:25 1:00 1:05	$ \begin{array}{r} R_h (nm) \\ 4.0 \\ 4.2 \\ 4.4 \\ 3.6 \\ 3.8 \\ \end{array} $	Change in R _h (%) 100 105 110 100 100	Pd (%) 16.0 16.2 19.6 17.4 13.9
pH/isoform pH 7.4/N pH 9.0/B	HSA:TQ 1:00 1:05 1:25 1:00 1:05 1:25	R _h (nm) 4.0 4.2 4.4 3.6 3.8 4.0	Change in R _h (%) 100 105 110 100 106 111	Pd (%) 16.0 16.2 19.6 17.4 13.9 17.6
pH/isoform pH 7.4/N pH 9.0/B	HSA:TQ 1:00 1:05 1:25 1:00 1:05 1:25	<i>R</i> _h (nm) 4.0 4.2 4.4 3.6 3.8 4.0	Change in <i>R</i> _h (%) 100 105 110 100 106 111	Pd (%) 16.0 16.2 19.6 17.4 13.9 17.6

RSC Advances Accepted Manuscript

Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.14400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Yariables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Yariables pH 7.4 pH 9.0 ^o C. ^F 142.862 200.044 Fo 205.504 232.628 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ 1.970 Ro (nm) 2.981 1.970 2.66			
Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (mm) 2.981 1.970 r (nm) 3.42 2.66	Yariables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Yariables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Fable 4: FRET data obtained from spectral overlap of HSA emission and TQ absor °C. Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	able 4: FRET data obtained from spectral overlap of HSA emission and TQ absor $^{\circ}C.$ Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Fable 4: FRET data obtained from spectral overlap of HSA emission and TQ absor °C. Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Variables pH 7.4 pH 9.0 $^{\circ}$ C. Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24 × 10 ⁻¹⁴ 2.702 × 10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Fable 4: FRET data obtained from spectral overlap of HSA emission and TQ absor $^{\circ}C.$ Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Fable 4: FRET data obtained from spectral overlap of HSA emission and TQ absor $^{\circ}C.$ Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	able 4: FRET data obtained from spectral overlap of HSA emission and TQ absor $^{\circ}C.$ Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Fable 4: FRET data obtained from spectral overlap of HSA emission and TQ absor °C. Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	C. $^{\circ}C.$ Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Fable 4: FRET data obtained from spectral overlap of HSA emission and TQ absor °C. Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Fable 4. FRFT data ob	tained from spectral overlap o	f HSA emission and TO absor
°C. Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 EFRET 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	°C. Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E _{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66		unica nom special overlap o	
VariablespH 7.4pH 9.0F142.862200.044Fo205.504232.628 E_{FRET} 0.30480.1400J (cm ³ M ⁻¹)3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm)2.9811.970r (nm)3.422.66	VariablespH 7.4pH 9.0F142.862200.044Fo205.504232.628 E_{FRET} 0.30480.1400J (cm ³ M ⁻¹)3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm)2.9811.970r (nm)3.422.66		°C.	
VariablespH 7.4pH 9.0F142.862200.044Fo205.504232.628 E_{FRET} 0.30480.1400J (cm ³ M ⁻¹)3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm)2.9811.970r (nm)3.422.66	VariablespH 7.4pH 9.0F142.862200.044Fo205.504232.628 E_{FRET} 0.30480.1400J (cm ³ M ⁻¹)3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm)2.9811.970r (nm)3.422.66			
VariablespH 7.4pH 9.0F142.862200.044Fo205.504232.628 E_{FRET} 0.30480.1400J (cm ³ M ⁻¹)3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm)2.9811.970r (nm)3.422.66	Variables pH 7.4 pH 9.0 F 142.862 200.044 Fo 205.504 232.628 E _{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66			
F142.862200.044Fo205.504232.628 E_{FRET} 0.30480.1400J (cm ³ M ⁻¹)3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm)2.9811.970r (nm)3.422.66	Variablespff / Apff / AF142.862200.044Fo205.504232.628 E_{FRET} 0.30480.1400J (cm ³ M ⁻¹)3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm)2.9811.970r (nm)3.422.66	Variables	nH 7 4	
I 142.802 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	I* 142.002 200.044 Fo 205.504 232.628 E_{FRET} 0.3048 0.1400 J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66		142.862	200.044
$\begin{array}{cccccccc} E_{FRET} & 0.3048 & 0.1400 \\ J (cm^3 M^{-1}) & 3.24 \times 10^{-14} & 2.702 \times 10^{-15} \\ Ro (nm) & 2.981 & 1.970 \\ r (nm) & 3.42 & 2.66 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fo	205 504	200.044
J (cm ³ M ⁻¹) Ro (nm) r (nm) 3.42 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ 1.970 2.66	J (cm ³ M ⁻¹) 3.24×10 ⁻¹⁴ 2.702×10 ⁻¹⁵ Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	FO Effet	0 3048	0 1400
Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	Ro (nm) 2.981 1.970 r (nm) 3.42 2.66	L_{FRE1} L (cm ³ M ⁻¹)	3.24×10^{-14}	2.702×10^{-15}
r (nm) 3.42 2.66	r (nm) 3.42 2.66	Ro (nm)	2.981	1.970
		r (nm)	3.42	2.66

	Table 5: Kinetic p	arameters f	or the hydrolysis	of <i>p</i> -nitropheny	l acetate by HS	A.
pH/isoform	System	RA (%)	V _{max} (M/min)	К _m (М)	k_{cat} (min ⁻¹)	$\frac{\mathbf{k_{cat}}/\mathbf{K_m}}{(\mathbf{M}^{-1}\min})$
pH 7.4/N	HSA	100	4.27×10 ⁻⁸	6.66×10 ⁻⁶	0.854×10 ⁻²	1.28×10 ²
	HSA+TQ	127	5.42×10 ⁻⁸	9.37×10 ⁻⁶	1.048×10 ⁻²	1.11×10 ³
pH 9.0/B	HSA	100	6.70×10 ⁻⁷	8.55×10 ⁻⁵	13.41×10 ⁻²	1.56×10 ³
	HSA + TQ	113	5.12×10 ⁻⁷	4.09×10 ⁻⁵	10.24×10 ⁻²	2.50×10 ³

1 Figure captions

2 Figure 1: UV-visible absorption spectra of HSA (6 μ M) in absence and presence (00 μ M -30 μ M)

- 3 of TQ at (A) pH 7.4; (B) pH 9.0, respectively.
- 4 Figure 2: (A-I and B-I) the Stern-Volmer plots for the HSA-TQ interaction of N isoform pH 7.4

5 and B isoform pH 9.0 at 15, 25, 37, 45 °C and in presence of 0.15 N NaCl at 37°C. (A-II and B-II)

- Plot of log [(F_o/F)-1] vs log[Q] for the determination of binding constants and binding
 stoichiometry for HSA-TQ interaction at pH 7.4 at 15, 25, 37, 45 °C and in presence of 0.15 N
 NaCl at 37 °C at pH 7.4.
- 9 Figure 3: Isothermal titration calorimetric profile of HSA in presence of TQ at pH 7.4 (A) and pH
- 9.0 (B) at 37 °C. Titration of TQ with HSA shows calorimetric response as successive titrations of
 TQ to the sample cell.
- 12 Figure 4: Far-UV CD spectra of HSA (2 µM) in absence and presence of TQ at pH 7.4 (4-IA) and

13 pH 9.0(4-IB). Far-UV CD thermal unfolding spectra of HSA (2 μ M) in the absence and presence

of TQ in molar ratio of 1:05 and 1:25 at pH 7.4 (4-IIA) and pH 9.0 (4-IIB), respectively.

Figure 5: Dynamic light scattering of HSA-TQ complex. (5-I) Determination of hydrodynamic
radii (*R*_h) of HSA in the absence and presence of TQ (HSA:TQ molar ratio 1:0, 1:5 and 1:25); A-I,
A-II, A-III and B-I, B-II, B-III for pH 7.4 and pH 9.0 respectively. (5-II) TQ concentration
dependent changes in hydrodynamic radii of HSA at both pH, shows that hydrodynamic radii
increases on increasing the concentration of TQ at both pH.

- 20 Figure 6: Tryptophan fluorescence resonance energy transfer. Spectral overlap of the fluorescence
- emission of HSA (λ_{ex} = 295 nm) and absorption spectra of TQ [HSA = TQ = 2 μ M] at (A) pH 7.4;

22 (B) pH 9.0, respectively.

1	Figure 7: Three-dimensional fluorescence spectra of HSA $(2\mu M)$ in absence (A and B) and
2	presence (A-I and B-I) of TQ at pH 7.4 and pH 9.0, respectively. [HSA: TQ =1:1].
3	Figure 8: Molecular docking results (A) TQ represented as ball and stick model and HSA in
4	ribbon, (B) Hydrogen bonding between Tyr150 and Trp214 with TQ in the region of binding
5	pocket.
6	Figure 9: The effects of concentration of the antioxidant on the inhibition of the ABTS ⁺ by trolox
7	and BHA at pH 7.4 and pH 9.0. Absorbance of ABTS radical scavenging activity of different
8	concentrations of HSA, TQ and reference antioxidants as trolox and BHA (ABTS ⁺ : 2,20-
9	azinobis(3-ethylbenzthiazoline-6-sulfonic acid) at pH 7.4 (9-IA), pH 9.0 (9-IB). Percent inhibition
10	of standard reference compounds trolox and BHA (9-II) as well as in presence of phenolic
11	compound TQ and protein at particular concentrations at pH 7.4 (9-IIIA) and pH 9.0 (9-IIIB),
12	respectively.
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

RSC Advances Accepted Manuscript

- U U

Figure 4-I

- -

RSC Advances Accepted Manuscript

- 1 2
- 3
- 4

Figure 8

1	Supporting Information description
2	Figure S-1: Fluorescence emission spectra of HSA (2 μ M) in presence of TQ (0-25 μ M) at (A) pH
3	7.4; (B) pH 9.0.
4	Figure S-2: (A) Van't Hoff plot; and (B) Thermodynamic signatures for HSA-TQ interaction in N
5	and B isoforms at 15, 25 and 37 °C.
6	Figure S-3: The contour of three-dimensional fluorescence spectra of HSA (2 μ M) in absence (A
7	and B) and presence (A-I and B-I) of TQ at pH 7.4 and pH 9.0, respectively. [HSA: TQ =1:1].
8	Figure S-4: Enzyme kinetics for HSA. The Michaelis-Menton equation based activity against
9	substrate concentrations at a fixed TQ (5 $\mu M)$ and HSA (5 $\mu M)$ concentration of HSA and HSA-
10	TQ complex (1:1) at (A) pH 7.4, (B) pH 9.0, respectively.
11	Table T-1: Three-dimensional fluorescence spectra characteristics of HSA-TQ interaction at pH
12	7.4 and 9.0
13	Table T-2: Comparison between the antioxidant activity of TQ with ABTS ⁺⁺ at specific
14	concentration (aliquot of 100 μ L), and at particular time-points.
15	
16	
17	
18	
19	
20	
21	
22 23	