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Abstract  24 

This paper introduces a new identification strategy of novel metabolic biomarkers for 25 

nasopharyngeal carcinoma (NPC). We here combined gas chromatography-mass 26 

spectrometry (GC-MS) metabolic profiling with three partial least 27 

squares-discriminant analysis (PLS-DA) based variable selection methods to screen 28 

the metabolic biomarkers of NPC. We found that the variable importance on 29 

projection (VIP) method exhibited better efficiency than coefficients β and the 30 

loadings plot for the metabolomics data set of 39 NPC patients and 40 healthy 31 

controls. In addition, we proved that the area under receiver operating characteristic 32 

curve (AUC) was more sensitive than correct rate to evaluate the discrimination 33 

ability of classical models. Therefore, three novel candidate biomarkers, glucose, 34 

glutamic acid and pyroglutamate were identified with the correct rate was 97.47% and 35 

AUC value was 97.40%. Our results suggested that metabolic disorders of NPC 36 

mainly reflected in glycolysis and glutamate metabolism; besides, metabolic levels of 37 

the related metabolic pathways may affect each other, such as the TCA cycle and lipid 38 

metabolism. We believe that the findings of these novel metabolites will be very 39 

helpful for early-diagnosis and subsequent pathogenesis research of NPC.  40 

Keywords: Metabolomics; Nasopharyngeal carcinoma; Biomarkers; Variable 41 

selection; PLS-DA 42 

 43 

1 Introduction 44 

Nasopharyngeal carcinoma (NPC) is a leading cause of cancer death in southern 45 

China, where the incidence is 20–40 per 100,000 person-years 
1
,although it is a rare 46 

malignant disease in most parts of the world
2, 3

. NPC is caused by a combination of 47 

factors including viral, environmental influences and heredity. Early-diagnosis of 48 

NPC is of fundamental importance to prognosis of NPC treatment. Unfortunately, 49 
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most NPC patients in southern China remain undiagnosed until they present cervical 50 

lymph nodes and distant metastasis 
4
. A great many researchers are dedicating into 51 

new strategies to improve the overall prognosis and reduce morbidity of the NPC 52 

patients.  53 

Metabolomics has recently attracted increasing interest in the field of disease 54 

diagnosis, pathology, toxicology, and so on, since it is intriguing to be a fast and 55 

reproducible method directly reflecting biological events
5-8

. It is well known as a 56 

powerful tool to the discovery of biomarkers that may provide additional sensitivity or 57 

earlier detection of a disease than classical analytical techniques or histopathology 58 

evaluation
5, 9

.  A commonly flowchart of metabolomics is the global determination 59 

of metabolites followed by disease classification and biomarker screening. Scott et al. 60 

counted the papers using classifier approaches published in several journals, such as 61 

Anal. Chem., Anal. Chim. Acta, Metabolomics, et al. over ten years (2002–2012) 
10

.  62 

Among all known methods, partial least squares-discriminant analysis (PLS-DA) is 63 

the most attractive one in metabolomics research 
11-13

. There are several PLS-DA 64 

based variable selection methods using to biomarker screening 
14

, including the 65 

loadings plot 
15, 16

, original coefficients of PLS-DA (β) 
17-19

 and variable importance 66 

on projection (VIP) 
20-22

 . However, the difficulty for defining the threshold and the 67 

problem of different variable combination with the same correct rate cause the 68 

complexity of biomarker screening. The selection of efficiency index for class model 69 

evaluation is of great importance in biomarker screening. 70 

In this study, we adopted gas chromatography-mass spectrometry (GC-MS) to 71 

analyze metabolites of sera samples from 40 healthy donors and 39 newly-diagnosed 72 

NPC patients. The flowchart of the study are following:  (1) analyze the serum 73 

metabolic levels and metabolic characteristics of NPC patients; (2) determine which 74 
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variable selection method is more suitable for our data set in biomarker screening; (3) 75 

determine which index is more efficiency to evaluate the classification ability of a 76 

model; and (4) identify a pattern of biomarkers for detection of NPC patients. In 77 

addition, the super and sub metabolic pathways of each metabolite were searched and 78 

analyzed through KEGG and HMDB data bases, and therefore the alterations of 79 

metabolic levels could be correlated with their metabolic pathways. We reported the 80 

novel metabolic biomarkers of nasopharyngeal carcinoma, which will be very helpful 81 

for NPC diagnosis and further pathogenesis research.  82 

 83 

2 Experimental 84 

2.1 Sample collection and Patients 85 

The study was approved by the Human Ethics Committee of Xiangya Hospital, 86 

Central South University, and the informed consent was given by each patient for 87 

sample collection. In this study, sera samples from 40 healthy volunteers and 39 NPC 88 

patients were collected for modeling at the time of diagnosis without any anti-cancer 89 

treatment. Age- and gender-matched serum samples from healthy blood donors were 90 

used as control group. All serum samples were obtained at February to June 2011 91 

from Xiangya Hospital of Central South University, Hunan, China. The patients’ 92 

characteristics with respect to age, sex, and ethnic origin were recorded. All 93 

investigated patients were uniformly given a routine diagnostic workup comprised of 94 

a detailed clinic examination of the head and neck, nasopharyngoscopy, histological 95 

and cytological examination of tumor tissue, and radiological imaging examinations 96 

(including computed tomography (CT), magnetic resonance imaging (MRI) and 97 

ultrasonography). In order to avoid the interferences from post-prandial phase, all sera 98 

samples were collected from patients or volunteers fasting at least eight hours. The 99 
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characteristics of NPC patients and controls were shown in table 1. 100 

Insert Table 1 101 

2.2 Chemicals and reagents 102 

BSTFA+1%TMCS (N,O-Bis(trimethylsilyl) trifluoroacetamide with 1% 103 

trimethylchorosilane, for GC) (>99.0% purity), pyridine(>99.8% purity) and 104 

methoxyamine hydrochloride (>98% purity), and the other 25 chemical standards of 105 

metabolites (shown in table 2) were purchased from Sigma-Aldrich (St. Louis, MO, 106 

USA). Methanol is analytical grade and purchased from the Hanbang Chemical 107 

Corporation (Zhenjiang, China). 108 

2.3 GC-MS data acquisition 109 

Blood sample (4 ml) was allowed to clot at 4 °C and was centrifuged at 2000 g for 20 110 

min. Sera were collected, aliquoted, and stored at -80 °C until the analysis was carried 111 

out. Briefly, each 100 µl serum sample was mixed with 350 µl methanol, and 50 µl 112 

heptadecanoic acid (dissolved in methanol at a concentration of 1 mg/ml) was added 113 

as an internal standard. After vigorously vortexing for 1 min, the mixture was 114 

centrifuged at 16000 rpm for 10 min at 4 °C. The supernatant (400 µl) was transferred 115 

to a 5 ml glass centrifugation tube and evaporated to dryness under N2 gas. Then, 70 116 

µl of methoxyamine hydrochloride solution (20 mg/ml in pyridine) was added into the 117 

residue and incubated for 60 min at 70 °C. After methoximation, 100µl of BSTFA 118 

derivitization agent was added into the residue and incubated for another 50 min at 119 

70 °C. The final solution was used for GC-MS analysis. 120 

All GC-MS analyses were performed by a gas chromatography instrument (Shimadzu 121 

GC2010A, Kyoto, Japan) coupled to a mass spectrometer (GC-MS-QP2010) with a 122 

constant flow rate of helium carrier gas at 1.0 ml/min. For each sample, 1.0 µl was 123 

injected into a DB-5ms capillary column (30 m×0.25 mm i.d., film thickness is 0.25 124 
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µm) at a split ratio of 1:10. The column temperature was initially maintained at 70 °C 125 

for 4 min, and then increased at a rate of 8 °C/min from 70 to 300°C and held for 3 126 

min. The total GC run time was 35.75 min. Mass conditions were maintained as 127 

followed: ionization voltage, 70 eV; ion source temperature, 200 °C; interface 128 

temperature, 250 °C; full scan mode in the 35–800 amu mass ranges with 0.2 s scan 129 

velocity; detector voltage, 0.9 kV. 130 

2.4 GC-MS data processing  131 

All GC-MS data, including retention characteristics, peak intensities, and integrated 132 

mass spectra, of each serum sample were used for the analysis. Firstly, the automated 133 

mass-spectral deconvolution and identification system (AMDIS software, National 134 

Institute of Standards and Technology, Gaithersburg, MD) was employed to support 135 

peak finding and deconvolution. Using NIST Mass Spectral Search Program Version 136 

2.0 and the characteristic ions, tentative identification of structures of 137 

peaks-of-interest was supported by similarity search of the NIST/EPA/NIH Mass 138 

Spectra Library (NIST05), which contained 190,825 EI spectra for 163,198 139 

compounds. 38 metabolites were considered to be the main endogenous 140 

metabolites.25 metabolites were identified by their corresponding chemical standards. 141 

The peak areas of metabolites were compared with that of the internal standards to 142 

provide the semi-quantitative level for the metabolites. The peak areas were extracted 143 

using our custom scripts to generate a data matrix, in which the rows represent the 144 

samples and the columns correspond to peak/area ratios to the internal standard in the 145 

same chromatogram. The size of the matrix is 79×38. 146 

2.5 Statistical analysis 147 

All datasets were autoscaled before PLS-DA. Data matrix of relative peak areas 148 

generated from metabolic profiles were analyzed by PLS-DA, in order to establish 149 
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any ‘‘groupings’’ with respect to NPC patients and healthy controls. 10-fold cross 150 

validation was employed to select the optimal number of latent variables and evaluate 151 

the predictive ability of PLS-DA model. Permutation test were employed to evaluate 152 

the reliability of the class model and calculated 5000 times. In addition, two indexes, 153 

correct rate and the area under receiver operating characteristic curve (AUC), were 154 

compared to evaluate the classification ability of a model. 155 

After the discrimination model was established by PLS-DA, the variable selection is 156 

carried out to identify the novel biomarkers. The loadings plot, original coefficients of 157 

PLS-DA (β) and variable importance on projection (VIP) were employed and 158 

compared. The three methods are commonly used in metabolomics.  159 

The loadings plot: generally, the loadings plot indicates the influence of original 160 

variables on the corresponding scores. So, if the scores plot can discriminate the 161 

different classes of samples, the loadings plot can partly express the influence of 162 

variables on separation between classes. These variables having the greatest influence 163 

on the scores plot are furthest away from the main cluster of variables. 164 

Original coefficients of PLS-DA (β): the vector of β is the coefficients of the PLS 165 

transformed equation between the discriminant equation expressed by latent variables 166 

obtained by PLS and that expressed by the original variables. It is a single measure of 167 

association between each variable and the response. For the autoscaled data, the 168 

absolute value of β can render the influence of the corresponding variables on the 169 

separation between sample classes. The higher the absolute value of β is, the more the 170 

influence of corresponding variable is. 171 

Variable importance on projection (VIP): the idea behind this measure is to 172 

accumulate the importance of each variable j being reflected by w from each latent 173 

variables (scores). w is the weight of PLS analysis. The VIP measure vj is defined as 174 
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2

1 1

( / ) /
A A

j a aj a a

a a

v p SS w w SS
= =

 =
 ∑ ∑  175 

where p is the ath loading, SSa is the sum of squares explained by the ath latent 176 

variable (score). Hence, the vj weights is a measure of the contribution of each 177 

variable according to the variance explained by each PLS latent variable where 178 

(waj/‖wa‖)
2
 represents the importance of the jth variable 

14
. The higher the value of 179 

VIP is, the more the influence of corresponding variable is. 180 

All programs of PLS-DA and other methods were coded in MATLAB 2010 for 181 

Windows and all calculations were performed on an Intel Core i7 processor based 182 

personal computer with 16G RAM memories. 183 

 184 

3 Results and discussion 185 

3.1Metabolic profiling  186 

38 metabolites, involved in the metabolic processes of amino acid, carbohydrate, 187 

energy, lipid, organic acid and urea, were qualitatively and quantitatively analyzed in 188 

details, shown in table 2. For each metabolite, the statistical significance of the 189 

differences between NPC patients and controls was calculated separately by Mann–190 

Whitney U test. Serum levels of 12 metabolites increased strikingly in NPC patients 191 

compared with controls, while 7 metabolites significantly decreased (Mann–Whitney 192 

U test p<0.05 with a signed t value of ‘‘1’’). For NPC patients, mean level of lactate, 193 

an end product of glycolsis, increased by 42%. Mean level of malic acid, an 194 

intermediate in the tricarboxylic acid cycle (TCA cycle), also increased by 50%.. 195 

Mean level of glutamic acid, a key compound in cellular metabolism, increased by 196 

221%. Palmitic acid (C16:0), stearic acid (C18:0) and cholesterol increased by 25%, 197 

39% and 23%, respectively. They all belong to lipid group. Mean levels of three 198 
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unsaturated fatty acids, linoleic acid (C18:2n6), oleic acid (C18:1n9) and arachidonic 199 

acid (C20:4n6) decreased by 19%, 19% and 32% for NPC compared with controls, 200 

respectively. Galactose and glucose levels decreased 24% and 40%, respectively. 201 

These findings suggested that serum metabolic disorders appeared mainly in 202 

glutamate, glycolysis, krebs cycle and lipid metabolism for NPC patients. 203 

Insert Table 2 204 

 205 

3.2 Discrimination model between NPC patients and controls 206 

PLS-DA was employed to establish a discrimination model between NPC patients and 207 

healthy controls. The autoscaled data set of 38 metabolites was used as input data. 208 

10-fold cross validation was applied to select the optimal number of latent variables. 209 

A 2-dimensional PLS-DA model constructed by the first two latent variables (PLS-1 210 

and PLS-2) was obtained (Fig.1 (A)). In addition, the reliability and predictive ability 211 

of the model was evaluated by permutation test (Fig.1 (B)) and 10-fold cross 212 

validation. The data set was permutated for 5000 times. The frequency of correct rates 213 

for the 5000 permutated models is a normal distribution with mean value near 50% 214 

(Fig.1 (B)), which guarantee the reliability of the established discrimination model. 215 

The NPC and control samples were separated clearly by the discriminant line (Fig. 216 

1(A)) with a total correct rate of 97.47%. The AUC is 97.44%. The correct rates of 217 

10-fold cross validation for controls, NPCs and the total were 100% (40/40), 94.87% 218 

(37/39) and 97.47% (77/79), respectively. The AUC is 96.86%. These results 219 

indicated that the established PLS-DA model is reliable and with good classification 220 

ability to discriminate NPC patients from healthy controls. 221 

Insert Figure 1 222 

3.3 Identification of Candidate Biomarkers for NPC 223 

After the metabolic discrimination model was established by PLS-DA, variable 224 
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selection was carried out to identify the candidate biomarkers of NPC. Three variable 225 

selection methods were employed and compared, including the loadings plot, original 226 

coefficients of PLS-DA (β) and VIP. Though candidate biomarkers selected by these 227 

three variable selection methods are not the same, shown in Fig.1 (C), (D) and (E), 228 

there are some common metabolites. Two metabolites, glutamic acid (23) and glucose 229 

(29), were identified as the first and second important metabolites by all the three 230 

methods. A PLS-DA model established by the two metabolites had good classification 231 

ability. Correct rate of 10-fold cross validation is 91.14% (Table 3). The AUC value is 232 

97.24% (Table 3). The results indicated that glutamic acid and glucose are very 233 

important metabolites for NPC metabolic disorders, representing many metabolic 234 

characteristics of this disease.  235 

Insert Table 3 236 

In addition, combination effect of variables was taken into account in this study. 237 

Classification ability of different variable combinations was compared in order to 238 

select the best biomarker pattern and help us to define the threshold of variable 239 

selection. The number of variables varied from one to seven. For VIP method, the best 240 

result of correct rate and AUC of 10-fold cross validation (correct rate: 97.47%, AUC: 241 

97.40%) was obtained when the number of variables is three, shown in Fig.1 (F) and 242 

(G), Table 3. The selected metabolites are pyroglutamate (19), glutamic acid (23) and 243 

glucose (29). For coefficients β, correct rate of the model established by the first three 244 

metabolites is 92.41%, AUC value is 96.79%. Until the number of variables is seven, 245 

correct rate is as good as the three metabolites selected by VIP (correct rate: 97.47%). 246 

In fact, there are four different variable combinations with the same correct rate 247 

(correct rate: 97.47%). It is very difficult to decide which variable combination is the 248 

best based on the results of correct rates. For AUC value, only one variable 249 

Page 11 of 24 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

11 

 

combination has the best result (glucose, glutamic acid and pyroglutamate, AUC: 250 

97.40%), which is select by VIP. It seems that the value of AUC is more sensitive to 251 

evaluate the discrimination ability of a model for our data set. In this study, the 252 

combination of metabolites identified by VIP method gets the best discrimination 253 

results evaluated by both AUC value and correct rate. We suggested that VIP method 254 

is more effective than coefficients β and the loadings plot for our data set. 255 

In the loadings plot, the projection points of variables are scattered for the autoscaled 256 

data set (Fig.1 (E)). Though the three metabolites, pyroglutamate (19), glutamic acid 257 

(23) and glucose (29), could be screened by this method, it is subjective and easy to 258 

be disturbed by other metabolites.  259 

3.4 Associations between identified biomarkers and NPC  260 

In this study, three candidate biomarkers, glucose, glutamic acid and pyroglutamate 261 

were identified, mainly belonging to two metabolic pathways, glycolysis and 262 

glutamate metabolism. 263 

Glucose is identified as the most important metabolite for NPC by the three variable 264 

selection methods. For NPC patients, mean level of glucose decreased by 40% 265 

compared with controls (Table 2), decreased by 51% in our former research 
12

. The 266 

correct rate of the classification model established only by glucose was 88.61% (AUC: 267 

91.25%), which indicated the good classification ability of glucose (Table 3). Glucose 268 

is a primary source of energy for living organisms. It is reported that in tumor cells, 269 

glucose utilisation is greatly enhanced compared with that of normal tissue 
23

. Unlike 270 

their normal counterparts, tumor cells preferentially use enhanced aerobic glycolysis 271 

for energy metabolism, a phenomenon first described by Otto Warburg in 1925 and 272 

known as the Warburg effect 
24

. This shift toward increased glycolytic flux allows 273 

tumor cells to produce sufficient ATP to fulfill metabolic demands and leads to 274 
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increased glucose consumption, decreased oxidative phosphorylation, and increased 275 

lactate production 
25

. In this study, the alterations of glucose (decreased by 40%) and 276 

lactate (increased by 42%) levels in serum are consistent with the results of reported 277 

researches on tumor tissues and cells. In addition, there is another metabolite 278 

1,5-anhydro-sorbitol (1,5-AG) related with the alterations of glucose level. 1,5-AG is 279 

a metabolite used to identify glycemic variability in people with diabetes. It is 280 

reported that 1,5-AG decreases during times of hyperglycemia above 180 mg/dL, and 281 

returns to normal levels after approximately 2 weeks in the absence of hyperglycemia 282 

26
. In this study, serum 1,5-AG level increased by 43%, while glucose level decreased. 283 

It suggested that a biological process opposite to hyperglycemia may happen for NPC. 284 

However, the reason of these alterations is not clear and needs our further research. 285 

Glutamic acid is the second important metabolite selected by VIP. Recently, a paper 286 

published in Nature reported that glutamine (Gln) supports pancreatic cancer growth 287 

through a KRAS-regulated metabolic pathway. Consistent with this observation, 288 

glutamate (glutamic acid, Glu) is able to support growth in Gln-free conditions 
27

. In 289 

our study, serum level of glutamic acid (Glu), a degradation product of Gln, increased 290 

obviously for NPC patients, by 221% compared with controls (Table 2). It seems that 291 

disorders of glutamate metabolism are serious for NPC. In addition, Glu could be 292 

converted into a-ketoglutarate to replenish the TCA cycle through two mechanisms 
28

. 293 

Serum levels of malic acid, a metabolite in TCA cycle, increased by 50% for NPC 294 

patients. The results suggested that some metabolic pathways may exist to link 295 

glutamate metabolism and TCA cycle for NPC metabolic disorders.  296 

Pyroglutamic acid is a cyclized derivative of Glu. Abnormal blood level may be 297 

associated with problems of glutamine or glutathione metabolism. Serum level of 298 

pyroglutamate for NPC decreased by 24% compared with controls (Table 2), 299 
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decreased by 43% for another groups of NPC sera samples in our former research 
12

. 300 

In the former study, pyroglutamate was not identified as one of the marker 301 

metabolites contributing to the discrimination between NPC and controls, because of 302 

differences of samples and the limitation of data processing method. However, it is 303 

found that levels of pyroglutamate increased obviously three months after treated with 304 

the standard radiotherapy 
12

. In this study, pyroglutamate is identified as one of the 305 

candidate biomarkers for NPC with the help of VIP. 306 

 307 

4 Conclusion 308 

In summary, this study demonstrated a convincing strategy for novel metabolic 309 

biomarkers identification by combining GC-MS metabolic profiling with variable 310 

selection methods based on PLS-DA. This protocol has been successfully applied to 311 

metabolomics research of nasopharyngeal carcinoma and three candidate biomarkers, 312 

glucose, glutamic acid and pyroglutamate were identified in this study. It needs to be 313 

emphasized that the efficiency of VIP method is much higher than coefficients β and 314 

the loadings plot for our data set. In addition, two indexes, correct rate and AUC value 315 

of ROC curve, were employed to evaluate the discrimination ability of a class model, 316 

while the value of AUC exhibit better sensitivity. Our results suggest that metabolic 317 

disorders of nasopharyngeal carcinoma are mainly reflected in glycolysis and 318 

glutamate metabolism. We also suggest that the metabolic levels of the related 319 

metabolic pathways  may affect each other, such as the TCA cycle and lipid 320 

metabolism. We here believe that the findings of these novel metabolites will be very 321 

helpful for diagnosis and further pathogenesis research of NPC.  322 
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 401 

Figure 1: Identification of candidate biomarkers for NPC. (A) PLS-DA model for 402 

discrimination between NPC patients and healthy controls. (B) Distribution of 10-fold 403 

cross validation correct rates. The asterisk point is the error for current model, and the 404 

blue points are the distribution of 5000 times permuted 10-fold cross validation 405 

correct rates. (C) VIP value of each metabolite. (D) Original coefficientsβof 38 406 

metabolites. (E) The loadings plot. The correct rates (F) and the AUC values (G) of 407 

the PLS-DA models of different combinations of variables. The selection of variables 408 

was performed according to their value of VIP or β. The first one was the variable 409 

with the highest VIP or β value. The second combination was the first one plus the 410 

second one, then, the first three, and so on. The correct rate and AUC value was 411 

obtained from the 10-fold cross validation. The red and blue lines indicate variables 412 

selected by VIP and β, respectively. 413 
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Table 1 Characteristics of NPC patients and controls 425 

Characteristics NPC patients Healthy controls 

No. of subjects 39 40 

Race Han Han 

Age (median) 49 years 41 years 

Gender(％men) 56％(22/39) 45％(18/40) 

UICC
a 

 stage(2003)   

Ⅰ 8% (3/39) - 

ⅡA/ⅡB 41% (16/39) - 

Ⅲ 41% (16/39) - 

ⅣA 8% (3/39) - 

ⅣB 2% (1/39) - 

ⅣC 0% - 

KPS score   

≥ 80 80% (31/39) - 

60-80 8% (3/39) - 

30-60 2% (1/39) - 

≤ 30   10% (4/39) - 

 426 
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Table 2 Qualitative and quantitative analysis of metabolic profiles of healthy controls and NPC patients 427 

No. Super pathway Sub pathway Biochemical name Relative quantity t p KEGG HMDB 

Controls 

(n=40) 

NPCs 

(n=39) 

4 Amino acid Alanine and aspartate metabolism alanine* 0.124±0.034 0.127±0.047 0 0.69 C00041 HMDB00161 

5 Glycine,serine and threonine 

metabolism 
sarcosine 0.118±0.047 0.147±0.050 1↑ 0.008 C00213 HMDB00271 

6 glycine* 0.063±0.029 0.050±0.032 0 0.06 C00037 HMDB00123 

15 glycerate 0.011±0.004 0.017±0.014 1↑ 0.005 C00258 HMDB00139 

16 serine* 0.059±0.020 0.061±0.034 0 0.66 C00065 HMDB00187 

17 threonine* 0.056±0.021 0.050±0.022 0 0.21 C00188 HMDB00167 

10 Valine, leucine and isoleucine 

metabolism 

valine* 0.092±0.025 0.084±0.032 0 0.19 C00183 HMDB00883 

12 isoleucine* 0.025±0.010 0.027±0.011 0 0.39 C00407 HMDB00172 

13 Urea cycle; arginine-, proline-, 

metabolism 

proline* 0.050±0.017 0.055±0.028 0 0.31 C00148 HMDB00162 

20 trans-4-hydroxyproline 0.007±0.004 0.006±0.005 0 0.24 C01157 HMDB00725 

19 Glutamate metabolism pyroglutamate * 0.160±0.042 0.122±0.060 1↓ 0.001 C01879  HMDB00267 

23 glutamic acid* 0.014±0.007 0.045±0.023 1↑ 1.16E-11 C00064 HMDB00148 

22 Creatine metabolism creatinine enol 0.013±0.005 0.010±0.006 1↓ 0.02 C00791 HMDB00562 

24 Phenylalanine & tyrosine metabolism 
phenylalanine* 0.023±0.016 0.018±0.009 0 0.09 C00079 HMDB00159 

34 Tryptophan metabolism tryptophan 0.017±0.005 0.015±0.007 0 0.09 C00078 HMDB00929 

2 Carbohydrate Glycolysis, gluconeogenesis, lactate* 1.083±0.327 1.533±0.978 1↑ 0.007 C00186 HMDB00190 
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29 pyruvate metabolism glucose* 4.152±0.433 2.480±1.024 1↓ 1.32E-14 C00031 HMDB00122 

26 Hexoses 1,5-anhydro-sorbitol* 0.097±0.038 0.139±0.055 1↑ 1.67E-04 - HMDB02712 

27 Fructose, mannose, galactose, starch, 

and sucrose metabolism 

fructose* 0.027±0.012 0.029±0.015 0 0.67 C00095 HMDB00660 

28 galactose* 0.029±0.006 0.022±0.011 1↓ 0.002 C01582 HMDB00143 

30 mannose 0.038±0.026 0.040±0.076 0 0.89 C00159 HMDB00169 

14 Energy Krebs cycle succinate 0.004±0.002 0.004±0.001 0 0.24 C00042 HMDB00254 

18 malic acid* 0.002±0.002 0.003±0.002 1↑ 0.02 C00149 HMDB00156 

25 citric acid* 0.020±0.009 0.021±0.017 0 0.911 C00158 HMDB00094 

31 Lipid Long chain fatty acid palmitic acid (C16:0)* 0.163±0.041 0.204±0.060 1↑ 7.42E-04 C00249 HMDB00220 

33 Long chain fatty acid 

Inositol metabolism 

oleic acid (C18:1n9)* 0.192±0.066 0.156±0.073 1↓ 0.03 C00712 HMDB00207 

36 stearic acid (C18:0)* 0.070±0.023 0.097±0.030 1↑ 2.68E-05 C01530 HMDB00827 

37 arachidonic acid 

(C22:4n6)* 
0.031±0.010 0.021±0.009 1↓ 1.57E-05 C00219 HMDB01043 

32 myo-inositol 0.018±0.008 0.019±0.005 0 0.45 C00137 HMDB00211 

35 Essential fatty acid linoleic acid(C18:2n6)* 0.133±0.029 0.108±0.030 1↓ 2.29E-04 C01595 HMDB00673 

38 Sterol/Steroid cholesterol* 0.349±0.050 0.428±0.111 1↑ 1.09E-04 C00187 HMDB00067 

1 Organic acid 

 

Dicarboxylate Oxalic acid 0.027±0.010 0.036±0.010 1↑ 2.78E-04 C00209 HMDB02329 

3 Short-chain Hydroxy Acids Tartronic acid 0.007±0.003 0.012±0.004 1↑ 4.39E-09 - HMDB35227 

7 Short-chain Hydroxy Acids 

Ascorbate and aldarate metabolism 

á-Hydroxy butyrate 0.016±0.006 0.014±0.008 0 0.18 C05984 HMDB00008 

8 â-Hydroxy butyrate* 0.031±0.033 0.019±0.028 0 0.09 C01089 HMDB00357 

9 á-Hydroxyisovaleric acid 0.005±0.003 0.005±0.002 0 0.21 - HMDB00407 
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21 2,3,4-trihydroxybutyrate 0.004±0.003 0.006±0.002 1↑ 1.46E-04 C01620 HMDB00943 

11 Ureas Arginine and proline metabolism Urea 0.671±0.300 0.769±0.262 0 0.13 C00086 HMDB00294 

38 data are presented as mean ± SD. t is the Mann–Whitney U test results between NPC patients and controls; A p value of <0.05 is considered statistically 428 

significant and signed t value is ‘‘1,’’ otherwise ‘‘0.’’ The number of metabolite is listed according to their retention time.* Identified by standard substances. 429 
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Table 3 Recognition and predictive ability 
a
 of the PLS models established by selected metabolites 

NoM   Recognition 

ability 

Predictive 

ability 

1(A 

and 

B) 

glucose (29) Sensitivity 82.05% 79.49% 

Specificity 97.50% 97.50% 

Correct  rate 89.87% 88.61% 

AUC 91.44% 91.25% 

2 (A 

and 

B) 

glutamic acid (23) 

glucose (29) 

Sensitivity 82.05% 82.05% 

Specificity 100% 100% 

Correct  rate 91.14% 91.14% 

AUC 97.37% 97.24% 

3 (A) pyroglutamate (19) 

glutamic acid (23) 

glucose (29) 

Sensitivity 97.44% 94.87% 

Specificity 100% 100% 

Correct  rate 98.73% 97.47% 

AUC 97.44% 97.40% 

3(B) Tartronic acid (3) 

glutamic acid (23) 

glucose (29) 

Sensitivity 89.74% 87.18% 

Specificity 100% 97.50% 

Correct  rate 94.94% 92.41% 

AUC 96.96% 96.79% 

4 (A) lactate (2), pyroglutamate (19) 

glutamic acid (23) 

glucose (29) 

Sensitivity 94.87% 95.00% 

Specificity 97.50% 94.87% 

Correct  rate 96.20% 94.94% 

AUC 96.92% 96.79% 

4 (B) Tartronic acid (3) 

glutamic acid (23) 

glucose (29) 

Arachidonic acid (37) 

Sensitivity 92.31% 92.31% 

Specificity 100% 100% 

Correct  rate 96.20% 96.20% 

AUC 97.44% 97.20% 

5 (A) lactate (2), tartronic acid (3), 

pyroglutamate (19), glutamic acid 

(23), glucose (29) 

Sensitivity 92.31% 92.31% 

Specificity 100% 100% 

Correct  rate 96.20% 96.20% 

AUC 96.83% 96.67% 

5 (B) Tartronic acid (3) 

glutamic acid (23) 

glucose (29), Linoleic acid (35) 

Arachidonic acid (37) 

Sensitivity 94.87% 94.87% 

Specificity 97.50% 97.50% 

Correct  rate 96.20% 96.20% 

AUC 96.92% 96.83% 

6 (A) lactate (2), tartronic acid (3), norvaline 

(10), pyroglutamate (19), glutamic 

acid (23), glucose (29) 

Sensitivity 92.31% 94.87% 

Specificity 100% 100% 

Correct  rate 96.20% 97.47% 

AUC 97.21% 96.99% 

6 (B) Tartronic acid (3), Pyroglutamate (19) 

glutamic acid (23) 

glucose (29), Linoleic acid (35) 

Arachidonic acid (37) 

Sensitivity 97.44% 94.87% 

Specificity 97.50% 97.50% 

Correct  rate 97.47% 96.20% 

AUC 97.15% 96.83% 
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a
 NoM: number of metabolites. Recognition ability is the correct classification of the training. 

Prediction ability is the rate of the correct classification of the 10-fold cross validation. Sensitivity 

is the number of true positives classified as positive (patients). Specificity is the number of true 

negative classified as negative (healthy controls). A: metabolites selected by VIP; B: metabolites 

selected by original coefficients (β); C: common metabolites selected by VIP and β. 

 

 

7 (A) lactate (2), tartronic acid (3), norvaline 

(10), pyroglutamate (19), glutamic 

acid (23), glucose (29), arachidonic 

acid (37) 

Sensitivity 94.87% 94.87% 

Specificity 100% 100% 

Correct  rate 97.47% 97.47% 

AUC 97.37% 97.31% 

7 (B) Tartronic acid (3), Pyroglutamate (19) 

glutamic acid (23) 

glucose (29), Linoleic acid (35),  

Stearic acid (36), 

Arachidonic acid (37) 

Sensitivity 97.44% 97.44% 

Specificity 97.50% 97.50% 

Correct  rate 97.47% 97.47% 

AUC 96.47% 95.77% 

5 (C) tartronic acid (3), pyroglutamate (19), 

glutamic acid (23), glucose (29),  

arachidonic acid (37) 

Sensitivity 94.87% 92.31% 

Specificity 100% 100% 

Correct  rate 97.47% 96.20% 

AUC 97.37% 97.28% 
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