

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Naturally occurring organoiodines			
2	Lishu Wang, ^{a,b} Xuefeng Zhou, ^a Mangaladoss Fredimoses, ^a Shengrong Liao ^a and			
3	Yonghong Liu ^{*,a}			
4	^a Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key			
5	Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology,			
6	South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou			
7	510301, China			
8	^b Jilin Provincial Academy of Chinese Medicine Sciences, Changchun 130021, China			
9	Abstract – The review, with 290 references, presented the fascinating area of			
10	iodinated natural products over the past hundred years for the first time, covered			
11	literatures published in 1896 to 2014, referring to compounds isolated from biogenic			
12	and abiotic sources. Total 182 naturally occurring organoiodine compounds were			
13	recorded. The emphasis was on compounds together with the relevant biological			
14	activities, sources, collection places, country of origin, biosynthetic studies, and first			
15	total syntheses.			
16	Content			
17	1. Introduction			
18	2. Biogenic sources			
19	2.1. Marine organisms			
20	2.1.1. Algae			
21	2.1.2. Sponges			
22	2.1.3. Cnidaria			
23	2.1.4. Tunicates (ascidians)			
24	2.1.5. Mollusks			
25	2.1.6. Bacteria			
26	2.2. Terrestrial organisms			
27	2.2.1. Actinomycetes			
28	2.2.2. Insects			
29	2.2.5. Higher Animals			
30	2.2.4. Human 2.2.5. Missellensons			
31	2.2.3. IVIISCEIIANEOUS			
32 22	J. ADIOLIC SOUFCES 3.1. Volcono			
35 24	3.1. VOICAND 3.2. Sodimont and soils			
54	5.2. Seument and sons			

RSC Advances Accepted Manuscript

3.4. Sea water 3.5. Miscellaneous				
4 Biological significance				
5 Halogenases and Biological Halogenation				
5.1. Haloneroxidases				
5.1.1. Heme-containing haloperoxidases				
5.1.2. Vanadium-containing haloperoxidases				
5.2. Flavin-dependent halogenases (FADH ₂ - dependent halogenases)				
5.3. Non-heme Fe ^{II} /α-ketoglutarate-dependent halogenases				
5.4. Methyl halide transferases				
5.5. Biological Iodogenation				
6. Conclusion				
Author Information				
Biographies				
Acknowledgments				
Abbreviations				
References				
1 Introduction				
Professor Gordon W Gribble has written many excellent comprehensive reviews				
on naturally occurring organohalogens, ¹⁻⁸ most of them have focused on naturally				
occurring organochlorines, ⁹ organobromines, ^{10, 11} and organofluorines, ¹² so far no				
review especially focus on natural organoiodines. The first reported, naturally				
occurring iodinated organic compound, 3,5-diiodotyrosine (DIT, 1), was isolated in				
1896 from the coral Gorgonia cavolinii. ¹³ Although DIT named as 'iodogorgoic acid'				
has been known for more than 100 years, ¹³⁻¹⁵ iodine was much less frequently than				
chlorine and/or bromine incorporated into natural compounds. ² Currently there were				
over 5000 halogenated natural products known, from bacteria, fungi, algae, plants,				
animals, and humans. ⁸ Chlorometabolites and bromometabolites ^{11, 16} were				
predominate, while fluorinated natural products ^{17, 18} were much less common,				
organoiodines were rarely found in nature. ⁵ Herein, we try to describe all natural				
organoiodines and relevant halogenases in this review.				

68

2

69	2 Biogenic sources
70	2.1. Marine organisms
71	Marine natural products tend to incorporate halogens more frequently than
72	secondary metabolites from terrestrial sources. ¹⁹ The incorporation of bromine or
73	chlorine was by far the most common, with iodine rare and fluorine extremely rare, ²⁰
74	and this may be considered, to some extent, a consequence of the relatively low
75	abundance of iodine in seawater (almost one thousand times less than bromine). ²¹
76	2.1.1. Algae
77	The widely used organic chemical reagent, iodomethane (CH_3I , 2), has a large
78	biogenic source in worldwide marine algae, which was often detected in emissions
79	from algae. ²²⁻⁴² It was produced by the marine algae Pavlova gyrans, Papenfusiella
80	kuromo, Sargassum horneri (Mikuni, Fukui Prefecture; Uozu, Toyama Prefecture; and
81	Tsugaru Channel, Eyama, Hokkaido, Japan, respectively). Methyl halides were
82	synthesized from S-adenosyl-1-methionine in cell-free extracts of P. gyrans, P.
83	Kuromo, and S. horneri. This mechanism corresponds to the emission of methyl
84	halides from the three algae <i>in vivo</i> . ²⁵ 2 was also produced by the marine algae
85	<i>Macrocystis pyrifera</i> , ⁴³ <i>Asparagopsis taxiformis</i> , ^{44, 45} <i>A. armata</i> , ⁴⁶ and Fucales
86	Sargassum sp. ^{1, 3, 8, 47} Marine algae produces an array of both simple and complex
87	organohalogens, presumably for chemical defense. Laboratory cultures of marine
88	phytoplankton also produced 2^{23} Diiodomethane (CH ₂ I ₂ , 3) also has numerous
89	marine algae sources, ^{22, 29, 31, 35-42, 48-53} but iodoform (CHI ₃ , 4) has been found only in
90	Asparagopsis taxiformis, which was an edible red alga that was highly favored in
91	Hawaii for its strong aroma and flavor. A. taxiformis was rich in iodine, but free
92	molecular iodine was not present in the live algae plants. The essential oils were
93	composed of mainly bromine- and iodine-containing haloforms, ⁴⁵ and small to trace

94	amounts of many other halogenated compounds, CH ₂ I ₂ 3 , CHI ₃ 4 , ⁴⁴
95	dibromoiodomethane (CHBr ₂ I, 5), ² bromodiidomethane (CHBrI ₂ , 6), ⁴⁵
96	bromochloroidomethane (CHBrClI, 7), ⁴⁵ bromoiodomethane (CH ₂ BrI, 8), ² carbonyl
97	iodide (COI ₂ , 9), ⁴⁴ 2-iodoethanol (ICH ₂ CH ₂ OH, 10), ⁴⁴ 1-bromo-2-iodoethane
98	(BrCH ₂ CH ₂ I, 11), ^{2, 54} iodoacetone (CH ₃ COCH ₂ I, 12), ⁴⁴ 1-bromo-3-iodo-2-propanone
99	(BrCH ₂ COCH ₂ I, 13), ⁴⁴ 1,1-dibromo-3-iodo-2-propanone (ICH ₂ COCHBr ₂ , 14), ^{44, 46}
100	1,3,3-tribromo-1-iodo-1-propene (BrIC=CHCHBr ₂ , 15), ^{44, 45} and
101	1-iodo-4,4-dibromo-3-buten-2-one (Br ₂ C=CHCOCH ₂ I, 16). ^{44, 46} Related nonvolatile
102	compounds bromoiodoacetamide (BrICHCONH ₂ , 17), ⁵⁵ diiodoacetamide
103	$(I_2CHCONH_2, 18)$, ⁵⁵ bromoiodoacetic acid (BrICHCOOH, 19), ^{56,57} and diiodoacetic
104	acid $(I_2CHCOOH, 20)^{55}$ were present in the methylene chloride ⁵⁵ and aqueous
105	extracts of the lyophilized marine algae. Interestingly, none of these iodinated
106	compounds existed in the asexual Falkenbergia rufolanosa. The red alga
107	Bonnemaisonia hamifera (Baja California, USA) indicated high lipid bromine and
108	iodine content (3,3-dibromo-1-iodo-2-heptanone, CH ₃ CH ₂ CH ₂ CH ₂ CBr ₂ COCH ₂ I,
109	21), ⁵⁸ high antimicrobial activity against <i>Bacillus subtilis</i> , and a remarkably persistent,
110	sweet odor associated with the wet alga. ⁵⁸ Marine algae were rich source of
111	iodoethane (CH ₃ CH ₂ I, 22), ^{22, 31, 35, 37, 42, 48, 49, 59} 1-iodopropane (CH ₃ CH ₂ CH ₂ I, 23), ^{22, 31, 35, 37, 42, 48, 49, 59}
112	^{36, 39, 42, 59} 2-iodopropane (CH ₃ CH ₃ CHI, 24), ^{22, 31, 39, 42, 59, 60} and iodobutane
113	(CH ₃ CH ₂ CH ₂ CH ₂ I, 25). ⁶¹ Iodoacetic acid (ICH ₂ COOH, 26), ^{55, 57} 3-iodo-2-propenoic
114	acid (ICH=CHCOOH, 27), ⁵⁷ 3,3-diiodoacrylic acid (I ₂ C=CHCOOH, 29), ⁵⁷
115	2,3-diiodo-2-propenoic acid (ICHCICOOH, 31), ⁵⁷ and their ethyl esters (28 , 30 , and
116	32), have been isolated from the marine red algae Asparagopsis taxiformis (Hawaii,
117	USA) ^{46, 57} and <i>A. armata</i> (Gulf of California, USA). ⁴⁶ The red algae <i>A. taxiformis</i> , <i>A.</i>
118	armata, and Falkenbergia rufolanosa synthesized more than 100 different

	Z
	Ö
	S
	Q
	Ο
	U
	T .
	N.
	X
I	
	6
	Ď
	Ö
	Č
	a
	>
	σ
1	
	0
(n
	Ń

119	halogenated compounds, including bromoiodoacetacetic acid ethyl ester
120	(BrCHICOOCH ₂ CH ₃ , 33), ^{56, 57} chloroiodoacetamide (ClCHICONH ₂ , 34), ⁵⁵
121	2,3-dibromo-3-iodo-propenoic acid (BrIC=CBrCOOH, 35), ^{45, 46, 55, 57, 62-65}
122	chloroiodomethane (CH ₂ ClI, 36), ² 1-bromo-1-chloro-3-iodo-2-propanol
123	(ICH ₂ CHOHCHBrCl, 37), ⁵⁵ 1-bromo-3-iodo-2-propanol (BrCH ₂ CHOHCH ₂ I, 38), ⁵⁵
124	chloroiodoacetic acid (ClCHICOOH, 39), ⁵⁷ 1-chloro-3-iodo-2-propanol
125	(ICH ₂ CHOHCH ₂ Cl, 40), ^{55, 66} 1-chloro-3-iodoacetone (ClCH ₂ COCH ₂ I, 41), ⁴⁶
126	1,1-dibromo-3,3-diiodo-2-propanol (I ₂ CHCHOHCHBr ₂ , 42), ⁵⁵
127	1,1-dibromo-3-iodo-2-heptanone (H ₃ C(CH ₂) ₃ CHICOCHBr ₂ , 43), ⁶⁷
128	1,1-dibromo-3-iodo-2-propanol (ICH ₂ CHOHCHBr ₂ , 44), ⁵⁵
129	2,3-dibromo-3-iodo-2-propenoic acid (BrIC=CBrCOOH, 45), ⁵⁷
130	3,3-dibromo-2-iodo-2-propenoic acid (Br ₂ C=CICOOH, 46), ⁵⁷ 1,3-diiodo-2-propanol
131	(ICH ₂ CHOHCH ₂ I, 47), ⁵⁵ 2,3-diiodoacrylic acid (ICHCICOOH, 48), ⁵⁷
132	iodoacetamide (ICH ₂ CONH ₂ , 49), ^{55, 57} 3-iodohexadecanoic acid methyl ester
133	(CH ₃ (CH ₂) ₁₂ CHICH ₂ COOCH ₃ , 50), ⁶⁸ 1-iodopentane (CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ I, 51), ⁶⁹
134	1,1,3-tribromo-3-iodo-2-propanol (Br ₂ CHCHOHCHBrI, 52), ⁵⁵ and
135	triioodoacetaldehyde (I ₃ CCHO, 53). ⁷⁰ The red alga <i>Delisea fimbriata</i> produced
136	1,1-dibromo-2-iodo-1-octen-3-one $(H_3C(CH_2)_4COI=CBr_2, 54)$ and
137	1,1-dibromo-4-chloro-2-iodo-1-octen-3-one (CH ₃ (CH ₂) ₃ CHClCOICBr, 55), which
138	showed mild antifungal activity. ⁷¹ An unusual nucleoside,
139	4-amino-7-(5'-deoxy- β -D-xylofuranosyl)-5-iodopyrrolo[2,3-d]pyrimidine (56) was
140	isolated from the alga <i>Hypnea valendiae</i> , ⁷² it was found to cause complete inhibition
141	of cell division in fertilized sea urchin eggs at a concentration of 1 μ g/mL and showed
142	weak activity against human colorectal cancer cells (HCT116) with an $IC_{50}>20$
143	ppm. ^{73, 74} Aromatic sesquiterpene 57 was isolated from the organic extracts of North

144 Aegean Sea Laurencia microcladia (Vroulidia Bay, Chios Island, Greece). The 145 cytotoxicity of 57 was evaluated against five human tumor cell lines (HT29, MCF7, 146 PC3, HeLa, and A431), the IC₅₀ values were 78.4, 86.3, 88.5, 81.4, and 92.7 μ M, respectively.⁷⁵ Polar constituent 2,3,5,6-tetroiodo-tyrosine **58** was isolated from the 147 green alga Cladophora densa Harvey (Mukoujina Reef, Hiroshima Bay, Japan).⁷⁶ 148 149 A methanol extract of the red alga Hypnea valendiae (Quobba Lagoon, Australia), produced pronounced muscle relaxation and hypothermia in mice and also blocked 150 polysynaptic and monosynaptic reflexes.⁷² 151 4-amino-7-(5'-deoxyribos-1'β-yl)-5-iodopyrrolo[2,3-d]pyrimidin 152 (5'-deoxy-5-iodotubercidin, 59) and its 1' α isomer 60 have been isolated from the 153 alga. Starting with 5-iodotubercidin 61 (IC₅₀ = 0.026 μ M)⁷⁷ as lead inhibitors of the 154 155 isolated human AK, a variety of pyrrolo[2,3-d]pyrimidine nucleoside analogues were 156 designed and prepared by coupling 5-substituted-4-chloropyrrolo[2,3-d]pyrimidine 157 bases with ribose analogues using the sodium salt-mediated glycosylation procedure. 5'-Amino-5'-deoxy analogues of 5-bromo- and 5-iodotubercidins were found to be the 158 most potent adenosine kinase inhibitors (AKIs) reported up to date (IC₅₀ < 0.001 μ M). 159 160 Several potent AKIs were shown to exhibit anticonvulsant activity in the rat maximal electric shock induced seizure assay.⁷⁸ 5-Iodotubercidin (61) increased fatty acid 161 162 oxidation activity of the liver at the expense of lipogenesis, the effect on fatty acid 163 metabolism was mediated by the inhibition of acetyl-CoA carboxylase, probably due 164 to more than twice increased in the AMP/ATP ratio and the concomitant stimulation of the AMP-activated protein kinase.⁷⁹ 5-Iodotubercidin (61) blocked β (3) 165 phosphorylation without affecting the efficacy of calvculin A to inhibit platelet 166 aggregation and spreading.⁸⁰ Tumor suppressor p53, which is activated by various 167 168 stress and oncogene activation, is a target for anti-cancer drug development.

169	5-Iodotubercidin is a strong p53 activator. 5-Iodotubercidin (61) is purine derivative
170	and is used as an inhibitor for various kinases including adenosine kinase.
171	5-Iodotubercidin could cause DNA damage, verified by induction of DNA breaks and
172	nuclear foci positive for γ H2AX and TopBP1, activation of Atm and Chk2, and S15
173	phosphorylation and up-regulation of p53. 5-Iodotubercidin induces G2 cell cycle
174	arrest in a p53-dependent manner. It also induces cell death in p53-dependent and
175	-independent manners. DNA breaks were likely generated by incorporation of
176	5-Iodotubercidin metabolite into DNA. Moreover, 5-Iodotubercidin showed
177	anti-tumor activity as it could reduce the tumor size in carcinoma xenograft mouse
178	models in p53-dependent and -independent manners. 5-Iodotubercidin is a novel
179	genotoxic drug that has chemotherapeutic potential. ⁸¹ An unusual 3-iodo- δ -lactone
180	(62) was isolated from the ethyl acetate extract of South China Sea alga <i>Laurencia</i>
181	majuscule (Xisha Islands, Hainan Province, China), the extract showed that
182	phytohormone-like and antifungal activities against Sclerotinia sclerotiorum. ⁸²
183	Eiseniaiodides A (63) and B (64) were isolated from the brown alga <i>Eisenia bicyclis</i>
184	(Johgashima Island, Kanagawa Prefecture, Japan), they were ecklonialactone
185	derivatives containing an iodine atom. ⁸³ Two iodobromo-aromatic sesquiterpenes,
186	10-bromo-7-hydroxy-11-iodolaurene (65) and iodoether A (66), were isolated from
187	the red alga Laurencia nana Howe (Isla Mujeres, Mexico). ⁸⁴ The peracetylated
188	ethanolic extract of the brown alga Carpophyllum angustifolium (Panetiki Island,
189	Cape Rodney, New Zealand) has furnished 2[D']iododiphlorethol (67), ^{85, 86} which was
190	reisolated from an ethyl acetate fraction of the brown alga Cystophora retroflexa. ⁸⁶
191	Interestingly, Shibata et al. ⁸⁷ have found that the Laminariales Eisenia bicyclis and
192	Ecklonia kurome (Itoshima Peninsula, Fukuoka Prefecture, Japan) released
193	dibromo-iodophenol (68) in the surrounding medium, and retained oligomers and

RSC Advances Accepted Manuscript

194	polymers in their tissues. It was found as the UV-absorbing substance, would seem to
195	act as a chemical defence agent of brown algae against environmental stresses, such
196	as herbivore or pathogen attack. Iodophloroeckol (69) and 4'-iodoeckol (70) were
197	isolated and have been identified in the Laminariale Eisenia arborea Areschoug
198	(Bamfield, Canada). ⁸⁸ These phenols were synthesized by directed ortho-lithiation
199	and <i>ipso</i> -iododesilylation reactions of O-aryl N-isopropylcarbamates. ⁸⁹
200	Antioxidant iodinated meroterpene 71 was isolated from Japanese red alga
201	Ascophyllum nodosum. ⁹⁰ From an ethyl acetate fraction of the brown alga Cystophora
202	retroflexa, 2-iodophloroglucinol triacetate (72) was isolated. ⁸⁶ An investigation of the
203	red alga Delisea pulchra (Cape Banks, New South Wales, Australia), yielded
204	iodinated furanones 73-75 . ⁹¹ The absolute configurations of 73-75 were determined
205	by X-ray and CD spectroscopy. ⁹² Iodinated furanones 76 and 77 were isolated from
206	red alga <i>D. fimbriata</i> . ^{93, 94} Non-volatile iodine was mainly concentrated from seawater
207	in the peripheral tissues of brown algae. In Laminariales, several speciation studies
208	have concluded that up to 90% of total iodine was mainly stored in a labile inorganic
209	form identified as iodide, while the organic forms in Laminaria were dominated by
210	hormone-like tyrosine derivatives, <i>i.e.</i> , monoiodotyrosine (MIT, 78) and
211	diiodotyrosine (DIT, 1). The ubiquity of iodinated tyrosines (e.g., MIT, DIT) across
212	extant eukaryotic phyla has shown their general function as endocrine molecules
213	involved in cell-cell communication (plants) as well as time-coordinated and dose
214	dependent developmental changes. ⁹⁵ Trophic transfers of thyroxine and thyroid
215	hormone precursors from primary producers (possibly detected in phytoplankton upon
216	immunological assays) to consumers were essential to the metamorphosis of larvae of
217	marine invertebrates and gene regulation and signal transcription in vertebrates.
218	Contrary to most organohalogenates of phaeophyte origin, tyrosine halogenations into

219	MIT 78 and DIT 1 was believed to occur spontaneously, they were not mediated by
220	enzyme. They play an important role of signal mechanism in eukaryotic physiology, ⁹⁵
221	make them possible candidates as hormone-like substances, along with known
222	elicitors (alginate hydrolysates) of kelps. ⁶¹ MIT 78 and DIT 1 in marine algae were
223	detected by coupling different chromatographic techniques with UV and ICP-MS. ⁹⁶
224	One theory was that the simple marine haloalkanes, such as chloroform, bromoform,
225	etc., arise from in vivo haloform reactions, which enable algae to secrete continuously
226	these 'anti-predator' chemicals. ⁶⁴
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	

Table 1. The names and structures of Compounds 2-78.

240

No.	2	3	4	5
name	iodomethane	Diiodomethane	iodoform	dibromoiodomethane
Struct	<u>_</u> I			Br
ure				Br
No.	6	7	8	9
name	bromodiidomethane	bromochloroidomethane	bromoiodomethane	carbonyl iodide
Struct	Br		Br l	0
ure		Br Cl		
No.	10	11	12	13
name	2-iodoethanol	1-bromo-2-iodoethane	iodoacetone	1-bromo-3-iodo-2-propanone
Struct	Ч∽∽он	Br	0	Br
ure				Ö
No.	14	15	16	17
name	1,1-dibromo-3-iodo-2-propanon	1,3,3-tribromo-1-iodo-1-propene	1-iodo-4,4-dibromo-3-buten-2-one	bromoiodoacetamide
	e			
Struct		I Br	Br	
ure		Br	Br Ö	Br IND2
	Br			0

No.	18	19	20	21
name	diiodoacetamide	bromoiodoacetic acid	diiodoacetic acid	3,3-dibromo-1-iodo-2-he
				ptanone
Struct		ļ	ļ	Br
ure		Br OH O		
No.	22	23	24	25
name	iodoethane	1-iodopropane	2-iodopropane	iodobutane
Struct				
ure				
No.	26	27	28	29
name	Iodoacetic acid	3-iodo-2-propenoic acid	ethyl ester of 3-iodo-2-propenoic acid	3,3-diiodoacrylic acid
Struct	O 	0 	0	
ure	I OH	Г		Г
No.	30	31	32	33
name	ethyl ester of	2,3-diiodo-2-propenoic acid	ethyl ester of 2,3-diiodo-2-propenoic acid	bromoiodoacetacetic
	3,3-diiodoacrylic acid			acid ethyl ester

Page	12	of	60
------	----	----	----

Struct		O 	0	
ure	I ~~ 0 ~	ГССОН		
No.	34	35	36	37
name	chloroiodoacetamide	2,3-dibromo-3-iodo-propenoi	chloroiodomethane	1-bromo-1-chloro-3-iodo
		c acid		-2-propanol
Struct	0	Br O	CI	CI
ure	CI NH ₂	Г		I Br OH
No.	38	39	40	41
name	1-bromo-3-iodo-2-prop	chloroiodoacetic acid	1-chloro-3-iodo-2-propanol	1-chloro-3-iodoacetone
	anol			
Struct	Br	OH	ОН	0
ure	ÓН	O CI	CI	CI
No.	42	43	44	45
name	1,1-dibromo-3,3-diiodo	1,1-dibromo-3-iodo-2-heptan	1,1-dibromo-3-iodo-2-propanol	2,3-dibromo-3-iodo-2-pr
	-2-propanol	one		openoic acid

Struct ure	I Br I Br OH	O Br Br	Br I Br OH OH	Br I Br OH
No.	46	47	48	49
name	3,3-dibromo-2-iodo-2-p	1,3-diiodo-2-propanol	2,3-diiodoacrylic acid	iodoacetamide
	ropenoic acid			
Struct		OH		0
ure	Br			NH ₂
	Br OH		I OH	
No.	50	51	52	53
name	3-iodohexadecanoic	1-iodopentane	1,1,3-tribromo-3-iodo-2-propanol	triioodoacetaldehyde
	acid methyl ester			
Struct			Br I	0
ure			Br Br OH	
No.	54	55	56	57
name	1,1-dibromo-2-iodo-1-o	1,1-dibromo-4-chloro-2-iodo-	4-amino-7-(5'-deoxy- β -D-xylofuranosyl)-5-iodop	Aromatic sesquiterpene
	cten-3-one	1-octen-3-one	yrrolo[2,3-d]pyrimidine	

Struct ure	O Br Br	O Br Br CI I	N N N N OH	Br H H OH
No.	58	59	60	61
name	2,3,5,6-tetroiodo-tyrosi ne	5'-deoxy-5-iodotubercidin	1' α isomer of 5'-deoxy-5-iodotubercidin	5-Iodotubercidin
Struct ure		NH2 NNN OH OH	NH2 NNN OH OH	HO OH OH
No.	62	63	64	65
name	3-iodo-δ-lactone	Eiseniaiodide A	EiseniaiodideB	10-bromo-7-hydroxy-11- iodolaurene

No.	74	75	76	77
name	iodinated furanone	iodinated furanones	Iodinated furanone	Iodinated furanone
Struct ure	OH Br O O O Me	OH Br OMe O	OAc Br	OH O O
No.	78			
name	monoiodotyrosine			
Struct ure				

241

242

RSC Advances Accepted Manuscript

243 **2.1.2. Sponges**

244	The hydrophilic extract of the sponge <i>Ptilocaulis spiculifer</i> (Dakar, Senegal) has
245	been shown to contain dakaramine 79, a new tyrosine derivative containing iodine, an
246	unusual feature for sponge metabolites. ⁹⁷ Cyclodepsipeptide geodiamolide A $(80)^{98}$
247	was found in the Caribbean species of sponge Geodia (Rusts Bay, Trinidad and
248	Tobago, West Indies), and showed antifungal activity against Candida albicans, with
249	a minimal inhibitory concentration (MIC) at 31.3 μ g/mL. ⁹⁸ It has been efficiently
250	synthesized from the polypropionate and tripeptide units using the Evans asymmetric
251	alkylation, from the Mitsunobu esterification, and the macrolactamization with
252	diphenyl phosphorazidate (DPPA) as key steps. Efficient esterification between the
253	complex polyketide and tripeptide units was realized under high pressure conditions. ^{99,}
254	¹⁰⁰ Guided by cytoskeletal bioactivity, a reinvestigation of sponge Auletta sp. (Milne
255	Bay, East Fields and Port Moresby Regions, Papua New Guinea) yielded
256	geodiamolides A (80), D (81), and G (82), which were shown to cause microfilament
257	disruption. ¹⁰¹ Geodiamolide D (81) was also isolated from Papua New Guinea sponge
258	Pseudaxinyssa sp. ¹⁰² It was effective inhibitor of cellular proliferation in
259	MDA-MB-435 cancer cells with IC ₅₀ value of 0.08 μ g/mL. ¹⁰¹ The total synthesis of
260	geodiamolide D $(81)^{103}$ was achieved. Geodiamolide G (82) was also identified from
261	sponge Cymbastela sp. (Madang, Papua New Guinea), which showed activity against
262	glioblastoma, astrocytoma U 373, and human ovarian carcinoma HEY. 104
263	Geodiamolide H (83) was isolated from the marine sponge Geodia sp (Macqueripe
264	Bay, Trinidad). It dramatically affected the poorly differentiated and aggressive
265	Hs578T cell line. It inhibits migration and invasion of Hs578T cells probably through
266	modifications in actin cytoskeleton. Normal cell lines were not affected by treatment
267	with 83 105 It showed <i>m vitro</i> cytotoxicities against a number of human cancer cell

RSC Advances Accepted Manuscript

268	lines: non small cell lung cancer, HOP 92 (118 nM); central nervous system, SF-268
269	(153 nM); ovarian cancer, OV Car-4 (18.6 nM); renal cancer, A498 (94.8 nM) and
270	UO-31 (185 nM); and breast cancer MDA-MB-231/ATCC (433 nM) and HS 578T
271	(245 nM). ¹⁰⁶ Geodiamolides A (80) and H (83) were also isolated from G .
272	corticostylifera (São Paulo State, Brazil). These peptides inhibited the first cleavage
273	of sea urchin eggs (Lytechinus variegatus). Duplication of nuclei without complete
274	egg cell division indicated the mechanism of action might be related to microfilament
275	disruption. Further studies showed that geodiamolides A (80) and H (83) have
276	anti-proliferative activity against human breast cancer cell lines, acted by
277	disorganizing actin filaments of T47D and MCF7 cancer cells, keeping the normal
278	microtubule organization. Normal cells lines (primary culture human fibroblasts and
279	BRL3A rat liver epithelial cells) were not affected by the treatment compared to
280	tumor cells, thus indicating the biomedical potential of the compounds. ¹⁰⁷
281	Geodiamolides L (84), O (85), and R (86) have been isolated from the marine sponge
282	Cymbastela sp (Motupore and Madang, Papua New Guinea). The serine residues of
283	geodiamolides L (84), O (85), and R (86) have not been found previously in this
284	family of compounds. ¹⁰⁸ The cytotoxic peptide geodiamolide TA (87) was identified
285	from the marine sponge Hemiasterella minor Kirkpatrick (Sodwana Bay, South
286	Africa). ¹⁰⁰ Neosiphoniamolide A (88) was isolated from the sponge Neosiphonia
287	superstes (Banc Eponge Region, South of New Caledonia), ¹⁰⁹ and proved to inhibit
288	the growth of the fungi Piricularia oryzae and Helmintbosporium gramineum with
289	IC ₉₀ value of 5 ppm.
290	Three cytotoxic depsipeptides, seragamides A, D, and E (89-91) have been

291 isolated from the sponge Suberites japonicus (Seragaki and Manza, Okinawa Islands).

Seragamide A (89) promoted the polymerization of G-actin and stabilized F-actin
filaments.¹¹⁰

294	The plakohypaphorines A–F (92-97) were isolated from the Caribbean sponge
295	Plakortis simplex (Berry Island, Bahamas). ^{21, 111} Plakohypaphorine E (96) was the
296	first naturally occurring triiodinated indole, while plakohypaphorine F (97) was a
297	unique metabolite because it possessed both chlorine and iodine atoms on the indole
298	nucleus. Plakohypaphorines A-F (92-97) were evaluated for antihistaminic activity on
299	isolated guinea pig ileum. Plakohypaphorines B (93), C (94), and D (95) produced a
300	significant concentration-dependent reduction of histamine-induced contractions.
301	Under the same conditions, plakohypaphorine $E(96)$ was much less active and its
302	inhibitory effect showed no concentration dependence, while plakohypaphorines A
303	(92) and F (97) were completely inactive. Although calculations of the values of pA_2
304	indicated a noncompetitive antagonistic effect, the histamine antagonism of 93-95 was
305	specific because these molecules did not affect acetylcholine- and BaCl ₂ -induced
306	contractions. The antihistaminic activity of 92-97 appeared to be connected to the
307	number and nature of the halogen atoms on the aromatic nucleus. Indeed, only the
308	diiodinated analogues proved to be consistently active, regardless the relative position
309	of the halogen atoms. Interestingly, removal of one of the iodine atoms (in 92),
310	addition of a further iodine atom (in 96), and substitution of an iodine atom with a
311	chlorine atom (in 97) caused a dramatic decay in the antihistaminic activity. The
312	methanol extract of the Mediterranean tunicate Aplidium conicum (Sardinia, Italy)
313	was also shown to contain plakohypaphorine A (92). ¹¹² Topsentiasterol sulfate with
314	iodinated side chain 98 was isolated from the marine sponge Topsentia sp. (Vang
315	Fong Bay, Vietnam). ¹¹³ Plakohypaphorine E (96) was also isolated from the
316	Caribbean sponge <i>Plakortis simplex</i> (The Coast of Bahama). ¹¹⁴ Iodinated metabolites

317	99 and 100, derived from the tyrosine, have been isolated from Caribbean sponge
318	Iotrochota birotulata (Little San Salvador Island, Bahamas). ¹¹⁵ I. birotulata was
319	reported to contain significant amounts of iodine $(0.12-1.21\%)$, ¹¹⁵ together with
320	comparable quantities of bromine $(0.16-2.66\%)$. ¹¹⁶ Hence, this supported the
321	association of the iodometabolites with shows that high iodine amounts in the sponge
322	tissue. ¹¹⁵
323	Chemical investigation of marine sponges Agelas linnaei and A. nakamurai
324	(Peniki E Island, Seribu Islands, Northwest Java, Indonesia) afforded the first
325	iodinated tyramine-unit bearing pyrrole alkaloids, agelanesins B (101) and D (102).
326	They exhibited cytotoxic activity against L5178Y mouse lymphoma cells with IC_{50}
327	values at 9.25 and 13.06 μ M, respectively. ¹¹⁷ It was challenging to find out why this
328	Agelas sponge incorporated iodine into the agelanesins instead of bromine. This may
329	be due to the iodide present in seawater, which was far below other halogens such as
330	bromide and chloride. Despite its low concentration, unlike chloride, all known
331	haloperoxidases were effective in oxidizing iodide. ¹¹⁸ Biosynthesis of iodinated
332	metabolites seemed to be related to the capability of organisms to concentrate iodine
333	from seawater, rather than to the presence of a specific peroxidase. ¹¹⁵ Two
334	unprecedented phosphorus-containing iodinated polyacetylenes, phosphoiodyns A
335	(103) and B (104), were isolated from a Korean marine sponge $Placospongia$ sp. (near
336	Tong-Yong city in the South Sea, Korea). Phosphoiodyn A exhibited potent agonistic
337	activity on human peroxisome proliferator-activated receptor delta (hPPAR δ) with an
338	EC_{50} of 23.7 nM. ^{119, 120} The acetylenic acids with one (105 and 106) or two (107 and
339	108) iodine atom(s), were isolated from the marine sponges Suberites mammilaris and
340	S. japonicus (Cheju Island, Korea). The methylated compounds 107 and 108
341	exhibited a strong NO inhibitory effect on RAW264.7 cells. While methylated 105

20

342	and 106 were inactive in RAW264.7 cells, but highly active in BV2 microglia cells. ¹²¹
343	A new inhibitor, placotylene A (109), of the receptor activator of nuclear factor-B
344	ligand (RANKL)-induced osteoclast differentiation, and a regioisomer of placotylene
345	A, placotylene B (110), were isolated from a Korean marine sponge <i>Placospongia</i> sp.
346	(near Tong-Yong city in the South Sea, Korea). Placotylene A (109) displayed
347	inhibitory activity against RANKL-induced osteoclast differentiation at 10 μ M while
348	placotylene B (110) did not show any significant activity up to 100 μ M,
349	respectively. ¹²² 6'-Iodoaureol (111) was isolated from the Andaman Sea sponge
350	Smenospongia sp. (PP Island, Krabi Province, Thailand), it is the first reported
351	iodo-sesquiterpene hydroquinone. ¹²³

ΗŅ

Ń 0

όн

85

ΗΟ

ö

0

°0

86

87

92

352

99

106

110

98

105

//

HO

HO

355 **2.1.3. Cnidaria**

356	The first reported halometabolite, 3,5-diiodotyrosine (1), was isolated from the
357	coral <i>Gorgonia cavolii</i> in the late nineteenth century. ^{13, 124, 125} Iodovulone-I (112), a
358	unprecedented iodinated marine prostanoid with antitumor activity was isolated from
359	the soft coral <i>Clavularia viridis</i> Quoy and Gaimard (Okinawa Islands). ^{126, 127}
360	Iodinated prostanoids iodovulone II, iodovulone III, iodovulone IV,
361	12-O-acetyliodovulone II, 12-O-acetyliodovulone III, 10,11-epoxyiodovulone II, and
362	10,11-epoxyiodovulone I (113-119) were isolated as minor constituents from C.
363	viridis (Ishigaki, Okinawa Islands). ¹²⁸ Iodovulone II (113) showed cytotoxic activity
364	against human T lymphocyte leukemia (MOLT-4), human colorectal adenocarcinoma
365	(DLD-1), and human diploid lung fibroblast (IMR-90) cells at IC_{50} values 0.52, 0.6,
366	and 4.5 μ g/mL, respectively. Bioassay-directed fractionation of the CH ₂ Cl ₂ -MeOH
367	extract of C. viridis (Green Island, Taiwan) has also afforded iodovulones II (113) and
368	III (114). Iodovulone II (113) exhibited the cytotoxicity against human prostate (PC-3)
369	and colon (HT29) cancer cells with IC ₅₀ values 3.9 and 6.5 μ M. Iodovulone III (114)
370	exhibited the cytotoxicity against PC-3 and HT29 cancer cells with IC_{50} values 6.7
371	and 10.0 μ M, respectively. ¹²⁹ Iodinated prostanoids 7-acetoxy-7,8-dihydroiodovulone
372	I (120) and 7-acetoxy-7,8-dihydroiodovulone II (121) were isolated from C. viridis
373	(Ishigaki, Okinawa Islands). Compound 120 demonstrated cytotoxic activity against
374	MOLT-4, DLD-1, and IMR-90 cells at IC ₅₀ values 0.5, 0.6, and 4.5 μ g/mL,
375	respectively. ¹³⁰ The first iodine-containing briaranes to be found in nature were
376	dichotellides A-E (122-126) from South China Sea gorgonian Dichotella gemmacea
377	(Meishan Island, Hainan Province, China). Dichotellide C (124) showed marginal
378	activity against human pancreatic (SW1990) cancer cells (IC ₅₀ , 45.0 μ M). ¹³¹ Four
379	naturally produced organoiodides, fragilisinins I-L (127-130) were isolated from the

380	South China Sea gorgonian Junceella fragilis (Meishan Island, Hainan province of
381	China). Fragilisinin J 128 had potent antifouling activities at nontoxic concentrations
382	with EC ₅₀ values of 11.9 μ M. ¹³²
383	Novel eight-membered heterocycles, named hicksoanes A-C (131-133), ¹³³ were
384	isolated from the Red Sea gorgonian Subergorgia hicksoni (Gulf of Aqaba, Eilat,
385	Israel). Hicksoanes A-C (131-133) showed antifeeding activity against goldfish at
386	natural concentration 10.0 μ g/mL. The biosynthesis of hicksoanes A-C (131-133)
387	proceeded presumably under the participation of haloperoxidases and nonribosomal
388	peptide biosynthetic machinery. Both haloperoxidases producing hypohalogenic acid
389	as the actual halogenating agent and NADH dependent halogenases transforming the
390	substrate so that the halide ion may be used directly as a nucleophile has been
391	proposed to catalyze the reaction. ¹³⁴ An unusual structure containing a combination of
392	indole-oxazole-pyrrole unit, breitfussin A (134) was isolated from the hydrozoan
393	Thuiria breitfussi (Bjørnøya, Bear Island, Norway). ¹³⁵

113

112

115

114

COO Me

394

395

396 2.1.4. Tunicates (ascidians)

Chemical investigation of the Mediterranean ascidian *Ciona edwardsii* (Bay of
Naples, Meta di Sorrento, Punta Gradelle, Italy) has been performed, leading to the

399	isolation of tyrosine derivative iodocionin (135), which was shown to possess
400	significant and selective activity against lymphoma cells with an IC ₅₀ of 7.7 μ g/mL. ¹³⁶
401	Non cytotoxic triphenylpyrrolo-oxazinone, lukianol B (136), was isolated from a
402	tunicate (the lagoon of Palmyra Atoll). ¹³⁷ Recently, Fuente and co-workers screened
403	about two thousand marine natural products to find out structurally novel human
404	aldose reductase (h-ALR2) inhibitors. ¹³⁸ They reported lukianol B (136) was the most
405	potent one among the compounds tested. Its h-ALR2 inhibitory activity (IC ₅₀ =0.6 μ M)
406	was six-fold more potent than that of the known ALR inhibitor sorbinil. The
407	therapeutic effects of h-ALR2 inhibitors for some degenerative complications of
408	diabetes, such as neuropathy, nephropathy, and retinopathy, are well recognized.
409	Therefore, lukianol B (136) can be regarded as a new lead to develop therapeutic
410	agents for treatment of these disorders. Total synthesis of lukianol B (136) has been
411	achieved using <i>N</i> -benzenesulfonyl-3,4-dibromopyrrole as a common starting material.
412	The key synthetic strategy developed is the combined bromine-directed lithiation and
413	palladium-catalyzed cross-coupling of N-benzenesulfonyl-3,4-dibromopyrrole to
414	produce 3,4-diarylpyrrol-2-carboxylates. ¹³⁹ A nucleoside 56 was isolated from an
415	ascidian Diplosoma sp. (Hateruma, Okinawa Islands) and its structure was
416	successfully determined by spectroscopic and chemical analysis, 56 was found to
417	inhibit the division of fertilized sea urchin eggs. ¹⁴⁰ 56 and 59 were also isolated from
418	two unrelated marine organisms, the ascidian Diplosoma sp and the alga Hypnea
419	valendiae. ⁷² 58 was an iodinated tyramine derivative which constituted one of the
420	main components isolated in several samples of tunicates of the genus Didemnum
421	(Barrang Lompo, Indonesia). ^{73, 74} Iodinated phenethylamine (137) and the
422	corresponding phenethylamine urea 138 were isolated from a tunicate <i>Didemnum</i> sp
423	(Northwest end of Cocos Lagoon, Guam), 137 showed in vitro activity against the

RSC Advances Accepted Manuscript

424	yeast Candida albicans and was mildly cytotoxic against tumor cell line L1210 with
425	$IC_{50} 20 \mu$ g/mL. ¹⁴¹ 5'-Deoxy-3-iodotubercidin (59) and 60 were identified from the
426	ascidian Didemnum voeltzkowi (Apo Reef, Philippines). ¹⁴² An Australian species of
427	ascidian <i>Aplidium</i> sp. has yielded three iodinated <i>L</i> -tyrosine derivatives 139-141 . ¹⁴³
428	The study of an aqueous extract from the ascidian Didemnum rubeum (Reef & Islands
429	of Chuuk Atoll, Micronesia) permitted the isolation of previously reported
430	diiodo-tyramine derivative 137 and 138 together with iodo-tyramine derivatives
431	142-148 . ¹⁴⁴ Polyandrocarpamide B (149) was isolated from the marine ascidian
432	<i>Polyandrocarpa</i> sp. (Siquijor Islands, Philippines). ¹⁴⁵ Plakohypaphorine A (92) was
433	isolated from the methanol extract of the Mediterranean tunicate Aplidium conicum
434	(The coast of Sadinia, Italy). ¹⁴⁶
435	
436	
437	

438 **2.1.5. Mollusk**

439 Bioassay-guided separation of the aqueous ethanol extract of the viscera of the gastropod Turbo marmorata (Okinawa Islands) resulted in the isolation of two toxins, 440 turbotoxins A (150) and B (151), isolated as bis-trifluoroacetates.^{147, 148} The structures 441 442 were determined by spectral analysis and confirmed by organic synthesis to be 443 diiodotyramine derivatives. Turbotoxins A (150) and B (151) exhibited acute toxicity against ddY mice, with LD₉₉ values of 1.0 and 4.0 mg/kg, respectively.¹⁴⁷ The 444 445 structure-toxicity relationship of turbotoxins was examined, and it was proved that the iodine atoms and trimethylammonium groups were important for its acute toxicity. 446 Turbotoxin A (150) inhibited acetylcholinesterase with an IC₅₀ of 28 μ M.¹⁴⁸ X-Ray 447 448 crystallographic studies of complexes of acetylcholinesterase with small molecules,

449	such as decamethonium bromide, tacrine, and edrophonium bromide, indicated that
450	the aromatic gorge exists at the bottom of the active site. There was as yet no data of
451	relationships between the toxicity and affinity to acetylcholinesterase of turbotoxin
452	analogs, however, the benzyl group might be stacked against the aromatic gorge to
453	increase its toxicity. Preliminary neuropharmacological experiments were effected for
454	turbotoxin A (150), it was proved not to interact with the peripheral nervous system.
455	The toxin iodomethyltrimethylammonium chloride (152) was found in the viscera of
456	the green turban shell Turbo marmorata (Ishigaki, Okinawa Islands). ¹⁴⁹ A cytotoxic
457	cyclodepsipeptide, doliculide (153), was isolated from the sea hare <i>Dolabella</i>
458	auricularia (Mie Prefecture, Japan). ¹⁵⁰ It contained a 15-carbon polyketide unit,
459	glycine, and a unique D-amino acid, regarded as a metabolite of mixed
460	peptide-polyketide biogenesis. It was noteworthy that doliculide (153) possessed a
461	structurally novel polyketide moiety and exhibited potent cytotoxicity against
462	HeLa-S ₃ cells with an IC ₅₀ of 0.001 μ g/mL. ¹⁵⁰ The first total synthesis of doliculide
463	(153) has been achieved. ^{151} The key step of the synthesis was the construction of the
464	stereogenic centers of a 15-carbon polyketide-derived dihydroxy acid moiety by a
465	combination of the Evans aldol reaction and the Barton deoxygenation reaction.
466	Furthermore, artificial congeners of doliculide (153) were synthesized and the
467	structure-cytotoxicity relationships were examined. ¹⁵²
468	Iodinated furanones 76 and 77 were isolated from the sea hare Aplysia parvula
469	and its host plant <i>Delisea pulchra</i> (Sydney, New South Wales, Australia). ¹⁵³ The
470	results indicated that the distribution and level of <i>D. pulchra</i> metabolites in <i>A. parvula</i>
471	were consistent with a role as acquired chemical defenses against predators.

472 473

474 **2.1.6. Bacteria**

- 475 The iodoalkaloid 3,6-diiodocarbazole (154) was isolated from the marine
- 476 cyanobacterium *Kyrtuthrix maculans* (Ping Chau, Hong Kong, China).¹⁵⁴ Synthesis of
- 477 the iodocarbazole was achieved by direct iodination of carbazoles by
- 478 *N*-iodosuccinimide and *N*-iodosuccinimide-silica gel system.¹⁵⁵ Tasihalides A (**155**)

479	and B (156) , possessing a novel cage structures, have been isolated from an
480	assemblage of a marine cyanobacterium belonging to the genus Symploca and an
481	unidentified red alga (Short Drop-off, Palau). ²⁰ The presence of iodine was confirmed
482	by the UV/vis spectrum, which showed an $n-\sigma^*$ transition at 253 nm characteristic of
483	this halide. The closest structural relatives to tasihalides A (155) and B (156) were
484	tricyclic synthetic compounds that have been prepared from cembrane diterpenes
485	treated with electrophiles. ^{156} This made it tempting to speculate that tasihalides A (155)
486	and B (156) arose from a halogenation-initiated cyclization of an oxygenated
487	cembrane diterpene. Such haloperoxidase-mediated electrophilic cyclizations have
488	recently been demonstrated in vitro using bromoperoxidases cloned from red algae. ¹⁵⁷
489	A slightly halophilic myxobacterial strain, Paraliomyxa miuraensis SMH-27-4
490	(Brush Vegetation, Arai-Hama Beach, Miura Peninsula, Kanagawa Prefecture, Japan),
491	was isolated. This slowly growing myxobacterium produced the antibiotic
492	depsipeptide miuraenamide B (157), which inhibited NADH oxidase with IC_{50} value
493	of 50 μ M. ^{158, 159} Miuraenamide B (157) inhibited selectively the fungus-like
494	phytopathogen <i>Phytophthora capsici</i> at a minimum dose of 0.025 μ g per disk and had
495	no effect on bacteria. Several polyketide-peptide hybrid-type metabolites that
496	resemble the miuraenamides have been isolated from marine sponges and a mollusk
497	(e.g., geodiamolides, seragamides, and doliculide). The true producers of these
498	metabolites could be unknown halophilic myxobacteria and/or related
499	microorganisms. ^{158, 159}
500	2.2. Terrestrial organisms
501	2.2.1. Actinomyces
502	The calicheamicins (CLMs) α_2^{I} (158), α_3^{I} (159), β_1^{I} (160), γ_1^{I} (161), and δ_1^{I}

503 (162),¹⁶⁰⁻¹⁶³ were a class of enediyne antibiotics derived from the terrestrial bacterium

504	<i>Micromonospora echinospora</i> (Chalky soil, Kerrville, Texas, USA), with CLM γ_1^{I}
505	(161) being the most notable. It was extremely toxic to all cells, a CD33
506	antigen-targeted immunoconjugate N-acetyl dimethyl hydrazide CLM was developed
507	and marketed as targeted therapy against the non-solid tumor cancer acute myeloid
508	leukemia (AML). ¹⁶⁴ CLM γ_1^{I} (161) was one of the most potent known antitumor
509	agents. Its extremely potent cytotoxic properties led to its development as an antibody
510	drug conjugate (ADC, Mylotarg®) against a certain type of leukemia. Introduced in
511	1996, Mylotarg ® was the first drug in the clinic ushering in a new era of cancer
512	chemotherapy that now constituted one of the most active areas of cancer research and
513	already boasted of several promising drug candidates in the pipeline. ¹⁶⁵⁻¹⁶⁷
514	Total synthesis of CLM γ_1^{I} (161) was achieved. ¹⁶⁸ An account of the reasoning
515	and reduction to practice of a highly convergent total stereospecific synthesis of CLM
516	γ_1^{I} (161) was provided. The key finding was the use of a very mild promoter system to
517	allow for coupling of trichloroacetimidate with advanced calicheamicinone-like
518	accepters. ¹⁶⁹
519	The enediyne antibiotic CLM γ_1^{I} (161) was targeted to DNA by a novel
520	aryltetrasaccharide comprised of an aromatic unit and four unusual carbohydrates.
521	CLMs binded with DNA in the minor groove, where they then underwent a reaction
522	analogous to the Bergman cyclization, generating a diradical species. Like all
523	enediynes, this diradical, 1,4-didehydrobenzene, then abstracted hydrogen atoms from
524	the deoxyribose (sugar) backbone of DNA, which resulted in strand scission. ¹⁷⁰ The
525	core metabolic pathway for biosynthesis of this molecule resembled that of other
526	characterized enediyne compounds and occurred via a polyketide synthase
527	pathway. ¹⁷¹ The specificity of binding of CLM to the minor groove of DNA was
528	demonstrated to be due to the aryltetrasaccharide group of the molecule. ^{172, 173}

- ⁵²⁹ The headspace extracts from *Streptomyces chartreusis* (Braunschweig, Germany)
- ⁵³⁰ contained methyl 2-iodobenzoate (163), an iodinated volatile.

532 **2.2.2. Insects**

Several insects contained monoiodohistidine (MIH), 2-iodohistidine (164) and
4-iodohistidine (165) obtained from the cuticle of locusts.² 2-(or 4)-Iodohistidine (164)

RSC Advances Accepted Manuscript

535 or (165) have been found in several insects such as the squash bug, house fly,

536 mosquito, dragonfly, and cockroach.^{174, 175}

537	2.2.3. Higher animals
538	Organoiodines are rare in higher animals. However, several such compounds have
539	been identified. 3-Mono-iodo-4-hydroxyphenylpyruvic acid (166) and
540	3,5-di-iodo-4-hydroxyphenylpyruvic acid (DIHPPA, 167) were isolated from rat
541	thyroid glands. ^{176, 177} 4-Iodohistidine, phosphoriodohistidine (PIH, 168), thyroxine
542	[O-(4-hydroxy-3,5-diiodophenyl)-3,5-diiodo-L-tyrosine, T4, 169], and
543	3,5,3'-triiodothyronine (T3, 170) were extracted from beef heart mitochondria. ^{178, 179}
544	4-Iodohistidine (165) was the product of limited iodination of histidine, ¹⁸⁰ PIH (164)
545	was a possible intermediate of oxidative phosphorylation by rapid ³² P-labeling
546	experiment. ¹⁸¹ Thyroxine (169) and 3,5,3'-triiodothyronine (170) have been also
547	shown to be present in butanol extracts of normal rat liver, kidney, and heart. ¹⁸² MIH
548	(164 or 165) and diiodohistidine (DIH, 171) were identified from thyroidal
549	iodoproteins and their peripheral metabolism in rats. ¹⁸³ Behavior of deiodination of
550	DIH (171) in the presence of liver and kidney homogenates of the rat was studied
551	qualitatively in terms of time course on thin layer chromatography and paper
552	chromatography comparing with the known course of metabolism of DIT (1).
553	Differing from DIT (1), iodine was split from DIH (171) depending neither on the
554	amount of homogenate or time course. In order to examine the mode of deiodination
555	from DIH (171) and MIH (164 or 165) more precisely, they were labeled with 131 I,
556	and the metabolism of DIH (171) and MIH (164 or 165) was found to be considerably
557	different. DIH (171) was deiodinated enzymically and non-enzymically, but MIT (78)
558	resisted rapid metabolism, and it was deiodinated slowly in the body. ^{184, 185} The
559	2-iodohexadecanal (2-IHDA, 172) was present in the horse, dog, and rat thyroids. ¹⁸⁶

560	Studies indicated that 172 served as a mediator of some of the regulatory actions of
561	iodide on the thyroid gland. ^{187, 188} Pereira et al. ¹⁸⁶ have been demonstrated the
562	formation of iodolipids by incorporation of iodine into proteins and lipids of horse
563	thyroid slices. The authors have identified the major thyroid iodolipid to be 2-IHDA
564	(172). The biosynthesis of the iodolipid was likely to involve the addition of iodine to
565	the vinyl ether group of plasmenylethanolamine. It mimicked the main regulatory
566	effects of iodide on thyroid metabolism: inhibition of H2O2 production of adenylyl
567	cyclase. 2-Iodohexadecan-1-ol (2-IHDO, 173) was also detected in these studies, it
568	was formed later than 2-IHDA (172), and thyroid cells converted exogenous 2-IHDA
569	(172) into 2-IHDO (173) in a time-dependent way, the ratio of 2-IHDO/2-IHDA
570	increased with H_2O_2 production and decreased as a function of iodide concentration.
571	An aldehyde-reducing activity was detected in subcellular fractions of the horse
572	thyroid. No formation of 2-iodohexadecanoic acid could be detected, reduction into
573	the biologically inactive 2-IHDO (173) was thus a major metabolic pathway of
574	2-IHDA (172) in dog thyrocytes. ^{189}
575	(2R)-(+)- and $(2S)$ -(-)-2-IHDA (172) were synthesized ¹⁹⁰ in five steps and 62%
576	overall yield from chiral enol ethers, via the iodocyclization and chromatographic
577	separation of the resulting diastereomeric 1'-iododioxanes. The absolute configuration
578	has been assigned through chemical correlation and by application of Mosher's
579	method to the esters obtained by methanolysis of $(2R)$ - and $(2S)$ -2-IHDA, respectively,
580	followed by derivatization. Moreover, the biosynthesis and the inhibitory activity have
581	been shown to be unstereoselective. ¹⁹¹
582	Another α -iodoaldehyde, 2-iodooctadecanal (174), was also detected in the rat and
583	dog thyroids where it was even more abundant than 2-IHDA (172) . ¹⁸⁶
584	6-Iodo-5-hydroxy-eicosatrienoic acid, δ -lactone (175) and

585 5-iodo-4-hydroxydocosapentaenoic acid, γ -lactone (176) have been identified in the thyroid gland of dogs.¹⁹² The transformation of arachidonic acid and docosahexaenoic 586 587 acid with lactoperoxidase, iodide, and hydrogen peroxide into 175 and 176 in vitro suggested that this pathway may operate *in vivo* with thyroid peroxidase.³ 588 Although existence of the thyroid gland has been known for hundreds of years, the 589 590 first report linking cretinism and hypothyroidism to the destruction of this gland was published in 1888.¹⁹³ The existence of hormone containing iodine as a normal 591 constituent of the thyroid gland was foretold by Baumann in 1895.¹⁹⁴ the first report 592 593 of the isolation of thyroxine (169) from mammalian thyroid gland was published in 1915,¹⁹⁵ followed by later publications identifying a few related iodinated tyrosines 594 (170) and 3,5-diiodothyronine (177).^{196, 197} But it was Kendall^{195, 198, 199} in 1919, who 595 596 first isolated the hormone via alkaline hydrolysis of hog thyroid glands and named the 597 compound, 'Thyroxine'. Kendall successfully isolated 7 g of crystalline thyroxine (169). Later, Harington and co-workers^{196, 200, 201} employed an enzymatic hydrolysis to 598 599 liberate the thyroxine (169) from hog thyroid glands, and correctly reported its empirical formula to be $C_{15}H_{11}O_4NI_4$. They also reported the correct structure of the 600 601 isolated thyroxine (169) based on extensive analysis and subsequently an independent 602 chemical synthesis. Similar structural elucidation results on thyroxine (169) were also obtained by Foster *et al.*,²⁰² who employed an acid hydrolysis following a brief 603 enzymatic digestion of the hog thyroid gland. The stereochemistry of this α -amino 604 acid was designated to be *L*-series by Canzanelli *et al.*,²⁰³ who found similar optical 605 606 rotations for two L-thyronine, which were prepared by conversion of natural thyroxine 607 (169) isolated from thyroid gland, and synthesized from *L*-tyrosine. Iodolipids in calf thyroid slices were characterized as iodinated free fatty acids 608 and neutral lipids.²⁰⁴ Suppression of iodine organification as well as phospholipase A₂ 609

610	strongly decreased their formation, whereas inhibition of prostaglandin synthesis
611	increased lipid iodination, suggesting a correlation to the arachidonic acid
612	metabolism. ²⁰⁵ Transformation of arachidonic and docosahexaenoic acids by the
613	action of lactoperoxidase, iodine and hydrogen peroxide into iodolactones have been
614	demonstrated in vivo. ^{205, 206} Lactoperoxidase catalyzed the transformation of
615	5,8,11,14-eicosatetraenoic and 4,7,10,13,16,19-docosahexaenoic acids to iodolactones.
616	Major lactones formed in this reaction were: δ -lactone of
617	6-iodo-5-hydroxy-eicosatrienoic acid (175) and γ -lactone of
618	5-iodo-4-hydroxydocosapentaenoic acid (176). ²⁰⁴ Also two other ω -lactones (178)
619	and 179 have been detected by GC-MS. ^{192, 204} Pereira et al. ¹⁸⁶ have been
620	demonstrated the formation of iodolipids (ω -lactone of
621	14-iodo-15-hydroxy-eicosa-5,8,11-trienoic acid (178) and ω -lactone of
622	15-iodo-14-hydroxy-eicosa-5,8,11-trienoic acid (179) by incorporation of iodine into
623	proteins and lipids of horse thyroid slices. The authors have identified the major
624	thyroid iodolipid to be 2-IHDA (172). The biosynthesis of the iodolipid was likely to
625	involve the addition of iodine to the vinyl ether group of plasmenylethanolamine.
626	δ -Iodolactones decreased epidermal growth factor-induced proliferation and
627	inositol-1,4,5-trisphosphate generation in porcine thyroid-follicles. ²⁰⁷
628	Thyroxine (169), and other iodinated tyrosine (170), and 3,5-diiodothyronine (177)
629	have been isolated from numerous ascidians, sponges, gorgonians, marine algae, and
630	insects. ^{2, 11, 208, 209}
(21	2.2.4 Human

631 2.2.4. Human

Iodine was considered as essential mineral in the human body. MIH (164 or 165)

and DIH (171) were identified from thyroidal iodoproteins and their peripheral

634 metabolism in normal man.¹⁸³ MIH (**164** or **165**) and DIH (**171**) were identified from

the urine of patients with congenital goitrous hypothyroidism.²¹⁰ 3,5-Diiodotyrosine 635 636 (1) has been shown to be the second stage of iodine incorporation into the amino acid 637 tyrosine in the thyroid glands. The action of the enzyme thyroid peroxidase on 638 tyrosine in the presence of iodine first produced 3-iodotyrosine, which is the precursor 639 to 3.5-diiodotyrosine (1). Two 3.5-diiodotyrosine molecules then combined in the 640 presence of this same enzyme to generate 3,5,3',5'-tetraiodothyronine, commonly known as thyroxine (169).¹²⁵ 641 642 Thyroxine (T4, 169) was an essential hormone produced by the thyroid gland,

643 which presented in humans, was located in the neck just below the larynx. The thyroid 644 gland utilizes iodine, primarily from food (e.g., seafood, bread, and salt) to produce 645 T4 along with small amounts of 3,5,3'-triiodothyronine (T3, 170), in about 99.9:0.1 646 ratio, respectively. T3 exhibited most of the physiological activity and it was 647 primarily produced by deiodination of T4 in tissues other than the thyroid gland. T3 648 has a much shorter half-life, less than two days, when compared to T4. The thyroid 649 hormones, T4 and T3, were the only two endogenous hormones containing iodine 650 atoms. Thyroid hormones regulated a variety of metabolic processes and played a 651 critical role in normal growth and development, carbohydrate metabolism, oxygen 652 consumption, and maturation of the central nervous system and bone. Indeed, these hormones were required for normal function of nearly all tissues.¹⁹³ 653

Biosynthesis of thyroxine (**169**) has been the subject of continued investigation for decades, and the precise mechanism of this interesting biochemical process is not yet fully understood. The coupling of two 3,5-diodotyrosine (DIT, **1**) molecules to form thyroxine (**169**) was first suggested as early as 1927 by Harington and Barger.²⁰⁰ Subsequently, von Mutzenbecher²¹¹ in 1939 reported that the incubation of a basic solution of DIT (**1**) produced a small amount of thyroxine (**169**). Two possible Page 39 of 60

660	mechanisms, intra- and intermolecular coupling processes, were subsequently
661	proposed for the <i>in vivo</i> formation of thyroxine (169) in the thyroid gland, which was
662	catalyzed by the enzyme thyroid peroxidase (TPO). ²¹²⁻²¹⁵ Later studies indicated that
663	peptide linked DIT (1) within thyroglobulin (TGB) was more likely the precursor of
664	thyroxine (169). ^{216, 217} It was generally believed that thyroxine (169) was formed <i>via</i>
665	oxidative free radical coupling $^{214, 215}$ of the phenol groups from two units of DIT (1)
666	with the loss of a three-carbon unit, which was later reported by Johnson and
667	Tewkesbury, ²¹⁴ to be pyruvic acid. Subsequently, other groups reported identification
668	of the three-carbon unit, which was lost in the transformation of DIT (1) into
669	thyroxine (169) as alanine, ²¹⁸ serine, ²¹⁹ hydroxypyruvic acid, ²²⁰ and
670	dehydroalanine. ^{221, 222} For some time, dehydroalanine was favored as the lost
671	three-carbon unit in the biosynthesis of thyroxine (169). However, Sih and
672	co-workers ²²³ recently showed that the three-carbon unit lost in this coupling process
673	was in fact aminomelonic acid semialdehyde and further suggested that both intra-
674	and inter-molecular mechanisms could be operating in the biosynthesis of thyroid
675	hormones.
676	The first synthesis of (\pm) -thyroxine (169), was achieved by Harington and
677	Barger ²⁰⁰ in 1927 in eight steps starting from 4-methoxyphenol. The synthesis began
678	from 4-methoxyphenol, which was coupled with 3,4,5-triiodonitrobenzene and
679	subsequently reduced the nitro group to give the corresponding aniline derivative. The
680	amine group was then converted to a nitrile via diazotization, which upon reduction
681	with anhydrous stannous chloride gave 3,5-diiodo-4-(4'-methoxyphenoxy)
682	benzaldehyde. The arylaldehyde derivative was further reacted with hippuric acid in
683	the presence of fused sodium acetate and further treated with sulfuric acid in ethanol
684	to afford a cinnamic ester derivative. The olefin in ester was reduced using red

Page 40 of 60

685	phosphorous in hydrochloric acid, which also hydrolyzed the benzamide and ethyl
686	ester groups. The resulting product was treated with iodine and potassium iodide in
687	aqueous ammonium hydroxide solution to afford (\pm)-thyroxine (169). This synthesis
688	gave racemic hormone for comparison with the material isolated from thyroid gland
689	and ultimately paved the way for confirmation of the structure of thyroxine (169).
690	Harington ²²⁴ also prepared <i>L</i> -thyroxine <i>via</i> optical resolution starting from
691	(\pm)-3,5-diiodothyronine (177), which was synthesized, was converted to the
692	corresponding N-formyl derivative by treating with formic acid and then resolved
693	using <i>L</i> -1-phenylethylamine to give the corresponding 3,5-diiodo- <i>L</i> -thyronine
694	derivative. Hydrolysis of 3,5-diiodo-L-thyronine derivative and subsequent iodination
695	afforded the L-thyroxine in its natural form thus again confirming the stereochemistry
696	of the lone chiral center.
697	The persistent interest for thyroid iodolipids was related to speculations about
698	their role in thyroid metabolism and regulation. It was suggested that they could play
699	a role in the transport of iodide or be intermediates in thyroxine (169) formation.
700	Alternatively, their formation might result from the nonspecific binding of oxidized
701	forms of iodine and could thus play a protective role in scavenging excess iodine
702	released by the thyroid peroxidase. ^{186, 206} It was also suggested that iodolipids could
703	be the mediators of the Wolff-Chaikoff effect and other inhibitory effects of iodide on
704	the thyroid gland, such as inhibition of iodide transport, adenylate cyclase activation,
705	and hormone secretion. ^{186, 225}

Metaquat (1,1'-dimethyl-3,3'-bipyridinium diiodide, 180) was isolated from an
arrow poison (The poison is produced by squeezing chilli leaves, bark and a root crop)
used by the Southeast Asian Orang Mentawai Tribe (The inhabitants of Siberut, an

- island in the Mentawaiarchipelago, west of Sumatra), whose description of the effect
- of their poison was similar to that of curare, have the strong muscle relaxing effect.
- 712 Metaquat (180) was isomeric with the common herbicide paraquat
- 713 (1,1'-dimethyl-4,4'-bipyridinium).²²⁶
- 714 Iodomethane (2) was also emitted from fungi,²²⁷ rice paddies,²²⁸⁻²³³ and oat
- 715 plants.²³³
- 716 **3** Abiotic sources
- 717 **3.1. Volcano**

The early studies of volcanic gases and the presence of organoiodines were well documented.^{2, 3, 8} A recent study of the volcanoes (Kuju, Satsuma Iwojima, Mt. Etna) has revealed an extraordinarily large array of organoiodines, including CH_3I , **2**,^{234, 235} CH₂ClI **36**, and CH₃CH₂I **3**.²³⁵

722 **3.2. Sediment and soils**

The abiotic soil source could also produce $CH_3I \ 2^{236}$ Iodomethane 2 was emitted from wetlands²³⁷ and peatlands.²³⁸ Furthermore, presumed natural halogenation of humic material also occurred in Baltic Sea marine sediments leading to brominated and iodinated phenolic units in high molecular weight matter.²³⁹

727 **3.3. Atmosphere**

728 $CH_3I \mathbf{2}$ was often detected in the oceanic atmosphere.²²⁻⁴² Diiodomethane **3** was a 729 more significant source of iodine in the atmosphere than $CH_3I \mathbf{2}$.⁴²

730 **3.4. Sea water**

Iodomethane (CH₃ I, **2**) has been detected in the oceans and in the air over oceans. Measurements indicated that the oceans were the major source of CH₃I **2**, and it has been observed that the concentration of CH₃I **2** was 1000 times higher in water near kelp (*Laminaria digitata*) beds than in the open ocean.

/T <u>-</u>---`

1.

735	Volatile organoiodine compounds (VOIs) were the main carrier of iodine from the
736	oceans to the atmosphere. Sea-surface was the source of the short-lived VOIs. CH_2I_2 3,
737	CHClI ₂ 181, and CHI ₃ 2 were identified in a series of laboratory experiments. The
738	VOIs were produced from the reaction of marine dissolved organic matter with
739	hypoiodous acid/molecular iodine, which were formed at the sea surface when ozone
740	reacted with dissolved iodide. The presence of dissolved iodide, dissolved organic
741	matter and ozone could lead to the sea-surface production of CH_2I_2 3, $CHCII_2$ 181,
742	and CHI_3 2 . As such, this process could provide a ubiquitous source of iodine to the
743	marine atmosphere. ²⁴⁰ Recent studies confirmed the oceanic presence of
744	chloroiodomethane (CH ₂ ClI, 36), ${}^{31, 35-37, 39, 40, 42, 48-51, 53, 59, 241-244}$ bromoiodomethane
745	(BrCH ₂ I, 8), ^{35, 37, 243} dibromoiodomethane (CHBr ₂ I, 5), ²⁴³ and dichloroiodomethane
746	(Cl ₂ CHI, 182). ²⁴³

747

748

749 **3.5. Miscellaneous**

Natural combustion sources such as biomass fires and other geothermal processes
 accounted for a wide range of organohalogens. Biomass combustion also accounted
 for some CH₃I 2.²⁴⁵⁻²⁴⁷

753 **4 Biological significance**

754 More interesting was the possible biological significance of iodinated products.

755 The presence of iodine atoms in the compounds causes significant changes in the

756 physico-chemical characteristics, increasing their reactivity and changing the 757 conformation of biological membranes. Novel natural iodinated products have been 758 discovered and evaluated for their biological activity. It seems certain that some 759 possess anticancer, antifungal and/or antibacterial properties. Halogens play an 760 important role in natural processes, both biogenic and abiogenic. Recent studies have 761 indicated a chemical defensive role for iodine containing metabolites in many marine 762 invertebrates. Many marine and terrestrial organisms use organoiodines in chemical defense: feeding deterrents, irritants, or pesticides or in food gathering.²⁴⁸ It seems 763 764 clear that natural organoiodine compounds play an essential role in the survival of the 765 organism, and the ability of the organism to synthesize such compounds for chemical 766 defense and food gathering has evolved over time under the stress of natural selection.²⁴⁹ 767

768 5 Halo

Halogenases and Biological halogenation

769 Nature has developed a series of exquisite methods to introduce halogens into 770 organic compounds. Most of the enzymes are oxidative and require either hydrogen 771 peroxide or molecular oxygen as a cosubstrate to generate a reactive halogens for catalysis.²⁵⁰ For many years, the only known halogenases were the haloperoxidases, 772 773 we now have a much better understanding of the enzymatic haologenation. 774 Halogenated natural products are widely distributed in nature, some of them showing 775 potent biological activities. Incorporation of halogen atoms in drug leads is a common 776 strategy to modify molecules in order to vary their bioactivities and specificities. 777 Chemical halogenation, however, often requires harsh reaction conditions and results 778 in unwanted byproduct formation. It is thus of great interest to investigate the 779 biosynthesis of halogenated natural products and the biotechnological potential of halogenating enzymes.²⁵¹ 780

781	A large and diverse series of halogenated natural products exist. In many of these
782	compounds the halogen is important to biological activity and bioavailability.
783	Enzymes capable of halogenating all kinds of different chemical groups from
784	electron-rich to electron-poor, from aromatic to aliphatic have been characterized.
785	Given that synthetic halogenation reactions are not trivial transformations and that
786	halogenated molecules possess pharmaceutical usefulness, it will be worth investing
787	into further research of halogenating enzymes. ²⁵²
788	5.1. Haloperoxidases
789	The first halogenating microbial enzyme (fungal chloperoxidase) was discovered
790	and described until 1959. ²⁵³ Haloperoxidases have been discovered in marine
791	organisms, including Heme-Fe-vanadium haloperoxidase, and vanadium
792	bromoperoxidases. ²⁵⁴
793	5.1.1. Heme-containing haloperoxidases
794	The prototypical heme-dependent haloperoxidase is the fungal enzyme from
795	Caldariomyces fumago. ²⁵⁵⁻²⁵⁷ Mammalian heme-dependent haloperoxidase are also
796	known. In particular, a haloperoxidase in thyroid epithelial cells is responsible for a
797	remarkable series of posttranslational oxidative modifications of tyrosyl residues in
798	the protein thyroglobulin. ²⁵⁸ The reaction mechanism of heme-dependent
799	haloperoxidase is likely to parallel that of haem enzymes. ^{259, 260} The halide ion is
800	oxidized in the active site to ferric hypohalite by the ferryl-oxo species. This species
801	in turn is generated through binding of hydrogen peroxide to the ferric resting state,
802	which is followed by halide addition and finally release of the hypohalous acid. ²⁵²
803	5.1.2. Vanadium-containing haloperoxidases
804	Vanadium-dependent haloperoxidases (V-HPOs) contain a vanadate prosthetic

group and utilize hydrogen peroxide to oxidize a halide ion into a reactive

806	electrophilic intermediate. These metalloenzymes have a large distribution in nature,
807	where they are present in macroalgae, fungi, and bacteria, but have been exclusively
808	characterized in eukaryotes. ²⁵⁰ V-HPOs catalyze the oxidation of halides (chloride,
809	bromide, and iodide) by hydrogen peroxide. Iodine uptake and the production of
810	iodo-organic compounds by marine algae were thought to involve vanadium
811	dependent iodoperoxidases. Iodoperoxidases catalyzed the oxidation of iodines, and
812	they were named according to the most electronegative halide that they could oxidize,
813	chloroperoxidases (CPOs) could catalyze the oxidation of chloride, as well as of
814	bromide and iodide, bromoperoxidases (BPOs) react with bromide and iodide,
815	whereas iodoperoxidases (IPOs) are specific of iodide. ²⁶¹
816	5.2. Flavin-dependent halogenases (FADH ₂ - dependent halogenases)
817	The understanding of enzymatic incorporation of halogen atoms into organic
818	molecules has increased during the last few years. ²⁶² Most known enzymatic
819	halogenase reactions are oxidative, but more and more different strategies are being
820	discovered in the marine environment. A novel type of halogenating enzymes,
821	flavin-dependent halogenases, has been identified as a major player in the
822	introduction of chloride and bromide into activated organic molecules.
823	Flavin-dependent halogenases require the activity of a flavin reductase for the
824	production of reduced flavin, required by the actual halogenase. A number of
825	flavin-dependent tryptophan halogenases have been investigated in some detail, and
826	the first three-dimensional structure of a member of this enzyme subfamily,
827	tryptophan 7-halogenase, has been elucidated. This structure suggests a mechanism
828	involving the formation of hypohalous acid, which is used inside the enzyme for
829	regioselective halogenation of the respective substrate. The introduction of halogen
830	atoms into non-activated alkyl groups is catalysed by non-heme $Fe^{II} \alpha$ -ketoglutarate-

831	and O ₂ -dependent halogenases. Examples for the use of flavin-dependent halogenases
832	for the formation of novel halogenated compounds in vitro and in vivo reactions
833	promise a bright future for the application of biological halogenation reactions. ²⁶³
834	Elucidation of the three-dimensional structure of FADH2-dependent halogenases led
835	to the understanding of the reaction mechanism, which involves the formation of
836	hypohalous acids. Unactivated carbon atoms were found to be halogenated by
837	nonheme iron, α -ketoglutarate- and O ₂ -dependent halogenases. The reaction
838	mechanism of this type of halogenase was shown to involve the formation of a
839	substrate radical. ²⁶⁴
840	5.3. Non-heme Fe^{II}/α -ketoglutarate-dependent halogenases
841	Exploit a radical halogen species to allow halogenation of unactivated, aliphatic
842	carbon centers. ^{252, 265} The Fe ^{II} in halogenases is liganded by two histidine residues,
843	α -ketoglutarate and chloride. An interesting aspect of α -ketoglutarate-dependent
844	halogenases is the number of halogen transfers that can be carried out by one active
845	site.
846	5.4. Methyl halide transferases
847	In this reaction mechanism, the halide reacts as a nucleophile with a SAM
848	cofactor to displace S-adenosylhomocysteine. ²⁶⁶ whether this reaction is biologically
849	relevant in the formation of methyl halides also remains to be shown. ²⁶⁷
850	5.5. Biological Iodogenation
851	Several new enzymes capable of bioiodogenation have been identified. For
852	example, one species of Navicula marine phytoplankton produced CH_2I_2 3 and
853	ClCH ₂ I 36 via an iodoperoxidase (IPO), an enzyme capable of oxidizing iodide but
854	not bromide or chloride.35 A vanadium-dependent IPO has been purified and
855	characterized from the brown alga Saccorhiza polyschides, ²⁶⁸ and also isolated from

	Manuscript	
	Accepted	
n S	Advances	
	RSC A	

856	the brown algae <i>Phyllariopsis brevipes</i> , ²⁶⁹ <i>Laminaria saccharina</i> , <i>L. hyperborea</i> , <i>L.</i>
857	ochroleuca, and Pelvetia canaliculata. ²⁷⁰⁻²⁷² One specific for the oxidation of iodide
858	and another that could oxidize both iodide and bromide, were separated from the
859	sporophytes of the brown alga L. digitata and purified to electrophoretic
860	homogeneity. ²⁶¹ Other studies of <i>L. digitata</i> and <i>L. saccharina</i> indicated the presence
861	of IPO. ²⁷³⁻²⁷⁵ The marine microalga <i>Porphyridium purpureum</i> ²⁷⁶ and the alga
862	Ascophyllum nodosum, ²⁷⁷ the Arctic green algae Acrosiphonia sonderi and
863	Enteromorpha compressa have high IPO activity. ²⁷⁴ Two peroxidase enzymes ²⁷⁸ that
864	catalyze the iodination of tyrosine were horseradish peroxidase (HRP) and
865	lactoperoxidase (LPO). ²⁷⁹ The latter enzyme was dominant for the iodination of
866	tyrosine in mammals. A recent study analyzing gene expression in the brown alga
867	Laminaria digitata has shed light on how V-BrPOs and vanadium-dependent
868	iodoperoxidases are up-regulated upon defense elicitation. ²⁸⁰ Vanadium-dependent
869	iodoperoxidases in Laminaria digitata, a novel biochemical function diverged from
870	brown algal bromoperoxidases. ²⁸¹
871	An electrifying development was the utilization of the halide/peroxidase/hydrogen
872	peroxide chemical system by humans and other mammals to generate active halogen
873	(HOCl and HOBr) in order to destroy microorganisms. Thus, human white blood cells
874	(eosinophils and neutrophils) contained myeloperoxidase, which, in the presence of
875	chloride, bromide, or iodide, and hydrogen peroxide, rapidly form active halogen,
876	resulting in the death of bacteria and fungi, and even tumor cells, by halogenation
877	reactions, ²⁸²⁻²⁸⁴ it would appear that biohalogenation was an integral component of
878	our immune system.
879	Simple halogen substituents frequently afford key structural features that account

880 for the potency and selectivity of natural products, including antibiotics and hormones.

881	For example, when a single chlorine atom on the antibiotic vancomycin is replaced by
882	hydrogen, the resulting antibacterial activity decreases by up to 70%. This Account
883	analyzes how structure underlies mechanism in halogenases, the molecular machines
884	designed by nature to incorporate halogens into diverse substrates.
885	Structural characterization has provided a basis toward a mechanistic
886	understanding of the specificity and chemistry of these enzymes. In particular, the
887	latest crystallographic snapshots of active site architecture and halide binding sites
888	have provided key insights into enzyme catalysis. A thorough mechanistic analysis
889	will elucidate the biological principles that dictate specificity, and the application of
890	those principles to new synthetic techniques will expand the utility of halogenations in
891	small-molecule development. ²⁸⁵

892 6 Conclusion

The few examples of iodine containing natural products could be grouped into five main structural classes: 1) volatile compounds having very short carbon frameworks; 2) nucleoside derivatives; 3) amino acid (tyrosine, tryptophan, and histidine) derivatives; 4) fatty acid derivatives; and 5) terpenoid derivatives. Of all iodinated compounds, most of them (159/182) were derived from marine sources (especially marine algae, sponges, and corals).

But what was on the base of the existence for natural organoiodines? Some organoiodines function as recyclers of iodines, as pheromones and hormones,¹⁹³ as chemical defence substances: such as antimicrobials,⁵⁸ anti-UVs,⁸⁷ antifeedants,^{134, 153} and antifoulants.¹³² The benefit to mankind was that many organoiodines displayed enormous biological activity that may lead to clinical drugs. Indeed, most of these promising compounds were heterocycles.⁸ There are many examples of the positive, beneficial effects of halogen substitution on organic compounds, and excellent

906	reviews on this topic were available. ²⁸⁶ An iodinated enediyne antibiotic CLM γ_1^{I}
907	(161) was twice more active than the brominated analog CLM $\gamma_1^{Br, 287}$ Likewise,
908	iodine-substituted gomisin J derivatives were more effective than the natural product
909	itself as HIV-1 reverse transcriptase inhibitors. ²⁸⁸ The geodiamolide D 81 (iodinated)
910	induced microfilament disruptions and was thrice more effective than geodiamolide E
911	(brominated counterpart). ¹⁰¹ Geodiamolide H 83 showed <i>in vitro</i> cytotoxicity against
912	a number of human cancer cell lines. Surprisingly, geodiamolide I (brominated
913	counterpart) was completely devoid of activity. ¹⁰⁶ Iodovulone II 108 showed
914	significant cytotoxic activity against MOLT-4, DLD-1, and IMR-90 cells. While its
915	brominated and chlorinated counterparts showed no activities. ¹²⁸ Hicksoanes A-C
916	130-133 showed antifeeding activity against goldfish, hicksoane C 133 having two
917	atoms of iodine had a higher activity than its counterparts hicksoanes A 131 and B
918	132 having one atom of iodine. As shown in the literature, ²⁸⁹ halogenation increased
919	the antifeeding activity. Iodine substitution on aromatic rings greatly stabilized
920	cross-strand aromatic rings in model β -hairpin peptides, ²⁹⁰ which was proved by
921	interaction between the thyroid hormone 3,5,3'-triiodothyronine 166, thyroxine 169,
922	and the thyroid hormone receptor.
923	Iodogenating enzymes have been identified for the biosynthesis of iodogenated
924	compounds by catalyzing the formation of carbon-iodine bond. The biological
925	importance of iodogenating enzymes in bioiodogenation has aroused wide concern.
926	Meanwhile, using modern biotechnology, for example, combinatorial biosynthesis
927	and directed evolution, the prospects for generating iodinated derivatives of valuable
928	natural products would therefore appear very promising.
929	Traditional synthetic methods of integrating halogens into complex molecules are
930	often complicated by a lack of specificity and regioselectivity. Nature, however, has

931	developed a variety of elegant mechanisms for halogenating specific substrates with	
932	both regio- and stereoselectivity. An improved understanding of the biological routes	
933	toward halogenation could lead to the development of novel synthetic methods for the	
934	creation of new compounds with enhanced functions. While chemical synthesis of	
935	organohalogens can be difficult, the biological production of these compounds occurs	
936	under relatively mild conditions and often with a greater degree of specificity.	
937	Therefore an understanding of the biosynthesis of halometabolites, and in particular,	
938	the enzymology of carbon-halogen bond formation, may provide convenient	
939	biotechnological methods for the halogenation of organic compounds. ¹²⁴ Biological	
940	halogenation can provide this specifity and selectivity. But the technology transfer to	
941	large scale manufacturing and established industrial methods are yet to be realized.	
942		
943	ACKNOWLEDGMENTS	
944	This study was supported by the National Basic Research Program of China (973	
945	Program, Nos. 2011CB915503), the National High Technology Research and	
946	Development Program (863 Program, 2012AA092104), the National Natural Science	
947	Foundation of China (Nos. 31270402, 21172230, 20902094, 41176148, and	
948	21002110), Strategic Priority Research Program of the Chinese Academy of Sciences	
949	(Grant No. XDA11030403), and Guangdong Marine Economic Development and	
950	Innovation of Regional Demonstration Project (GD2012-D01-001).	
951	ABBREVIATIONS	
	AML acute myeloid leukemia	

AML	acute myeloid leukemia
BPO	bromoperoxidase
CLM	calicheamicin
CPO	chloroperoxidase
DIT	3,5-diiodotyrosine
DPPA	diphenyl phosphorazidate

RSC Advances Accepted Manuscript

HRP	horseradish peroxidase
2-IHDA	2-iodohexadecanal
2-IHDO	2-iodohexadecan-1-ol
IPO	iodoperoxidase
LPO	lactoperoxidase
MIT	monoiodotyrosine
MIH	monoiodohistidine
MPO	myeloperoxidase
PIH	phosphoriodohistidine
PKSs	polyketide synthases
T4	thyroxine
T3	3,5,3'-triiodothyronine
TPO	thyroid peroxidase
UV	ultraviolet
VOIs	volatile organoiodine compounds
REFERENCES	- 1

952 **REFERENCES**

- 953 1 G. W. Gribble, J. Nat. Prod., 1992, 55, 1353.
- 954 2 G. W. Gribble, Progress in the chemistry of organic natural products, 1996, 68, 1.
- 955 3 G. W. Gribble, Acc. Chem. Res., 1998, **31**, 141.
- 956 4 G. W. Gribble, *Chemosphere*, 2003, **52**, 289.
- 957 5 G. W. Gribble, in *Science Dossiers*, Euro Chlor, Brussels, Belgium, 2004, Vol. 6, pp. 1.
- 958 6 G. W. Gribble, Am. Scien., 2004, 92, 342.
- 959 7 G. W. Gribble, in Progress in the Chemistry of Organic Natural Products, ed. by A. D. Kinghorn,
- 960 W. Herz, J. Kobayashi, Springer-Verlag/Wien, 2010, Vol. 91.
- 961 8 G. W. Gribble, *Heterocycles*, 2012, 84, 157.
- 962 9 G. W. Gribble, *Pure Appl. Chem*, 1996, **68**, 1699.
- 963 10 G. J. Gribble, Environ. Sci. Pollu. Res., 2000, 7, 37.
- 964 11 G. W. Gribble, Chem. Soc. Rev., 1999, 28, 335.
- 965 12 G. W. Gribble, in The Handbook of Environmental Chemistry, ed. by A. H. Neilson,
- 966 Springer-Verlag Berlin Heidelberg, 2002, Vol. 3, pp. 121.
- 967 13 E. Drechsel, Zeitsch. Biol., 1896, 33, 85.
- 968 14 M. Henze, Zeitsch. Physiol. Chem., 1907, 51, 64.
- 969 15 M. Henze, Zeitsch. Physiol. Chem., 1911, 72, 505.
- 970 16 Y. Yin, J. Liu and G. Jiang, Prog. Chem., 2011, 23, 254.
- 971 17 D. B. Harper and D. Ohagan, Nat. Prod. Rep., 1994, 11, 123.
- 972 18 J.-P. Begue and D. Bonnet-Delpon, J. Fluor. Chem., 2006, 127, 992.
- 973 19 A. Butler and J. V. Walker, Chem. Rev., 1993, 93, 1937.
- 974 20 P. G. Williams, W. Y. Yoshida, R. E. Moore and V. J. Paul, Org. Lett., 2003, 5, 4167.
- 975 21 C. Campagnuolo, E. Fattorusso and O. Taglialatela-Scafati, Eur. J. Org. Chem., 2003, 284.
- 976 22 F. Laturnus, Environ. Sci. Pollut. Res., 2001, 8, 103.
- 977 23 M. G. Scarratt and R. M. Moore, *Mar. Chemistry*, 1996, 54, 263.
- 978 24 M. G. Scarratt and R. M. Moore, Mar. Chemistry, 1998, 59, 311.
- 979 25 N. Itoh, M. Tsujita, T. Ando, G. Hisatomi and T. Higashi, *Phytochemistry*, 1997, 45, 67.
- 980 26 H. J. Li, Y. Yokouchi and H. Akimoto, Atmos. Environ., 1999, 33, 1881.
- 981 27 F. Laturnus, T. Svensson, C. Wiencke and G. Oberg, Environ. Sci. Technol., 2004, 38, 6605.

- P. D. Nightingale, G. Malin and P. S. Liss, Limnol. Oceanogr., 1995, 40, 680. M. S. P. Mtolera, J. Collen, M. Pedersen, A. Ekdahl, K. Abrahamsson and A. K. Semesi, European Journal of Phycology, 1996, 31, 89. 30 A. Ekdahl, M. Pedersen and K. Abrahamsson, *Marine Chemistry*, 1998, 63, 1. 31 K. Abrahamsson, K. S. Choo, M. Pedersen, G. Johansson and P. Snoeijs, *Phytochemistry*, 2003, 64, 725. M. G. Scarratt and R. M. Moore, Limnol. Oceanogr., 1999, 44, 703. C. D. Murphy, R. M. Moore and R. L. White, Limnol. Oceanogr., 2000, 45, 1868. F. Laturnus, F. C. Adams and C. Wiencke, Geophys. Res. Lett., 1998, 25, 773. R. M. Moore, M. Webb, R. Tokarczyk and R. Wever, J. Geophys. Res. Oceans, 1996, 101, 20899. C. Schall, K. G. Heumann and G. O. Kirst, Fresenius J. Anal. Chem., 1997, 359, 298. 37 L. J. Carpenter, W. T. Sturges, S. A. Penkett, P. S. Liss, B. Alicke, K. Hebestreit and U. Platt, J. Geophys. Res. Atmos., 1999, 104, 1679. W. T. Sturges, H. P. McIntyre, S. A. Penkett, J. Chappellaz, J. M. Barnola, R. Mulvaney, E. Atlas and V. Stroud, J. Geophys. Res. Atmos., 2001, 106, 1595. C. Schall, F. Laturnus and K. G. Heumann, Chemosphere, 1994, 28, 1315. C. Schall, K. G. Heumann, S. DeMora and P. A. Lee, Antarct. Sci., 1996, 8, 45. M. Pedersen, J. Collen, K. Abrahamsson and A. Ekdahl, Sci. Mar., 1996, 60, 257. B. Giese, F. Laturnus, F. C. Adams and C. Wiencke, Environ. Sci. Technol., 1999, 33, 2432. S. L. Manley and M. N. Dastoor, Limnol. Oceanogr., 1987, 32, 709. B. J. Burreson, R. E. Moore and P. P. Roller, J. Agric. Food Chem., 1976, 24, 856. B. J. Burreson, R. E. Moore and P. Roller, Tetrahedron Lett., 1975, 473. O. McConnell and W. Fenical, Phytochemistry, 1977, 16, 367. T. Class, R. Kohnle and K. Ballschmiter, Chemosphere, 1986, 15, 429. F. Laturnus, Chemosphere, 1995, 31, 3387. F. Laturnus, C. Wiencke and F. C. Adams, Mar. Environ. Res., 1998, 45, 285. F. Laturnus, Mar. Chem., 1996, 55, 359. F. Laturnus, C. Wiencke and H. Kloser, Mar. Environ. Res., 1996, 41, 169. T. Ohshiro, S. Nakano, Y. Takahashi, M. Suzuki and Y. Izumi, *Phytochemistry*, 1999, 52, 1211. H. Yamamoto, Y. Yokouchi, A. Otsuki and H. Itoh, Chemosphere, 2001, 45, 371. Morishim.I, T. Yonezawa, K. Endo, T. Inubushi and K. Goto, J. Am. Chem. Soc., 1972, 94, 4812. F. X. Woolard, R. E. Moore and P. P. Roller, Tetrahedron, 1976, 32, 2843. G. Combaut, Y. Bruneau, J. Teste and L. Codomier, Phytochemistry, 1978, 17, 1661. F. X. Woolard, R. E. Moore and P. P. Roller, Phytochemistry, 1979, 18, 617. 58 J. F. Siuda, G. R. Vanblaricom, P. D. Shaw, R. D. Johnson, R. H. White, L. P. Hager and K. L. Rinehart, J. Am. Chem. Soc., 1975, 97, 937. F. Laturnus, B. Giese, C. Wiencke and F. C. Adams, Fresenius J. Anal. Chem., 2000, 368, 297. A. Ekdahl, M. Pedersen and K. Abrahamsson, Mar. Chem., 1998, 63, 1. S. La Barre, P. Potin, C. Leblanc and L. Delage, Mar. Drugs, 2010, 8, 988. W. Fenical, J. Phycol., 1975, 11, 245. O. J. McConnell and W. Fenical, Phytochemistry, 1980, 19, 233. R. E. Moore, Acc. Chem. Res., 1977, 10, 40. V. M. Dembitsky and M. Srebnik, Prog. Lipid Res., 2002, 41, 315.
- H. Sharghi and M. M. Eskandari, Tetrahedron, 2003, 59, 8509.

- 1026 67 N. Jacobsen and J. O. Madsen, Tetrahedron Lett., 1978, 3065.
- 1027 68 A. Takahashi, Mem. Inst. Oswardo Cruz, 1976, 74 23.
- 1028 69 R. Houriet and T. Gaumann, Helv. Chim. Acta, 1976, 59, 119.
- 1029 70 M. G. Brown, J. Chem. Soc., 1956, 2283.
- 1030 71 A. F. Rose, J. A. Pettus and J. J. Sims, *Tetrahedron Lett.*, 1977, 1847.
- 1031 72 R. Kazlauskas, P. T. Murphy, R. J. Wells, J. A. Bairdlambert and D. D. Jamieson, Aust. J. Chem.,
- 1032 1983, **36**, 165.
- 1033 73 C. J. Smith, D. A. Venables, C. Hopmann, C. E. Salomon, J. Jompa, A. Tahir, D. J. Faulkner and C.
- 1034 M. Ireland, J. Nat. Prod., 1997, 60, 1048.
- 1035 74 P. W. Ford and B. S. Davidson, J. Nat. Prod., 1997, 60, 1051.
- 1036 75 M. Kladi, C. Vagias, P. Papazafiri, G. Furnari, D. Serio and V. Roussis, *Tetrahedron*, 2007, 63,
 1037 7606.
- 1038 76 M. Okano, N. Fukamiya and T. Aratani, *Nippon Suisan Gakkaishi*, 1982, 48, 1485.
- 1039 77 Henderso.Jf, A. R. Paterson, I. C. Caldwell, B. Paul, M. C. Chan and K. F. Lau, Cancer
- 1040 Chemother. Rep. Suppl. 2, 1972, 3, 71.
- 1041 78 B. G. Ugarkar, J. M. DaRe, J. J. Kopcho, C. E. Browne, J. M. Schanzer, J. B. Wiesner and M. D.
- 1042 Erion, J. Med. Chem., 2000, 43, 2883.
- 1043 79 J. Garcia-Villafranca and J. Castro, *Biochem. Pharmacol.*, 2002, 63, 1997.
- 1044 80 K. M. Lerea, A. Y. Venjara, S. C. Olson and M. R. Kelly, *Biochim. Biophys. Acta: Mol. Cell Res.*,
 1045 2007, **1773**, 185.
- 1046 81 X. Zhang, D. Jia, H. Liu, N. Zhu, W. Zhang, J. Feng, J. Yin, B. Hao, D. Cui, Y. Deng, D. Xie, L.
 1047 He and B. Li, *Plos One*, 2013, 8.
- 1048 82 J.-Y. Su, X.-H. Xu, L.-M. Zeng and C.-J. Wang, Chem. Res. Chin. Univers., 1997, 18, 1333.
- 1049 83 K. Kousaka, N. Ogi, Y. Akazawa, M. Fujieda, Y. Yamamoto, Y. Takada and J. Kimura, J. Nat.
- 1050 *Prod.*, 2003, **66**, 1318.
- 1051 84 R. R. Izac and J. J. Sims, J. Am. Chem. Soc., 1979, 101, 6136.
- 1052 85 K. W. Glombitza and A. Schmidt, J. Nat. Prod., 1999, 62, 1238.
- 1053 86 B. Sailler and K. W. Glombitza, *Nat. Tox.*, 1999, 7, 57.
- 1054 87 T. Shibata, Y. Hama, T. Miyasaki, M. Ito and T. Nakamura, J. Appl. Phycol., 2006, 18, 787.
- 1055 88 K. W. Glombitza and G. Gerstberger, *Phytochemistry*, 1985, 24, 543.
- 1056 89 M. Kauch and D. Hoppe, Synthesis-Stuttgart, 2006, 1578.
- 1057 90 H. Arizumi, K. Hata and N. Shimizu, Jpn. Kokkai Tokyo Koho, 1994, 122, 160312.
- 1058 91 R. Denys, A. D. Wright, G. M. Konig and O. Sticher, *Tetrahedron*, 1993, 49, 11213.
- 1059 92 G. M. Konig, A. D. Wright and G. Bernardinelli, *Helv. Chim. Acta*, 1995, 78, 758.
- 1060 93 R. Kazlauskas, P. T. Murphy, R. J. Quinn and R. J. Wells, *Tetrahedron Lett.*, 1977, 37.
- 1061 94 J. A. Pettus, R. M. Wing and J. J. Sims, *Tetrahedron Lett.*, 1977, 41.
- 1062 95 S. J. Crockford, *Integr. Compar. Biol.*, 2009, **49**, 155.
- 1063 96 M. Shah, R. G. Wuilloud, S. S. Kannamkumaratha and J. A. Caruso, J. Anal. Atom. Spectro., 2005,
- 1064 **20**, 176.
- 1065 97 M. Diop, A. Samb, V. Costantino, E. Fattorusso and A. Mangoni, J. Nat. Prod., 1996, 59, 271.
- 1066 98 W. R. Chan, W. F. Tinto, P. S. Manchand and L. J. Todaro, J. Org. Chem., 1987, 52, 3091.
- 1067 99 T. Shioiri, T. Imaeda and Y. Hamada, *Heterocycles*, 1997, 46, 421.
- 1068 100 R. Talpir, Y. Benayahu, Y. Kashman, L. Pannell and M. Schleyer, Tetrahedron Lett., 1994, 35,
- 1069 4453.

- 1070 101 R. N. Sonnenschein, J. J. Farias, K. Tenney, S. L. Mooberry, E. Lobkovsky, J. Clardy and P. Crews,
 1071 Org. Lett., 2004, 6, 779.
- 1072 102 E. D. Desilva, R. J. Andersen and T. M. Allen, *Tetrahedron Lett.*, 1990, **31**, 489.
- 1073 103 A. V. R. Rao, M. K. Gurjar, B. R. Nallaganchu and A. Bhandari, *Tetrahedron Lett.*, 1993, 34, 1074 7085.
- 1075 104 J. E. Coleman, E. D. Desilva, F. M. Kong, R. J. Andersen and T. M. Allen, *Tetrahedron*, 1995, 51, 1076 10653.
- 1077 105 V. M. Freitas, M. Rangel, L. F. Bisson, R. G. Jaeger and G. M. Machado-Santelli, *J. Cell. Physiol.*,
 1078 2008, 216, 583.
- 1079 106 W. F. Tinto, A. J. Lough, S. McLean, W. F. Reynolds, M. Yu and W. R. Chan, *Tetrahedron*, 1998,
 1080 54, 4451.
- 1081 107 M. Rangel, M. P. Prado, K. Konno, H. Naoki, J. C. Freitas and G. M. Machado-Santelli, *Peptides*,
 2006, 27, 2047.
- 1083 108 J. E. Coleman, R. Van Soest and R. J. Andersen, J. Nat. Prod., 1999, 62, 1137.
- 1084 109 M. V. Dauria, L. G. Paloma, L. Minale, A. Zampella, C. Debitus and J. Perez, *J. Nat. Prod.*, 1995,
 1085 58, 121.
- 1086 110 C. Tanaka, J. Tanaka, R. F. Bolland, G. Marriott and T. Higa, *Tetrahedron*, 2006, 62, 3536.
- 1087 111 F. Borrelli, C. Campagnuolo, R. Capasso, E. Fattorusso and O. Taglialatela-Scafati, *Eur. J. Org.* 1088 *Chem.*, 2004, 3227.
- 1089 112 A. Aiello, F. Borrelli, R. Capasso, E. Fattorusso, P. Luciano and M. Menna, *Bioorg. Med. Chem.* 1090 *Lett.*, 2003, 13, 4481.
- 1091 113 A. G. Guzii, T. N. Makarieva, V. A. Denisenko, P. S. Dmitrenok, Y. V. Burtseva, V. B. Krasokhin
 1092 and V. A. Stonik, *Tetrahedron Lett.*, 2008, 49, 7191.
- 1093 114 E. Fattorusso, A. Romano, F. Scala and O. Taglialatela-Scafati, *Molecules*, 2008, 13, 1465.
- 1094 115 V. Costantino, E. Fattorusso, A. Mangoni and M. Pansini, J. Nat. Prod., 1994, 57, 1552.
- 1095 116 A. Kaestner, In Invertebrate Zoology. Editor, Interscience, New York, 1967, Vol. 1.
- 1096 117 T. Hertiani, R. Edrada-Ebel, S. Ortlepp, R. W. M. van Soest, N. J. de Voogd, V. Wray, U.
- 1097 Hentschel, S. Kozytska, W. E. G. Mueller and P. Proksch, *Bioorg. Med. Chem.*, 2010, 18, 1297.
- 1098 118 S. L. Neidleman and J. Geigert, In Biohalogenation: Principles, Basic Roles, and Applications
- 1099 Editor, Ellis Horwood Ltd, Chichester, UK, 1986.
- 1100 119 H. Kim, J. Chin, H. Choi, K. Baek, T.-G. Lee, S. E. Park, W. Wang, D. Hahn, I. Yang, J. Lee, B.
- 1101 Mun, M. Ekins, S.-J. Nam and H. Kang, Org. Lett., 2013, 15, 100.
- 1102 120 H. Kim, J. Chin, H. Choi, K. Baek, T.-G. Lee, S. E. Park, W. Wang, D. Hahn, I. Yang, J. Lee, B.
- 1103 Mun, M. Ekins, S.-J. Nam and H. Kang, Org. Lett., 2013, 15, 5614.
- 1104 121 B. S. Hwang, K. Lee, C. Yang, E. J. Jeong and J.-R. Rho, J. Nat. Prod., 2013, 76, 2355.
- 1105 122 H. Kim, K.-J. Kim, J.-T. Yeon, S. H. Kim, D. H. Won, H. Choi, S.-J. Nam, Y.-J. Son and H. Kang,
 1106 *Mar. Drugs*, 2014, **12**, 2054.
- 1107 123 H. Prawat, C. Mahidol, W. Kaweetripob, S. Wittayalai and S. Ruchirawat, *Tetrahedron*, 2012, 68, 6881.
- 1109 124 C. D. Murphy, J. Appl. Microbiol., 2003, 94, 539.
- 1110 125 J. Zhao, T. Shoeib, K. W. M. Siu and A. C. Hopkinson, Int. J. Mass Spectro., 2006, 255, 265.
- 1111 126 K. Iguchi, S. Kaneta, K. Mori, Y. Yamada, A. Honda and Y. Mori, J. Chem. Soc. Chem. Commun.,
- 1112 1986, 981.
- 1113 127 A. Honda, Y. Mori, K. Iguchi and Y. Yamada, *Mol. Pharmacol.*, 1987, **32**, 530.

- 1114 128 K. Watanabe, M. Sekine and K. Iguchi, J. Nat. Prod., 2003, 66, 1434.
- 1115 129 Y. C. Shen, Y. B. Cheng, Y. C. Lin, J. H. Guh, C. M. Teng and C. L. Ko, J. Nat. Prod., 2004, 67,
- 1116 542.
- 1117 130 K. Watanabe, M. Sekine, H. Takahashi and K. Iguchi, J. Nat. Prod., 2001, 64, 1421.
- 1118 131 J.-F. Sun, H. Huang, X.-Y. Chai, X.-W. Yang, L. Meng, C.-G. Huang, X.-F. Zhou, B. Yang, J. Hu,
- 1119 X.-Q. Chen, H. Lei, L. Wang and Y. Liu, *Tetrahedron*, 2011, **67**, 1245.
- 1120 132 H. Lei, J.-F. Sun, Z. Han, X.-F. Zhou, B. Yang and Y. Liu, RSC Advances, 2014, 4, 5261.
- 1121 133 T. Rezanka, L. O. Hanus, V. M. Dembitsky and K. Sigler, Eur. J. Org. Chem., 2008, 1265.
- 1122 134 K. Hohaus, A. Altmann, W. Burd, I. Fischer, P. E. Hammer, D. S. Hill, J. M. Ligon and K. H.
 1123 VanPee, *Angew. Chem. Int. Ed.*, 1997, 36, 2012.
- 1124 135 K. O. Hanssen, B. Schuler, A. J. Williams, T. B. Demissie, E. Hansen, J. H. Andersen, J. Svenson,
- 1125 K. Blinov, M. Repisky, F. Mohn, G. Meyer, J.-S. Svendsen, K. Ruud, M. Elyashberg, L. Gross, M.
- 1126 Jaspars and J. Isaksson, *Angew. Chem. Int. Ed.*, 2012, **51**, 12238.
- 1127 136 A. Aiello, E. Fattorusso, C. Imperatore, M. Menna and W. E. G. Mueller, *Mar. Drugs*, 2010, 8,
 1128 285.
- 1129 137 W. Y. Yoshida, K. K. Lee, A. R. Carroll and P. J. Scheuer, Helv. Chim. Acta, 1992, 75, 1721.
- 1130 138 S. Manzanaro, J. Salva and J. A. de la Fuente, *J Nat Prod*, 2006, **69**, 1485.
- 1131 139 K. Takamura, H. Matsuo, A. Tanaka, J. Tanaka, T. Fukuda, F. Ishibashi and M. Iwao, *Tetrahedron*, 2012 (0, 2782)
- 1132 2013, **69**, 2782.
- 1133 140 P. Margiastuti, T. Ogi, T. Teruya, J. Taira, K. Suenaga and K. Ueda, Chem. Lett., 2008, 37, 448.
- 1134 141 D. F. Sesin and C. M. Ireland, *Tetrahedron Lett.*, 1984, 25, 403.
- 1135 142 S. S. Mitchell, S. C. Pomerantz, G. P. Concepcion and C. M. Ireland, J. Nat. Prod., 1996, 59, 1136 1000.
- 1137 143 A. R. Carroll, B. F. Bowden and J. C. Coll, Aust. J. Chem., 1993, 46, 825.
- 1138 144 G. Solano, C. A. Motti and M. Jaspars, *Tetrahedron*, 2009, 65, 7482.
- 1139 145 N. Lindquist and W. Fenical, *Tetrahedron Lett.*, 1990, **31**, 2521.
- 1140 146 A. Aiello, F. Borrelli, R. Capasso, E. Fattorusso, P. Luciano and M. Menna, Bioorganic &
- 1141 Medicinal Chemistry Letters, 2003, 13, 4481.
- 1142 147 H. Kigoshi, K. Kanematsu and D. Uemura, *Tetrahedron Lett.*, 1999, 40, 5745.
- 1143 148 H. Kigoshi, K. Kanematsu, K. Yokota and D. Uemura, Tetrahedron, 2000, 56, 9063.
- 1144 149 Y. Kotaki and T. Yasumoto, Bull. Jpn. Soc. Scient. Fish., 1977, 43, 1467.
- 1145 150 H. Ishiwata, T. Nemoto, M. Ojika and K. Yamada, J. Org. Chem., 1994, 59, 4710.
- 1146 151 H. Ishiwata, H. Sone, H. Kigoshi and K. Yamada, J. Org. Chem., 1994, 59, 4712.
- 1147 152 H. Ishiwata, H. Sone, H. Kigoshi and K. Yamada, *Tetrahedron*, 1994, **50**, 12853.
- 1148 153 R. DeNys, P. D. Steinberg, C. N. Rogers, T. S. Charlton and M. W. Duncan, Mar. Ecol. Prog. Ser.,
- 1149 1996, **130**, 135.
- 1150 154 S. C. Lee, G. A. Williams and G. D. Brown, *Phytochemistry*, 1999, **52**, 537.
- 1151 155 S. M. Bonesi and R. Erra-Balsells, J. Heterocyc. Chem., 2001, 38, 77.
- 1152 156 A. V. Shpatov, M. M. Shakirov and V. A. Raldugin, Rus. J. Org. Chem., 2000, 36, 1127.
- 1153 157 J. Ishihara, Y. Shimada, N. Kanoh, Y. Takasugi, A. Fukuzawa and A. Murai, *Tetrahedron*, 1997, 53,
 1154 8371.
- 1155 158 T. Iizuka, R. Fudou, Y. Jojima, S. Ogawa, S. Yamanaka, Y. Inukai and M. Ojika, J. Antibiot., 2006,
- 1156 **59**, 385.
- 1157 159 M. Ojika, Y. Inukai, Y. Kito, M. Hirata, T. Iizuka and R. Fudou, *Chem. Asian J.*, 2008, **3**, 126.

- 1158 160 M. D. Lee, T. S. Dunne, M. M. Siegel, C. C. Chang, G. O. Morton and D. B. Borders, J. Am.
- 1159 *Chem. Soc.*, 1987, **109**, 3464.
- 1160 161 M. D. Lee, J. K. Manning, D. R. Williams, N. A. Kuck, R. T. Testa and D. B. Borders, *J. Antibiot.*,
 1161 1989, 42, 1070.
- 1162 162 M. D. Lee, T. S. Dunne, C. C. Chang, G. A. Ellestad, M. M. Siegel, G. O. Morton, W. J. McGahren
- 1163 and D. B. Borders, J. Am. Chem. Soc., 1987, 109, 3466.
- 1164 163 M. D. Lee, T. S. Dunne, C. C. Chang, M. M. Siegel, G. O. Morton, G. A. Ellestad, W. J. McGahren
- 1165 and D. B. Borders, J. Am. Chem. Soc., 1992, 114, 985.
- 1166 164 G.A. Ellestad, *Chirality*, 2011, 23, 660.
- 1167 165 K. C. Nicolaou, C. R. H. Hale and C. Nilewski, Chem. Rec., 2012, 12, 407.
- 1168 166 S. Webb, *Nature Biotechnol.*, 2011, **29**, 297.
- 1169 167 U. Iyer and V. J. Kadambi, J. Pharmacol. Toxicol. Methods, 2011, 64, 207.
- 1170 168 K. C. Nicolaou, C. W. Hummel, E. N. Pitsinos, M. Nakada, A. L. Smith, K. Shibayama and H.
- 1171 Saimoto, J. Am. Chem. Soc., 1992, 114, 10082.
- 1172 169 S. A. Hitchcock, M. Y. Chumoyer, S. H. Boyer, S. H. Olson and S. J. Danishefsky, J. Am. Chem.
- 1173 Soc., 1995, **117**, 5750.
- 1174 170 S. Walker, R. Landovitz, W. D. Ding, G. A. Ellestad and D. Kahne, *Proc. Nat. Aca. Sci. Am.*, 1992,
 1175 **89**, 4608.
- 1176 171 G. P. Horsman, Y. Chen, J. S. Thorson and B. Shen, Proc. Nat. Acad. Sci. Am., 2010, 107, 11331.
- 1177 172 D. Simkhada, T.-J. Oh, E. M. Kim, J. C. Yoo and J. K. Sohng, Biotechnol. Lett., 2009, 31, 147.
- 1178 173 C. Zhang, E. Bitto, R. D. Goff, S. Singh, C. A. Bingman, B. R. Griffith, C. Albermann, G. N.
- 1179 Phillips, Jr. and J. S. Thorson, Chem. Biol., 2008, 15, 842.
- 1180 174 L. E. Limpel and J. E. Casida, J. Exper. Zool., 1957, 135, 19.
- 1181 175 L. E. Limpel and J. E. Casida, J. Exper. Zool., 1957, 136, 595.
- 1182 176 J. F. B. Haney and S. Lissitzky, *Biochim. Biophys. Acta*, 1962, 63, 557.
- 1183 177 M. I. Surks, S. Weinbach and E. M. Volpert, *Endocrinology*, 1968, 82, 1156.
- 1184 178 L. E. Perlgut and W. W. Wainio, *Biochemistry*, 1966, 5, 608.
- 1185 179 L. E. Perlgut and W. W. Wainio, *Biochemistry*, 1967, 6, 15.
- 1186 180 H. B. Bensusan and M. S. R. Naidu, *Biochemistry*, 1967, 6, 12.
- 1187 181 L. E. Perlgut and W. W. Wainio, Feder. Proc., 1965, 24, 363.
- 1188 182 R. W. Heninger, F. C. Larson and E. C. Albright, *Endocrinology*, 1966, 78, 61.
- 1189 183 J. C. Savoie, Thomopou.P and F. Savoie, J. Clinic. Invest., 1973, 52, 106.
- 1190 184 Y. Seyama, S. Yamashita and N. Ishikawa, Yakugaku Zasshi, 1975, 95, 648.
- 1191 185 Y. Seyama, S. Yamashita and N. Ishikawa, Yakugaku Zasshi, 1978, 98, 1055.
- 1192 186 A. Pereira, J. C. Braekman, J. E. Dumont and J. M. Boeynaems, J. Biol. Chem., 1990, 265, 17018.
- 1193 187 V. Panneels, J. Vansande, H. Vandenbergen, C. Jacoby, J. C. Braekman, J. E. Dumont and J. M.
- 1194 Boeynaems, Mol. Cell. Endocrinol., 1994, 106, 41.
- 1195 188 V. Panneels, H. Vandenbergen, C. Jacoby, J. C. Braekman, J. Vansande, J. E. Dumont and J. M.
- 1196 Boeynaems, Mol. Cell. Endocrinol., 1994, 102, 167.
- 1197 189 V. Panneels, P. Macours, H. VandenBergen, J. C. Braekman, J. VanSande and J. M. Boeynaems, J.
- 1198 Biol. Chem., 1996, 271, 23006.
- 1199 190 H. Van den Bergen, D. Daloze and J. C. Braekman, J. Braz. Chem. Soc., 1999, 10, 1.
- 1200 191 C. Jacoby, J. C. Braekman and D. Daloze, *Tetrahedron*, 1996, **52**, 10473.
- 1201 192 J. M. Boeynaems, J. T. Watson, J. A. Oates and W. C. Hubbard, *Lipids*, 1981, 16, 323.

RSC Advances Accepted Manuscript

1202 193 S. R. Chemburkar, K. C. Deming and R. E. Reddy, *Tetrahedron*, 2010, 66, 1955.

- 1203 194 E. Baumann, Z. Physiol. Chem., 1895, XXI, 319.
- 1204 195 E. C. Kendall, J. Am. Med. Assoc., 1915, 64, 2042.
- 1205 196 C. R. Harington, *Biochem. J.*, 1926, 20, 293.
- 1206 197 J. Roche and R. Michel, *Physiol. Rev.*, 1955, 35, 583.
- 1207 198 E. C. Kendall, J. Biol. Chem., 1919, 39, 125.
- 1208 199 E. C. Kendall and A. E. Osterberg, J. Biol. Chem., 1919, 40, 265.
- 1209 200 C. R. Harington and G. Barger, *Biochem. J.*, 1927, **21**, 169.
- 1210 201 C. R. Harington and W. T. Salter, Biochem. J., 1930, 24, 456.
- 1211 202 G. L. Foster, W. W. Palmer and J. P. Leland, J. Biol. Chem., 1936, 115, 467.
- 1212 203 A. Canzanelli, C. R. Harington and S. S. Randall, *Biochem. J.*, 1934, 28, 68.
- 1213 204 R. Gartner, A. Dugrillon and G. Bechtner, Acta Med. Austriaca, 1996, 23, 47.
- 1214 205 G. D. Chazenbalk, M. A. Pisarev, G. J. Juvenal, D. L. K. Depisarev, H. Mercuri and M. Detomas,
- 1215 Acta Endocrinologica, 1985, **108**, 72.
- 1216 206 J. M. Boeynaems and W. C. Hubbard, J. Biol. Chem., 1980, 255, 9001.
- 1217 207 A. Dugrillon and R. Gartner, Eur. J. Endocrinol., 1995, 132, 735.
- 1218 208 J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munro and M. R. Prinsep, Nat. Prod. Rep., 2012,
- 1219 **29**, 144.
- 1220 209 D. J. Faulkner, Nat. Prod. Rep., 2002, 19, 1.
- 1221 210 J. C. Savoie, J. P. Massin and F. Savoie, J. Clinic. Invest., 1973, 52, 116.
- 1222 211 P. Von Mutzenbecher, Hoppe-Seylers Zeitschrift Fur Physiologische Chemie, 1939, 261, 253.
- 1223 212 F. Blasi, Fragomel.F and I. Covelli, Endocrinology, 1969, 85, 542.
- 1224 213 L. J. Degroot and H. Niepomniszcze, Metabol. Clinic. Exper., 1977, 26, 665.
- 1225 214 T. B. Johnson and L. B. Tewkesbury, Proc. Nat. Acad. Sci. Am., 1942, 28, 73.
- 1226 215 A. Taurog, M. Dorris and D. R. Doerge, Arch. Biochem. Biophys., 1994, 315, 82.
- 1227 216 G. Hillmann, B. Keil and P. Taslimi, Zeitschrift Fur Naturforschung B, 1961, B 16, 28.
- 1228 217 R. I. Meltzer and R. J. Stanaback, J. Org. Chem., 1961, 26, 1977.
- 1229 218 R. Pittrivers, *Biochem. J.*, 1948, 43, 223.
- 1230 219 M. Sela and S. Sarid, *Nature*, 1956, **178**, 540.
- 1231 220 R. Pittrivers and A. T. James, *Biochem. J.*, 1958, 70, 173.
- 1232 221 J. M. Gavaret, H. J. Cahnmann and J. Nunez, J. Biol. Chem., 1979, 254, 1218.
- 1233 222 N. V. Bell, W. R. Bowman, P. F. Coe, A. T. Turner and D. Whybrow, *Can. J. Chem.*, 1997, 75, 1234
 873.
- 1234 8
- 1235 223 Y. A. Ma, C. J. Sih and A. Harms, J. Am. Chem. Soc., 1999, 121, 8967.
- 1236 224 C. R. Harington, *Biochem. J.*, 1928, 22, 1429.
- 1237 225 J. Wolff, J. Mol. Med., 1980, 4, 151.
- 1238 226 T. I. Solling, Acta Chem. Scandinavica, 1998, **52**, 372.
- 1239 227 K. R. Redeker, K. K. Treseder and M. F. Allen, Glob. Change Biol., 2004, 10, 1009.
- 1240 228 K. R. Redeker, N. Y. Wang, J. C. Low, A. McMillan, S. C. Tyler and R. J. Cicerone, *Science*, 2000,
 1241 290, 966.
- 1242 229 K. R. Redeker, J. Andrews, F. Fisher, R. Sass and R. J. Cicerone, *Glob. Biogeochem. Cyc.*, 2002,
 1243 16, 1125.
- 1244 230 K. R. Redeker, S. L. Manley, M. Walser and R. J. Cicerone, Glob. Biogeochem. Cyc., 2004, 18,
- 1245 L15801.

- 1246 231 K. R. Redeker and R. J. Cicerone, *Glob. Biogeochem. Cyc.*, 2004, 18, Gb1027.
- 1247 232 J. Lee-Taylor and K. R. Redeker, *Geophys. Res. Lett.*, 2005, **32**, L15801.
- 1248 233 Y. Muramatsu and S. Yoshida, Atmos. Environ., 1995, 29, 21.
- 1249 234 F. M. Schwandner, T. M. Seward, A. P. Gize, P. A. Hall and V. J. Dietrich, J Geophys. Res. Atmos.,
- 1250 2004, **109**, D04301.
- 1251 235 A. Jordan, J. Harnisch, R. Borchers, F. N. Le Guern and H. Shinohara, Environ. Sci. Technol.,
- 1252 2000, **34**, 1122.
- 1253 236 F. Keppler, R. Eiden, V. Niedan, J. Pracht and H. F. Scholer, *Nature*, 2000, 403, 298.
- 1254 237 M. L. Cox, P. J. Fraser, G. A. Sturrock, S. T. Siems and L. W. Porter, *Atmos. Environ.*, 2004, 38, 3839.
- 1256 238 C. H. Dimmer, P. G. Simmonds, G. Nickless and M. R. Bassford, Atmos. Environ., 2001, 35, 321.
- 1257 239 C. Johansson, I. Pavasars, H. Boren, A. Grimvall, O. Dahlman, R. Morck and A. Reimann,
 1258 *Environ. Int.*, 1994, 20, 103.
- 1259 240 M. Martino, G. P. Mills, J. Woeltjen and P. S. Liss, *Geophys. Res. Lett.*, 2009, 36, L01609.
- 1260 241 F. Laturnus, Environmental Science and Pollution Research, 2001, 8, 103.
- 1261 242 M. S. P. Mtolera, J. Collen, M. Pedersen, A. Ekdahl, K. Abrahamsson and A. K. Semesi, Eur. J.
- 1262 Phycol., 1996, **31**, 89.
- 1263 243 L. J. Carpenter, G. Malin, P. S. Liss and F. C. Kupper, *Glob. Biogeochem. Cyc.*, 2000, 14, 1191.
- 1264 244 R. Tokarczyk and R. M. Moore, *Geophys. Res. Lett.*, 1994, 21, 285.
- 1265 245 N. J. Blake, D. R. Blake, B. C. Sive, T. Y. Chen, F. S. Rowland, J. E. Collins, G. W. Sachse and B.
- 1266 E. Anderson, J. Geophys. Res. Atmos., 1996, 101, 24151.
- 1267 246 M. O. Andreae, E. Atlas, G. W. Harris, G. Helas, A. DeKock, R. Koppmann, W. Maenhaut, S.
- Mano, W. H. Pollock, J. Rudolph, D. Scharffe, G. Schebeske and M. Welling, J. Geophys. Res. Atmos.,
 1996, 101, 23603.
- 1270 247 M. O. Andreae and P. Merlet, Glob. Biogeochem. Cyc., 2001, 15, 955.
- 1271 248 P. J. Scheuer, Science, 1990, 248, 173.
- 1272 249 D. H. Williams, M. J. Stone, P. R. Hauck and S. K. Rahman, J. Nat. Prod., 1989, 52, 1189.
- 1273 250 J. M. Winter and B. S. Moore, J. Biol. Chem., 2009, 284, 18577.
- 1274 251 C. Wagner, M. El Omari and G. M. Koenig, J. Nat. Prod., 2009, 72, 540.
- 1275 252 D. R. M. Smith, S. Grueschow and R. J. M. Goss, Curr. Opin. Chem. Biol., 2013, 17, 276.
- 1276 253 P. D. Shaw and L. P. Hager, J. Biol. Chem., 1959, 234, 2565.
- 1277 254 A. Butler and J. N. Carter-Franklin, Nat. Prod. Rep., 2004, 21, 180.
- 1278 255 A. Taurog and E. M. Howells, J. Biol. Chem., 1966, 241, 1329.
- 1279 256 D. R. Morris and L. P. Hager, J. Biol. Chem., 1966, 241, 1763.
- 1280 257 L. P. Hager, D. R. Morris, F. S. Brown and H. Eberwein, J. Biol. Chem., 1966, 241, 1769.
- 1281 258 M. Morrison and G. R. Schonbaum, Ann. Rev. Biochem., 1976, 45, 861.
- 1282 259 D. G. Fujimori, E. W. Barr, M. L. Matthews, G. M. Koch, J. R. Yonce, C. T. Walsh, J. M. Bollinger,
- 1283 Jr., C. Krebs and P. J. Riggs-Gelasco, J. Am. Chem. Soc., 2007, 129, 13408.
- 1284 260 D. P. Collins, I. S. Isaac, E. D. Coulter, P. W. Hager, D. P. Ballou and J. H. Dawson, *J. Porphyr.* 1285 *Phthalocya.*, 2013, 17, 63.
- 1286 261 C. Colin, C. Leblanc, E. Wagner, L. Delage, E. Leize-Wagner, A. Van Dorsselaer, B. Kloareg and
- 1287 P. Potin, J. Biol. Chem., 2003, 278, 23545.
- 1288 262 X. Chen and K.-H. van Pee, Acta Biochim. Biophys. Sin., 2008, 40, 183.
- 1289 263 K. H. van Pee and E. P. Patallo, Appl. Microbiol. Biotechnol., 2006, 70, 631.

- 1290 264 K.-H. van Pee, in Natural Product Biosynthesis by Microorganisms and Plants, Pt B, ed. by D. A.
- 1291 Hopwood, **2012**, Vol. 516, pp. 237.
- 1292 265 A. C. Jones, E. A. Monroe, E. B. Eisman, L. Gerwick, D. H. Sherman and W. H. Gerwick, *Nat.*1293 *Prod. Rep.*, 2010, 27, 1048.
- 1294 266 A. M. Wuosmaa and L. P. Hager, Science, 1990, 249, 160.
- 1295 267 F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodikova and C. T. Walsh, *Chem. Rev.*,
 1296 2006, 106, 3364.
- 1297 268 M. Almeida, M. Humanes, R. Melo, J. A. Silva, J. da Silva, H. Vilter and R. Wever,
 1298 *Phytochemistry*, 1998, 48, 229.
- 1299 269 M. Almeda, M. Humanes, R. Melo, J. Silva and d. S. J. Frausto, in Plant Peroxidases-
- 1300 Biochemistry and Physiology, ed. by C. Obringer, U. Burner, R. Ebermann, C. Penel, H. Greppin,
- 1301 University of Geneva, Geneva, **1996**, pp. 146.
- 1302 270 M. Almeida, M. G. Almeida, M. Humanes, R. A. Melo, J. A. Silva and J. J. R. Frausto da Silva,
 1303 *Phycologia*, 1997, **36**, 1.
- 1304 271 M. G. Almeida, M. Humanes, R. Melo, J. A. Silva, J. da Silva and R. Wever, *Phytochemistry*, 2000,
 1305 54, 5.
- 1306 272 M. Almeida, S. Filipe, M. Humanes, M. F. Maia, R. Melo, N. Severino, J. A. L. da Silva, J. da
 1307 Silva and R. Wever, *Phytochemistry*, 2001, 57, 633.
- 1308 273 G. Mehrtens and F. Laturnus, Pol. Res., 1997, 16, 19.
- 1309 274 G. Mehrtens, Pol. Biol., 1994, 14, 351.
- 1310 275 F. C. Kupper, N. Schweigert, E. A. Gall, J. M. Legendre, H. Vilter and B. Kloareg, *Planta*, 1998, 1211 207 162
- **1311 207**, 163.
- 1312 276 C. D. Murphy, R. M. Moore and R. L. White, J. Appl. Phycol., 2000, 12, 507.
- 1313 277 H. Vilter, Bot. Mar., 1983, 26, 429.
- 1314 278 M. P. J. vanDeurzen, F. vanRantwijk and R. A. Sheldon, *Tetrahedron*, 1997, 53, 13183.
- 1315 279 W. M. Sun and H. B. Dunford, *Biochemistry*, 1993, **32**, 1324.
- 1316 280 A. Cosse, P. Potin and C. Leblanc, New Phytol., 2009, 182, 239.
- 1317 281 C. Colin, C. Leblanc, G. Michel, E. Wagner, E. Leize-Wagner, A. Van Dorsselaer and P. Potin, J.
- 1318 Biol. Inorg. Chem., 2005, 10, 156.
- 1319 282 S. Klebanof, J. Bacteriol., 1968, 95, 2131.
- 1320 283 S. J. Weiss, S. T. Test, C. M. Eckmann, D. Roos and S. Regiani, *Science*, 1986, 234, 200.
- 1321 284 G. W. Gribble, J. Chem. Educ., 1994, 71, 907.
- 1322 285 L. C. Blasiak and C. L. Drennan, Acc. Chem. Res., 2009, 42, 147.
- 1323 286 K. Naumann, J. Fur Praktische Chem., 1999, 341, 417.
- 1324 287 W. M. Maiese, M. P. Lechevalier, H. A. Lechevalier, J. Korshalla, N. Kuck, A. Fantini, M. J.
- 1325 Wildey, J. Thomas and M. Greenstein, J. Antibiot., 1989, 42, 558.
- 1326 288 T. Fujihashi, H. Hara, T. Sakata, K. Mori, H. Higuchi, A. Tanaka, H. Kaji and A. Kaji, Antimicrob.
- 1327 Agen. Chemother., 1995, **39**, 2000.
- 1328 289 M. Assmann, E. Lichte, J. R. Pawlik and M. Kock, Mar. Ecol. Prog. Ser., 2000, 207, 255.
- 1329 290 C. D. Tatko and M. L. Waters, Org. Lett., 2004, 6, 3969.
- 1330
- 1331