Molten salt synthesis of nano-sized Li$_4$Ti$_5$O$_{12}$ doped with Fe$_2$O$_3$ as anode materials for lithium-ion battery

Qingjun Guo, Shiyan Li, Heng Wang, Yuan Gao, Bing Li*

East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237

Abstract: A single phase Li$_{4}$Ti$_{5-x}$Fe$_x$O$_{12}$ (x=0, 0.1, 0.2, 0.3) with spinel structure has been synthesized in LiCl-KCl molten salts with a stoichiometric molar ratio of LiOH·H$_2$O, TiO$_2$, Fe$_2$O$_3$, LiCl-KCl of 4:5:x/2:20 (x=0, 0.1, 0.2, 0.3). The effects of Fe$_2$O$_3$ on the phase structure, morphology and particle size of Li$_4$Ti$_5$O$_{12}$ were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) equipped with energy dispersive spectroscopy (EDS). The electrochemical performances of the Li$_{4}$Ti$_{5-x}$Fe$_x$O$_{12}$ (x=0, 0.1, 0.2, 0.3) were characterized by charge-discharge curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results show that Fe$_2$O$_3$ homogenously distributes in the crystal lattice of Li$_4$Ti$_5$O$_{12}$ and make the lattice parameters slightly increase due to Fe$^{3+}$ ions doping. Addition of 0.1 molar ratio Fe$_2$O$_3$ to Li$_4$Ti$_5$O$_{12}$ has reduced the particle size of Li$_4$Ti$_5$O$_{12}$ from 1 µm to about 200 nm. The obtained Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ as anode material of Lithium-ion battery has presented the capacity of 173.7 mAhg$^{-1}$ at 0.2 C, approach to the theoretical capacity of Li$_4$Ti$_5$O$_{12}$ (175 mAhg$^{-1}$), and given a capacity of 103.4 mAhg$^{-1}$ at 10 C, much larger than the value of pure Li$_4$Ti$_5$O$_{12}$ (28.7 mAhg$^{-1}$). This is well explained by the EIS and CV results.

Keywords: Molten salt synthesis; Fe$_2$O$_3$; Li$_4$Ti$_5$O$_{12}$; lithium-ion battery

* Corresponding author.

E-mail address: bingli@ecust.edu.cn.
1. Introduction

The spinel Li$_4$Ti$_5$O$_{12}$ (LTO) has recently attracted much attention due to Zero Type Variational, high safety and good thermal stability as anode materials for Lithium-ion battery (LIB). However, the empty Ti 3d state with band energy of about 2eV causes LTO intrinsic low electronic and ionic conductivity, worse rate performance, which have limited its wide commercialization1,2.

Therefore, several LTO modification methods such as coating carbon3 or metallic conducting layer on the surface4, doping ions$^{5-13}$ in the position of Li, Ti or O, and reducing the particle size14,15 have been proposed to improve the conductivity and rate performance of LTO. Ions doping can cause LTO lattice defect and make a rapid Li-ion intercalation/deintercalation processes. Reducing the particle size can shorten Li-ion transfer route and therefore improve the rate performance16.

LTO is usually synthesized by solid-state method, the synthesized LTO materials are usually composed of inhomogeneous, larger size particles with lower activity as the anode materials of LIBs. As a promising method, molten salts method has shown excellent advantages in controlling composition, morphology, activity and homogeneity of LTO because molten salts are homogenous media for the solid phase synthesis reaction and can realize molecule even atom level mixture for the reactants and prevent particles aggregation. Liang Cheng17 has reported that nano-scale LTO is synthesized in a mass of LiCl (the molar ratio of LiCl to TiO$_2$ is as high as 16) molten salt and has shown an initial capacity of 159 mAh$^{-1}$ as anode materials of LIB. Bai18 has mainly researched the influences of composite molten salts on the morphology and performances of synthesized spinel LTO.

Usually, during LTO molten salts synthesis process heterogeneous nuclei such as Fe$_2$O$_3$ rather than LTO is facilitated to reduce the particle size of LTO. Moreover, Fe$_2$O$_3$ itself is a potential anode material for LIB19,20. Spinel LTO covered by a thin film of Fe$_2$O$_3$, has been prepared by solid-state method combined with hydrolysis method and further 12 h heat-treatment21. The obtained Li$_4$Ti$_5$O$_{12}$/Fe$_2$O$_3$ composites as anode materials of LIB have showed a discharge capacity of 109.4 mAh$^{-1}$ at 10 C.
and superior cycling stability with an initial discharge capacity of 145.3 mAhg\(^{-1}\) at 2 C rate. However, the fabrication process is very complicated and Fe\(_2\)O\(_3\) has not doped into Li\(_4\)Ti\(_5\)O\(_{12}\) crystal lattice.

Therefore, in this paper, molten salts method is used to directly synthesize nano-sized Li\(_4\)Ti\(_{5-x}\)Fe\(_x\)O\(_{12}\) (x=0, 0.1, 0.2, 0.3) (LT(F)O) in LiCl-KCl molten salts with a stoichiometric molar ratio of LiOH-H\(_2\)O, TiO\(_2\), Fe\(_2\)O\(_3\), LiCl-KCl of 4:5:x/2:20 (x=0, 0.1, 0.2, 0.3). The thimbleful amount of Fe\(_2\)O\(_3\) is added to further reduce particle size and improve LTO electronic conductivity so as to improve its electrochemical performance as LIB. The effects of Fe\(_2\)O\(_3\) on the morphology, structure and electrochemical performance of LTO are investigated.

2. Experimental

2.1. Preparation of LT(F)O

The raw materials used in the experiments include LiOH-H\(_2\)O (RG, Adamas Reagent, Ltd.), anatase TiO\(_2\) (AR, XiyaReagent, Ltd), LiCl, KCl and Fe\(_2\)O\(_3\) (≥99.0%, AR, Sinopharm Chemical Reagent Co., Ltd), A stoichiometric molar ratio of LiOH-H\(_2\)O, TiO\(_2\), Fe\(_2\)O\(_3\) and LiCl-KCl of 4:5:x/2:20 (x=0,0.1,0.2,0.3) is weighed and mixed in an agate mortar for 10 min. Then the mixture is placed in a corundum crucible, rapidly heated to 800 °C and held for 4 h under air atmosphere. After naturally cooled to room temperature, the mixture is washed with deionized water and filtered repeatedly until the chloride ions could not be detected in AgNO\(_3\) solution. The LT(F)O powders are obtained after drying at 120 °C for 12 h in a drying oven under air atmosphere.

2.2. Sample characterization

X-ray diffraction (XRD, D/max2550V) with Cu K\(\alpha1\) (10°<20<80°) radiation is used to identify the phase composition and crystal lattice parameters of the prepared powders. Morphology and particle size of the powders are determined by scanning electron microscope (SEM, JEOL JSM-6360LV), and the nanoscale microstructure of the particles is examined using transmission electron microscope (TEM, JEM-2100)
equipped with energy dispersive spectroscope (EDS, VARIO ELIII).

2.3. Electrochemical test

For electrochemical measurements, the LT(F)O electrodes are made by the following steps: homogenous slurries are prepared by mixing the solute comprising of obtained LT(F)O, carbon black (Super-P) and polyvinylidene fluoride (PVDF) (weight ratio of 80:10:10) with N-methyl-2-pyrrolidine (NMP) solvent (the weight ratio of solute and solvent is 1:3.86), and magnetically stirring for 4 h. Then the slurry is cast onto a copper foil to form a 100 µm thick film by a coating machine. The film is heated to 90 °C and remained for 12 h in a vacuum oven to evaporate the solvent. The copper foil is further cut into disks of diameter 12 mm by using mechanical drilling machine and pressed the electrode plates into 50 µm thickness using tabletting machine. The total amounts of the electrode slices are selected as 11.5-13.5 mg, so the weight of LT(F)O sample electrodes are 2.0-3.0 mg. The coin-type cells with the prepared LT(F)O slices as the anode and lithium plate (Φ16 mm×1.5 mm, China Energy Lithium Co., Ltd.) as the cathode in a 1 M LiPF₆ in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (1:1:1 in volume) electrolyte with a Celgard 2400 separator are assembled in an argon-filled glove box, both the contents of H₂O and O₂ are less than 1 ppm.

All the electrochemical tests are carried out in a two-electrode system in which LT(F)O electrode is used as the working electrode, lithium plate as the counter and reference electrodes. During cycle tests, the coin cells are charged/discharged under different current densities by designating cut-off voltages of 1.2 V and 2.5 V vs. Li/Li⁺ by using a charge/discharge battery tester (New ware TC5.X, Shenzhen). The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are measured by electrochemical workstation (Parstat 2237). The scan rate of CV is 0.1 mV/s in the potential range of 0 to 3 V, and the EIS is measured at 5 mV amplitude with the frequency from 100 kHz to 0.01 Hz.

It is worth to note that in the paper the charge indicates Li intercalation into LT(F)O electrode and the discharge means Li deintercalation from the LT(F)O electrode.
3. Results and discussion

3.1. XRD results

The XRD patterns of LT(F)O are shown in Fig. 1a. All the samples show the major diffraction peaks which are in accordance with spinel LTO (JCPDS Card No.49-0207), indicating that the crystal structure of LTO is retained after Fe$_2$O$_3$ modification. However, as Fe$_2$O$_3$ molar ratio increases from 0 to 0.15, the diffraction peaks of (111) plane shift to higher diffraction angles in Fig. 1b, and the lattice parameters of LTO increase from 0.8354 nm to 0.8365 nm in table 1. The results imply that some Fe$^{3+}$ ions doped into the crystal lattice and substitute Ti$^{4+}$ ions position and make the lattice parameters slightly increase even though Fe$^{3+}$ ion (0.064 nm) is a little smaller than Ti$^{4+}$ ion (0.067 nm). This is could be explained as follows. When the smaller trivalent iron ion took the 16d site where the lithium ions located, the lithium ions could randomly occupy the 8a, 16c or 48f sites to provide the charge compensation for the iron ion that lead to the increase lattice parameter so that the paths for Li$^+$ ion intercalation/deintercalation become widen22,23.

![Fig. 1. XRD pattern of as-prepared Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ (x=0,0.1,0.2,0.3).](image.png)

Table 1

The lattice parameter of LT(F)O.

3.2. SEM and TEM analysis

SEM images of the LT(F)O samples are shown in Fig. 2a-d. The four samples are well crystallized with uniform particle size distribution. The particle size obviously decreases as Fe$_2$O$_3$ molar ratio increases from 0 to 0.15. The pure LTO particle size is around 0.5-1.5 μm, Li$_4$Ti$_4$Fe$_{0.5}$O$_{12}$ and Li$_4$Ti$_4$Fe$_{0.2}$O$_{12}$ are around 150-250 nm. The results demonstrate that a small amount of Fe$_2$O$_3$ doping into LTO has significantly reduced the particle size and the specific surface area of LTO24. The reason why LTO doped with Fe$_2$O$_3$ can reduce the particle size of LTO will be discussed in the future.
Fig. 2. SEM images of Li$_{4}$Ti$_{5-x}$Fe$_{x}$O$_{12}$ (a) x =0; (b) x =0.1; (c)x =0.2; (d)x=0.3.

Fig. 3. TEM images of Li$_{4}$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ with energy dispersive spectroscopy (EDS) (a) the smooth surface; (b) the roughened surface.

Fig. 4. TEM image of Li$_{4}$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ and the corresponding EDX mapping images of Fe, O and Ti elements.

Fig. 5. HRTEM image of Li$_{4}$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ powder.

TEM images in Fig. 3 show that the surface of Li$_{4}$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ exists some small bumps in some sites. Element composition on both the smooth surface in Fig. 3a and the roughened surface (with bumps) in Fig. 3b by the energy dispersive spectroscopy (EDS) has shown almost the same Ti, O and Fe elements. Further study by the energy dispersive X-ray (EDX) mapping in Fig. 4 has shown that Fe element uniformly distributes in the whole particle as the Ti and O elements, suggesting that the small bumps are also subsize LTO crystal grains and Fe elements homogenously distribute in the crystal lattice of LTO. The morphology and internal structure of Li$_{4}$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ are further characterized by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The clear lattice fringes of Li$_{4}$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ obtained by HRTEM images in Fig. 5 indicate that Li$_{4}$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ has a well-defined crystal structure. The d-spacing 0.244 nm of the particle matches with that of (222) plane of spinel LTO25.

3.3. Electrochemical performances

In order to characterize the effects of Fe$_{2}$O$_{3}$ on LT(F)O cyclic performance as anode materials for LIB, the first charge/discharge curves and cycling performance of LT(F)O between 1.2 and 2.5 V at 0.2 C rate are measured and shown in Fig. 6.

From the first charge/discharge curves in Fig. 6a, all the samples show a flat voltage plateau around 1.5-1.6 V (vs. Li/Li$^+$), which corresponds to the result of the
reversible phase transition between $\text{Li}_4\text{Ti}_5\text{O}_{12}$ and $\text{Li}_7\text{Ti}_5\text{O}_{12}$ during Li-ion intercalation/deintercalation processes26. The first charge/discharge capacities of $\text{Li}_4\text{Ti}_{5-x}\text{Fe}_x\text{O}_{12}$ ($x=0, 0.1, 0.2, 0.3$) electrodes are $156.3 \text{ mAh g}^{-1}/132.5 \text{ mAh g}^{-1}$ ($x=0$), $166.6 \text{ mAh g}^{-1}/140.66 \text{ mAh g}^{-1}$ ($x=0.1$), $173.7 \text{ mAh g}^{-1}/149.8 \text{ mAh g}^{-1}$ ($x=0.2$) and $169.3 \text{ mAh g}^{-1}/140.4 \text{ mAh g}^{-1}$ ($x=0.3$), respectively. Obviously, pure LTO sample presents the lowest first charge/discharge capacity and the shortest flat plateau profile than LTFO, and $\text{Li}_4\text{Ti}_{4.8}\text{Fe}_{0.2}\text{O}_{12}$ sample shows the biggest charge capacity of 173.7 mAh g^{-1} among all the samples, approach to the theoretical capacity of LTO (175 mAh g^{-1}). The performance improvement demonstrates advantage of transition metal oxides Fe_2O_3 doping in LTO27.

From the cycling performance and coulombic efficiency curves in Fig. 6b-c, pure LTO discharge capacity fades and fluctuates seriously, while LTFO electrodes present excellent cycling stability at 0.2 C rate. Therefore, Fe_2O_3 doped LTO demonstrates much better electrochemical performance than pure LTO. The average coulombic efficiencies of $\text{Li}_4\text{Ti}_{5-x}\text{Fe}_x\text{O}_{12}$ ($x=0, 0.1, 0.2, 0.3$) electrodes excluding the first lower coulombic efficiencies, in Fig. 6c are 97.5%, 98.7%, 99.2%, 98.9% at 50 cycles at 0.2 C rate, respectively. The lower first coulombic efficiencies, is attributed to the large irreversible capacity in the first discharge/charge cycle mainly caused by lithium adsorption in the carbon black28,29 and some lithium ions occupation of 8a sites which cannot be extracted electrochemically30,31.

Fig. 6d shows the rate capabilities of LT(F)O electrodes at different C-rates, in which C-rates are calculated according to the theoretical capacity of LTO (175 mAh g^{-1}). Specific charge capacity gradually decreases with C-rates increasing. Three samples of $\text{Li}_4\text{Ti}_{5-x}\text{Fe}_x\text{O}_{12}$ ($x=0.1, 0.2, 0.3$) (LTFO) have shown better rate performance and higher capacity at each same rate than that of pure LTO. $\text{Li}_4\text{Ti}_{4.8}\text{Fe}_{0.2}\text{O}_{12}$ electrode presents the largest charge capacity of 173.7 mAh g^{-1} (0.2 C), 139.2 mAh g^{-1} (0.6 C), 132.4 mAh g^{-1} (1.3 C), 123.1 mAh g^{-1} (3 C) and 103.4 mAh g^{-1} (10 C). Especially, $\text{Li}_4\text{Ti}_{4.8}\text{Fe}_{0.2}\text{O}_{12}$ electrode gives 103.4 mAh g^{-1} at 10 C, much larger than 25 mAh g^{-1} of pure LTO. Though the charge capacity of $\text{Li}_4\text{Ti}_{5-x}\text{Fe}_x\text{O}_{12}$ ($x=0.1, 0.3$) (140.7 mAh g^{-1}, 142.7 mAh g^{-1}, respectively) at 0.6 C is
relatively higher than that of Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$, Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ is much more stable at every rate and shows excellent performances at high rate. Hence, Fe$_2$O$_3$ doped has significantly improved rate performance and stability of LTO. Especially, Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ has shown the best electrochemical performance.

Fig. 6. (a) First charge/discharge curves; (b) specific charge capacities at 0.2 C for 50 cycles; (c) coulombic efficiency of Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ ($x=0,0.1,0.2,0.3$) at 0.2 C rate between 1.2 and 2.5 V (versus Li/Li$^+$) and (d) the rate capabilities of charge at different rates.

Fig. 7. (a) Electrochemical impedance spectra (EIS) of Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ ($x=0,0.1,0.2,0.3$) at electrodes at open circuit potential with the simulation equivalent curves; (b) the simulation equivalent circuit for the EIS.

Table 2

Result of EIS analysis of LT(F)O electrodes.

Electrochemical impedance spectra (EIS) of LT(F)O are also measured on the coin cells after 50 charge and discharge cycles with the simulation equivalent curves by using ZsimpWin software in Fig. 7a and the simulation equivalent circuit is also obtained in Fig. 7b. All the EIS curves consist of a small semi circle in high frequency region and a sloping line in low frequency region. The real axis intercept Rs of impedance spectroscopy in the high frequency region corresponds to electrolyte resistance, ohmic resistance including electrode resistances, contact resistances, etc. The diameter values for the semi circle of the spectra correspond to charge transfer resistance (Rct) of the electrochemical reaction32,33. The sloping line also named as Warburg impedance represents lithium ions diffusion resistance in the LT(F)O electrode materials. The charge transfer resistance (Rct) and the Warburg diffuse resistance of LTFO are lower than that of pure LTO, especially the ohmic resistance Rs and the charge transfer resistance Rct of Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ electrode are the smallest ones (4.49 Ω, 25.38 Ω) among the samples. In the outermost shell 4s state of iron
atom has two electrons which easy to lose. It contributes additional electrons and provides electronic carriers for the conduction band. Thereby, LTFO show higher electronic conductivity than pure LTO. As a consequence, the higher electrical conductivity of LTFO decreases the charge transfer resistance of anode materials. This is favorable for Li⁺ intercalation/deintercalation into the anodes.

Fig. 8. Cyclic voltammograms of Li₄Ti₅₋ₓFeₓO₁₂ (x=0,0.1,0.2,0.3) electrodes in a 1M LiPF₆ in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (1:1:1 in volume) electrolyte with scan rate of 0.1 mV/s. WE: LT(F)O electrodes (1.13 cm²), CE and RE: Li foil (2.01 cm²).

After 50 charge and discharge cycles the cyclic voltammograms (CVs) of LT(F)O electrodes are obtained at the scan rate of 0.1 mV/s shown in Fig. 8. All the CV curves have a pair of reduction peak at about 1.45 V and oxidation peak at about 1.75 V, which represents lithium ions intercalation/deintercalation accompanying successive oxidation/reduction reactions of the Ti³⁺/Ti⁴⁺ couple in LT(F)O electrode materials and can be presented as below:

\[
\text{Li}_4\text{Ti}_5\text{O}_{12} + 3\text{Li}^+ + 3e^- \rightarrow \text{Li}_7\text{Ti}_5\text{O}_{12} \quad (1)
\]

LTFO electrodes have shown larger reduction currents and oxidation currents than pure LTO electrode in Fig. 8. Especially, Li₄Ti₄.8Fe₀.2O₁₂ electrode not only has presented the largest reduction/oxidation current, but also given a smaller potential difference of 0.37 V between the oxidation and reduction peaks than that of the pure LTO electrode of 0.5 V. A smaller potential difference has indicated that Fe₂O₃ doped LTO not only reduces anode polarization to some extent which significantly improves the rate performance. Such behavior coincides with the above results of cycling performance, rate capabilities and EIS analysis.

In addition, another reduction peak at about 0.55 V occurred in pure LTO electrode is caused by Li ions further intercalation into LTO electrode, and can be presented as below:

\[
\text{Li}_4\text{Ti}_5\text{O}_{12} + 3\text{Li}^+ + 3e^- \rightarrow \text{Li}_7\text{Ti}_5\text{O}_{12} \quad (1)
\]
\[\text{Li}_4\text{Ti}_5\text{O}_{12} + 4.5\text{Li}^+ + 4.5e^- \rightarrow \text{Li}_{8.5}\text{Ti}_5\text{O}_{12} \quad (2) \]

LTFO electrodes hardly have shown the reduction peak at 0.55 V in the Fig. 8. and all the oxidation/reduction reactions are fulfilled between 1.2-2.5 V. This implies that the reduction reaction for Li ions at 0.55 V shifts to more positive potential occurred for the equation (1) due to more wide and random paths for Li ions intercalation/deintercalation in LTFO electrodes resulted from Fe$_2$O$_3$ doping as mentioned above.

The electrochemical performance for LTFO electrode is dependent on both the particle size and Fe$_2$O$_3$ content. All the LTFO electrodes have shown smaller particle size to ensure a larger contact area between anode material and electrolyte, hence shortened the Li ions diffusion paths and improved the electrochemical reaction rate38. Simultaneously, Fe$_2$O$_3$ doping into LTO has increased the lattice parameters of LTO, which helps to speed up Li ions diffusion rate in the crystal lattice. But Fe$^{3+}$ ions also can occupy certain positions in the crystal lattice and more Fe$^{3+}$ ions will impede Li ions diffusion rate in the crystal lattice. So a proper Fe$_2$O$_3$ doping level in LTO can achieve the best electrochemical property. In the present work, as $x=0.2$ in Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$, that is, Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ sample has shown the largest capacity, the best rate performance together with cyclic stability. Therefore, Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ material by molten salts method will likely spur LTO wide commercialized for lithium ion batteries.

4. Conclusions

A single phase Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ ($x=0,0.1,0.2,0.3$) (LT(F)O) with spinel structure are successfully synthesized in LiCl-KCl molten salts containing a stoichiometric molar ratio of LiOH·H$_2$O, TiO$_2$ and Fe$_2$O$_3$. The results show that Fe$_2$O$_3$ homogenously distributes in the crystal lattice of LTO and make the lattice parameters slightly increase by Fe$^{3+}$ ions intercalation. Among the three samples, addition of 0.1 molar ratio Fe$_2$O$_3$ to LTO has effectively reduced the particle size of pure LTO from 1 µm to about 200 nm. And the formed Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ as an anode material of LIB has presented the largest capacity of 173.7 mAhg$^{-1}$ at 0.2 C, approach to the theoretical
capacity of LTO (175 mAh g\(^{-1}\)), and given a capacity of 103.4 mAh g\(^{-1}\) at 10 C, much larger than the value of pure LTO (28.7 mAh g\(^{-1}\)). Besides, all the samples exhibit above 95% coulombic efficiencies after 50 cycles at 0.2 C rate. \(\text{Li}_4\text{Ti}_{4.8}\text{Fe}_{0.2}\text{O}_{12}\) sample has presented the smallest the ohmic resistance \(R_s\) and the charge transfer resistance \(R_{ct}\) (4.49 \(\Omega\), 25.38 \(\Omega\)) among the samples. Meantime, \(\text{Li}_4\text{Ti}_{4.8}\text{Fe}_{0.2}\text{O}_{12}\) electrode not only has presented the largest reduction/oxidation current, but also the given a smaller potential difference of 0.37 V between the oxidation and reduction peaks than that of the pure LTO electrode of 0.5 V. Therefore, \(\text{Li}_4\text{Ti}_{4.8}\text{Fe}_{0.2}\text{O}_{12}\) electrode reduces the anode polarization to some extent but also significantly improves the electrochemical activity. All the results have demonstrate that addition \(\text{Fe}_2\text{O}_3\) could restrain LTO particle growth in molten salts, and the \(\text{Fe}_2\text{O}_3\) modified LTO delivers a higher discharge capacity, high rate capacity and better long-term cycling stability.

Acknowledgement

This work was financially supported by National Natural Science Foundation of China (No. 51474107).

References

LIST OF TABLE AND FIGURE CAPTIONS

Table 1. The lattice parameter of LT(F)O.

Table 2. Result of EIS analysis of LT(F)O electrodes.

Fig. 1. XRD pattern of as-prepared Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ (x=0, 0.1, 0.2, 0.3).

Fig. 2. SEM images of Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3.

Fig. 3. TEM images of Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ with energy dispersive spectroscopy (EDS) (a) the smooth surface; (b) the roughened surface.

Fig. 4. TEM image of Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ and the corresponding EDX mapping images of Fe, O and Ti elements.

Fig. 5. HRTEM image of Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ powder.

Fig. 6. (a) First charge/discharge curves; (b) specific charge capacities for 50 cycles; (c) coulombic efficiency of Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ (x=0, 0.1, 0.2, 0.3) at 0.2 C rate between 1.2 and 2.5 V (versus Li/Li$^+$) and (d) the rate capabilities of charge at different rates.

Fig. 7. (a) Electrochemical impedance spectra (EIS) of Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ (x=0, 0.1, 0.2, 0.3) at electrodes at open circuit potential with the simulation equivalent curves; (b) the simulation equivalent circuit for the EIS.

Fig. 8. Cyclic voltammograms of Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ (x=0, 0.1, 0.2, 0.3) electrodes in a 1M LiPF$_6$ in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (1:1:1 in volume) electrolyte with scan rate of 0.1 mV/s. WE: LT(F)O electrodes (1.13 cm2), CE and RE: Li foil (2.01 cm2).
Table 1

The lattice parameter of LT(F)O.

<table>
<thead>
<tr>
<th>Sample</th>
<th>α (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li₄Ti₅O₁₂</td>
<td>0.8354</td>
</tr>
<tr>
<td>Li₄Ti₄.9Fe₀.₁O₁₂</td>
<td>0.8364</td>
</tr>
<tr>
<td>Li₄Ti₄.₈Fe₀.₂O₁₂</td>
<td>0.8365</td>
</tr>
<tr>
<td>Li₄Ti₄.₇Fe₀.₃O₁₂</td>
<td>0.8365</td>
</tr>
</tbody>
</table>

Table 2

Result of EIS analysis of LT(F)O electrodes.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rs/Ω</th>
<th>Rct/Ω</th>
<th>Capacitance/F</th>
<th>W/Ω²s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li₄Ti₅O₁₂</td>
<td>13.43</td>
<td>88.32</td>
<td>3.219×10⁻⁶</td>
<td>0.003979</td>
</tr>
<tr>
<td>Li₄Ti₄.₉Fe₀.₁O₁₂</td>
<td>12.17</td>
<td>36.45</td>
<td>3.922×10⁻⁶</td>
<td>0.001014</td>
</tr>
<tr>
<td>Li₄Ti₄.₈Fe₀.₂O₁₂</td>
<td>4.498</td>
<td>25.38</td>
<td>6.242×10⁻⁶</td>
<td>0.001365</td>
</tr>
<tr>
<td>Li₄Ti₄.₇Fe₀.₃O₁₂</td>
<td>11.95</td>
<td>59.48</td>
<td>4.681×10⁻⁶</td>
<td>0.001621</td>
</tr>
</tbody>
</table>

Rs, the ohmic resistance, etc; Rct, charge transfer resistance; W, Warburg diffusion impedance
Fig. 1. XRD pattern of as-prepared Li4Ti5-xFexO12 (x=0,0.1,0.2,0.3).
59x43mm (300 x 300 DPI)
Fig. 1. XRD pattern of as-prepared Li4Ti5-xFexO12 (x=0,0.1,0.2,0.3).
59x41mm (300 x 300 DPI)
Fig. 2. SEM images of Li4Ti5-xFexO12 (a) x = 0.
62x46mm (300 x 300 DPI)
Fig. 2. SEM images of Li4Ti5-xFe2O12 (b) x = 0.1. 62x46mm (300 x 300 DPI)
Fig. 2. SEM images of Li$_{4}$Ti$_{5-x}$Fe$_{x}$O$_{12}$ (c)x =0.2.
62x46mm (300 x 300 DPI)
Fig. 2. SEM images of Li_4Ti_5-xFe_xO_12 (d)x=0.3.
62x46mm (300 x 300 DPI)
Fig. 3. TEM images of Li4Ti4.8Fe0.2O12 with energy dispersive spectroscopy (EDS) (a) the smooth surface.

62x46mm (300 x 300 DPI)
Fig. 3. TEM images of Li4Ti4.8Fe0.2O12 with energy dispersive spectroscopy (EDS) (b) the roughened surface.

62x46mm (300 x 300 DPI)
Fig. 4. TEM image of Li$_4$Ti$_{4.8}$Fe$_0.2$O$_{12}$ and the corresponding EDX mapping images of Fe, O and Ti elements.
64x50mm (300 x 300 DPI)
Fig. 4. TEM image of Li4Ti4.8Fe0.2O12 and the corresponding EDX mapping images of Fe, O and Ti elements.
64x50mm (300 x 300 DPI)
Fig. 4. TEM image of Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ and the corresponding EDX mapping images of Fe, O and Ti elements.
64x50mm (300 x 300 DPI)
Fig. 4. TEM image of Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ and the corresponding EDX mapping images of Fe, O and Ti elements.
64x50mm (300 x 300 DPI)
Fig. 5. HRTEM image of Li$_4$Ti$_{4.8}$Fe$_{0.2}$O$_{12}$ powder.
83x83mm (300 x 300 DPI)
Fig. 6. (a) First charge/discharge curves.
60x44mm (300 x 300 DPI)
Fig. 6. (b) specific charge capacities at 0.2 C for 50 cycles;
62x47mm (300 x 300 DPI)
Fig. 6. (c) coulombic efficiency of Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ ($x=0,0.1,0.2,0.3$) at 0.2 C rate between 1.2 and 2.5 V (versus Li/Li$^+$).

62x47mm (300 x 300 DPI)
Fig. 6. (d) the rate capabilities of charge at different rates.
63x48mm (300 x 300 DPI)
Fig. 7. (b) the equivalent circuit for the EIS.
21x5mm (300 x 300 DPI)
Fig. 8. Cyclic voltammograms of Li$_4$Ti$_{5-x}$Fe$_x$O$_{12}$ ($x=0,0.1,0.2,0.3$) electrodes in a 1M LiPF$_6$ in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) (1:1:1 in volume) electrolyte with scan rate of 0.1 mV/s. WE: LT(Fe)O electrodes (1.13 cm2), CE and RE: Li foil (2.01 cm2).