RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Palladium(II)-Catalyzed Intermolecular Oxidative C-3 Alkenylations of Imidazo[1,2-a] pyridines by Substrate-Contolled Regioselective C-H Functionalization

Hua Cao,^a* Sai Lei,^a Jinqiang Liao,^a Jianping Huang,^a Huifang Qiu,^a Qinlin Chen,^a Shuxian Qiu and ⁵ Yaoyi Chen ^a

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

An efficient and highly regioselective palladium(II)-catalyzed oxidative C-3 alkenylation of imidazo[1,2-a]pyridines with ¹⁰ acrylate, acrylonitrile, or vinylarenes has been developed by using oxygen as oxidant. Substrates such as acrylate and acrylonitrile tended to form β -product, while vinylarenes tended to form the sole α -products.

The metal-catalyzed Heck reaction which received the Nobel ¹⁵ Prize in 2010 has become some of the most widely used methods in chemical synthesis.¹ This approach offers the possibility for catalytic transformation of unactivated C-H bonds into diverse functionalities. Currently, direct oxidative alkenylation of heterocycles has already achieved widespread acceptance within

- 20 the organic synthetic fields, because of its capacity to utilize simpler and cheaper precursors for the preparation of functionalized molecules. Consequently, the discovery of efficient methods for the assembly of carbon–carbon bonds has attracted attention in this field, which avoided synthesis of
- ²⁵ complex and expensive starting substrates. Since the pioneering Fujiwara and co-workers² have first described a wealth of palladium- and rhodium-catalyzed oxidative alkenylations. Many elegant direct oxidative alkenylations ³ have been achieved without the need for prior halogenation or metallization in this
- ³⁰ field. Despite of several methods have been reported during the last decades, there is still an intrinsic need for open new routes to synthesize of diverse heterocycles molecules.

Imidazo[1,2-*a*]pyridines are extremely important chemicals that exhibit a wide range of biological activities⁴ and are used ³⁵ as antiviral,⁵ antiulcer,⁶ antibacterial,⁷ antifungal,⁸ antiprotozoal,⁹ antiherpes,¹⁰ anti-inflammatory.¹¹ Since the

- antiprotozoal, antiherpes, anti-inflammatory.¹¹ Since the wide application of imidazo[1,2-*a*]pyridines in pharmaceutical research and drugs including Alpidem, Zolpidem, Necopidem, Olprinone, Divalpon and Zolimidine are available in the
- ⁴⁰ market, the development of efficient methods to synthesize imidazo[1,2-*a*]pyridines has continuously attracted the attentions of many chemists.¹² We have recently developed facile C-H transformation for the preparation of imidazo[1,2-*a*]pyridine¹³ and other heterocyclic compounds. In this
 ⁴⁵ context, our attention is focused on the development alkenylations of imidazo[1,2-*a*]pyridine to prepare imidazo[1,2-*a*]pyridine derivatives (Scheme 1). Moreover, the reaction has proceeded by using molecular oxygen as terminal oxidant, which avoided the environmentally hazardous by-
- ⁵⁰ products obtained with other oxidants.¹⁴ The initial screening studies have been carried out using **1a**

and 2a as model substrate to identify and optimize many different combinations of potential catalysts, oxidants, additives, and solvents in order to improve the yields of the 55 reaction. The results are summarized in Table 1. First, treatment of 1a with 2a in the presence of PdCl₂, Cu(OAc)₂ and AcOH at 120 °C in dioxane, a trace of the desired directly alkenylation product 3a was observed (entry 1). Other Pdcatalyst was also tested (entries 2-5), including Pd(O₂CCF₃)₂, 60 Pd(CH₃CN)Cl₂, Pd(dba)₂, Pd(OAc)₂. Interestingly, the use of Pd(OAc)₂ afforded the corresponding products **3a** in 9 % GC yield, while other palladium sources gave poor yields. On changing the oxidants we observed a significant improvement by using Ag_2CO_3 as oxidant in the reaction and the product **3a** 65 was obtained in 32% GC yield (entry 6). Other silver salts, such as AgOAc or AgOTf, were also employed and the desired product was obtained in 21%, 20% yields respectively (Table1, entries 7-8). Other oxidants, such as BQ, DDQ, tBuOOBz, O_2 and air were also tested (entries 9-13). The $_{70}$ results showed that O_2 was a choice for this transformation. To our delight, the good yield was obtained, when the reaction was carried out by using Ag_2CO_3 (5 mol%) and O_2 (with oxygen ballon) as co-oxidant (entry 14) in the presence of Pd(OAc)₂. These results encouraged us to adjust additives to 75 improve the yield (entries 15-18). We were pleased to find that the yield of **3a** could be observed in 81% by using AcOH and Ac₂O as additives (entry 16). Effects of solvents and temperatures were also investigated in the following tests (entries 19-22). Among them, dioxane was demonstrated to be ⁸⁰ the best choice. Nonetheless, the yield could not be improved with the increasing reaction time to 30 h (entry 23). But decreasing the time to 12 h did affect the reaction efficiency and the low yields of **3a** were obtained (entry 24).

Scheme 1. Alkenylations of Imidazo[1,2-a]pyridines

With the optimized conditions in hand, we next investigated the scope of this novel highly regioselective alkenylation of imidazo[1,2-*a*]pyridines with styrene for synthesis of α products. And the results are described in Table 2. A variety of imidazo[1,2-a]pyridines with electrondonating methyl groups at the 2-, 6-, 7-, and 8-positions were smoothly alkenylated at the 3-position with styrene in good yields (Table 2). Thus, we turned our attention to examine the scope $_5$ of vinylarenes. Various substituted styrene was reacted well with 1 and led to the desired α -products 4a-4r in good yields. The presence of electron-withdrawing groups, such as F and Cl, were tolerated in the reaction and afforded the desired products smoothly.

	0	Table	1.0	ptimization	of Reaction	Conditions
--	---	-------	-----	-------------	-------------	------------

	н Д	catalys	t, oxidant, a	additive /	/=_	Ph		
N L	<u>}</u> н + ∕∕∕	Ph solve	nt, 120 °C,	► \` 10-24h		Ĩ		
1a	N 2a	1				`N∕́H 3a		
Entry	Catalyst	Oxidant	Additive	Solvent	t(h)	Yield (%) ^b		
1	PdCl ₂	$Cu(OAc)_2$	AcOH	dioxane	24	trace		
2	Pd(O ₂ CCF ₃) ₂	Cu(OAc) ₂	AcOH	dioxane	24	5		
3	Pd(CH ₃ CN)Cl ₂	Cu(OAc) ₂	AcOH	dioxane	24	trace		
4	Pd(dba) ₂	Cu(OAc) ₂	AcOH	dioxane	24	trace		
5	Pd(OAc) ₂	Cu(OAc) ₂	AcOH	dioxane	24	9		
6	Pd(OAc) ₂	AgOAc	AcOH	dioxane	24	32		
7	Pd(OAc) ₂	Ag ₂ CO ₃	AcOH	dioxane	24	21		
8	Pd(OAc) ₂	AgOTf	AcOH	dioxane	24	20		
9	Pd(OAc) ₂	во	AcOH	dioxane	24	NR		
10	$Pd(OAc)_2$	DDO	AcOH	dioxane	24	NR		
11	$Pd(OAc)_2$	tBuOOBz	AcOH	dioxane	24	NR		
12	Pd(OAc)	$O_{1}(1 \text{ atm})$	AcOH	dioxane	24	27		
12	Pl(OA)			uloxulic 1	24	21		
13	$Pd(OAc)_2$	Air (1atm) $O_2(1 \text{ atm})/$	АсОН	dioxane	24	5<		
14 °	Pd(OAc) ₂	Ag ₂ CO ₃	AcOH	dioxane	24	69		
15 °	Pd(OAc) ₂	$O_2(1 \text{ atm})/$ Ag ₂ CO ₃	$PhCO_2H$	dioxane	24	12		
16 °	Pd(OAc) ₂	O ₂ (1 atm)/ Ag ₂ CO ₃	AcOH/ Ac ₂ O	dioxane	24	81		
17 °	Pd(OAc) ₂	$O_2(1 \text{ atm})/$ Ag ₂ CO ₂	Ру	dioxane	24	40		
18 ^c	Pd(OAc) ₂	$O_2(1 \text{ atm})/Ag_2CO_3$	K ₂ CO ₃	dioxane	24	12		
19 °	Pd(OAc) ₂	$O_2(1 \text{ atm})/$ Ag ₂ CO ₂	AcOH/ Ac ₂ O	toluene	24	46		
20 °	Pd(OAc) ₂	$O_2(1 \text{ atm})/Ag_2CO_3$	AcOH/ Ac ₂ O	DMA	24	60		
21 °	Pd(OAc) ₂	O ₂ (1 atm)/ Ag ₂ CO ₃	AcOH/ Ac ₂ O	DMSO	24	13		
22 °	Pd(OAc) ₂	$O_2(1 \text{ atm})/$	AcOH/	DMF	24	19		
23 °	Pd(OAc) ₂	$O_2(1 \text{ atm})/$ Ag_2CO_3	AcOH/ Ac ₂ O	dioxane	30	77		
24 °	Pd(OAc) ₂	$O_2(1 \text{ atm})/Ag_2CO_3$	AcOH/ Ac ₂ O	dioxane	12	62		

^a Reaction conditions: **1a** (0.5 mmol), **2a** (2.5 mmol), catalyst (5% mol), oxidant (1.2 mmol), additive (0.5 mmol), solvent (3.0 mL). ^b GC yields; ^c5 mol% Ag₂CO₃, O₂ (500 mL).

- Subsequently, a variety of acrylates were examined. The 15 desired α -product was not formed, while only β -products obtained under the optimized conditions. The results are described in Table 3. A variety of acrylates were examined. It was observed that alteration of an alkoxy part of acrylate did not change the reaction efficiency, and a similar level of 20 product yields was obtained in the alkenylation of butyl,
- methyl, ethyl, and cyclohexyl acrylate. The scope of various types of imidazo[1,2-*a*]pyridine substrates was also extensively surveyed. The imidazo[1,2-*a*]pyridine and its derivatives with electrondonating methyl groups at the 2-, 6-, and 8 positions, were smoothly alkapulated at the 3
- $_{25}$ 7-, and 8-positions were smoothly alkenylated at the 3position with acrylate in good yields. The substrate ethyl imidazo[1,2-a]pyridine-2-carboxylate with electronwithdrawing CO₂Et group at 2-positions also

performed very well and afforded the desired product **4j** in ³⁰ good yield. Notably, high regioselectivity was observed, when the reactions were carried out by using 2,3-dihydroimidazo[1,2-*a*]pyridines with acrylate. All the results indicated that this process is highly regioselective for C-3 alkenylation.

^a Isolated yields.

Table 3. Alkenylations of Imidazo[1,2-a]pyridines with Acrylates

On the basis of the previous report and our results at this stage, we have proposed two plausible pathways for the two 40 oxidative coupling reactions in Scheme 4. Path I: ^{2,15}

Palladation at C-3 of imidazo[1,2-a]pyridine (electrophilic substitution) was thought to occur intermediate **A** with the aid of oxidant. Active intermediate **A** then inserts into the methyl acrylate to give intermediate **B**, which rapidly decomposes

- ⁵ through β-elimination to generate the desired product and Pd catalyst (regular Heck-reaction product); Path II: ^{1b, 3l, 16} palladium(II) salts tend to react with styrene to give the intermediate C, which then can undergo an intermolecular nucleophilic attack of **1a** (usually at the more substituted
- ¹⁰ vinylic carbon) to generate intermediate **D**. The corresponding product is formed via β -hydride elimination from intermediate **D** and releases the Pd catalyst.

In summary, we have developed an efficient method for the selective intermolecular alkenylation of substituted ¹⁵ imidazo[1,2-*a*]pyridines with diverse acrylate, acrylonitrile, and styrenes through a palladium-catalyzed C-H

- functionalization reaction. It represents a novel, regio- and stereoselective oxidative alkenylation process. This transformation using molecular oxygen to avoid excessive 20 silver levels also results in a clean and rather waste-free
- process.

Scheme 2. Proposed mechanism.

²⁵ This research was financially Supported by National Natural Science Foundation of China (21302023) and the Project of Department of Education of Guangdong Province (2013kjcx0111)

Notes and references

- ^a School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. of China; Fax: (+)86(760)88207939, <u>caohua@gdpu.edu.cn</u>
- † Electronic Supplementary Information (ESI) available: [details of any
 ³⁵ supplementary information available should be included here]. See DOI: 10.1039/b000000x/

‡ Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

- 40 1 (a)A. B. Dounay and L. E. Overman, *Chem.Rev.* 2003, *103*, 2945;
 (b)I. P. Beletskaya and A. V. Cheprakov, *Chem. Rev.* 2000, *100*, 3009; (c)A. d. Meijere and F. E. Meyer, *Angew. Chem. Int. Ed.* 1994, *34*, 2379;
- 2 (a)I. Moritani and Y. Fujiwara, *Tetrahedron Lett.* 1967, 8, 1119;
 (b)Y. Fujiwara, I. Moritani, S. Danno, R. Asano and S. Teranishi, *J. Am.Chem. Soc.* 1969, 91, 7166.
- 3 (a)S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda and N. Chatani, *Nature* 1993, *366*, 529; (b)C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura and Y. Fujiwara, *Science* 2000, 287,
- 50 1992; (c)E. M. Beccalli, G. Broggini, M. Martinelli and S. Sottocornola, *Chem. Rev.* 2007, *107*, 5318; (d)L. Ackermann and J. Pospech, *Org. Lett.* 2011, *13*, 4153; (e)L. Ackermann, A. V. Lygin and N. Hofmann, *Org. Lett.* 2011, *13*, 3278; (f)L. Ackermann and S. Fenner, *Org. Lett.* 2011, *13*, 6548; (g)L. Ackermann, L. Wang and A.

3075; (i)Y. H. Zhang, B. F. Shi and J. Q. Yu, *J. Am. Chem. Soc.* 2009, *131*, 5072; (j)X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu, *Angew. Chem., Int. Ed.* 2009, *48*, 5094; (k)H. Q. Do and O. Daugulis, *J. Am.Chem. Soc.* 2007, *129*, 12404; (l)Y. Yang, K. Cheng and Y.

- J. Am.Chem. Soc. 2007, 129, 12404; (1)Y. Yang, K. Cheng and Y. Zhang, Org. Lett. 2009, 11, 5606; (m)J. J. Li, T. S. Mei and J. Q. Yu, Angew. Chem. Int. Ed. 2008, 47, 6452; (n)L. Y. Jiao and M. Oestreich, Org. Lett. 2013, 15, 5374; (o) G. Broggini, V. Barbera, E. M. Beccalli, E. Borsini, S. Galli1, G. Lanza and G. Zecchi, Adv.
- 65 Synth. Catal. 2012, 354, 159; (p) W. Raufa and J. M. Brown, Chem. Commun. 2013, 49, 8430; (q) R. C. Jones, M. Gałęzowski and D. F. O'Shea, J. Org. Chem. 2013, 78, 8044;
- 4 (a)K. S. Gudmundsson and B. A. Johns, *Org. Lett.* 2003, *5*, 1369;
 (b)C. Enguehard, F. Fauvelle, J. Debouzy, A. Peinnequin, I. Thery and D. V., A. Gueiffier, *Eur. J. Pharm. Sci.* 2005, *24*, 219;
 - G. Puerstinger, J. Paeshuyse, E. Declercq and J. Neyts, *Bioorg. Med. Chem. Lett.* 2007, 17, 390.
- 6 (a)J. J. Kaminsky and A. M. Doweyko, J. Med. Chem. 1997, 40, 427;
 (b)Y. Kaesura, S. Nishino, Y. Inoue, M. Tomoi and H. Taksugi,
 75 Chem. Pharm. Bull. 1992, 40, 371.
- 7 Y. Rival, G. Grassy and G. Michel, *Chem. Pharm. Bull.* **1992**, *40*, 1170.
- 8 Y. Rival, G. Grassy, A. Taudou and R. Ecalle, *Eur. J. Med. Chem.* 1991, 26, 13.
- 80 9 M. A. Ismail, R. K. Arafa, T. Wenzler, R. Brun, F. A. Tanious, W. D. Wilson and D. W. Boykin, *Bioorg. Med. Chem.* **2008**, *16*, 681.
 - 10 K. S. Gudmundsson and B. A. Johns, *Bioorg. Med. Chem. Lett.* 2007, 17, 2735.
- K. C. Rupert, J. R. Henry, J. H. Dodd, S. A. Wadsworth, D. E.
 Cavender, G. C. Olini, F. Fahmy, and J. J. Siekierka, *Bioorg. Med. Chem. Lett.* 2003, 23, 347.
- 12 (a)A. K. Bagdi, M. Rahman, S. Santra, A. Majee and A. Hajra, *Adv. Synth. Catal.* **2013**, *355*, 1741; (b)S. Santra, A. K. Bagdi, A. Majee and A. Hajra, *Adv. Synth. Catal.* **2013**, *355*, 1065; (c)N. Chernyak
- and V. Gevorgyan, *Angew. Chem. Int. Ed.* 2010, *49*, 2743; (d)K. S. Masters, T. R. M. Rauws, A. K. Yasav, W. A. Herrebout, B. V. Veken and B. U. W. Mases, *Chem. Eur. J.* 2011, *17*, 6315; (e)V. Z. Parchinsky, O. Shuvalova, O. Ushakova, D. V. Kravchenko and M. Krasavin, *Tetrahedron Lett.* 2006, *47*, 947; (f)F. Chen, M. Lei and L. Hu, *Tetrahedron* 2013, *69*, 2954; (g)H. Zhou, W. Wang, O. Khorev,
- Y. Zhang, Z. Miao, T. Meng and J. Shen, *Eur. J. Org. Chem.* 2012, 5585; (h)V. Tyagi, S. Khan, V. Bajpai, H. M. Gauniyal, B. Kumar and P. M. S. Chauhan, *J. Org. Chem.* 2012, 77, 1414; (i)S. Husinec, R. Markovic, M. Petkovic, V. Nasufovic and V. Savic, *Org. Lett.* 2014.
- 2011, 13, 2286; (j)Z. Fei, Y. P. Zhu, M. C. Liu, F. C. Jia and A. X. Wu, *Tetrahedron Lett.* 2013, 54, 1222; (k)H. Y. Fu, L. Chen and H. Doucet, J. Org. Chem. 2012, 77, 4473; (l)H. Yang, L. Yang, Y. Li, F. Zhang, H. Liu and B. Yi, *Catal. Commun.* 2012, 11; (m)J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib and G. Guillaumet, *Synthesis* 2008, 2537; (n)J. Koubachi, S. Berteina-Raboin, A. Mouaddib and G. Guillaumet, *Synthesis* 2009, 271;
- 13 (a)H. Cao, H. Y. Zhan, Y. G. Lin, X. L. Lin, Z. D. Du and H. F. Jiang, *Org. Lett.* 2012, *14*, 1688; (b)H. Cao, Y. G. Lin, H. Y. Zhan, Z. D. Du, X. L. Lin, Q. M. Liang and H. Zhang, *RSC Adv.* 2012, *2*, 5972; (c)H. Cao, X. H. Liu, L. M. Zhao, J. H. Cen, J. X. Lin, Q. X. Zhu and M. L. Fu, *Org. Lett.* 2014, *16*, 146;
- 14 (a)T. Punniyamurthy, S. Velusamy and J. Iqbal, *Chem. Rev.* 2005, 105, 2329; (b)W. Q. Wu and H. F. Jiang, *Acc. Chem. Res.* 2012, 45, 1736; (c)Z. Shi, C. Zhang, C. Tang and N. Jiao, *Chem. Soc. Rev.* 2012, 41, 3381.
- 15 (a)N. P. Grimster, C. Gauntlett, C. R. A. Godfrey and M. J. Gaunt. *Angew. Chem. Int. Ed.* 2005, 44, 3125; (b)E. M. Beck, N. P. Grimster, R. Hatley and M. J. Gaunt. *J. Am. Chem. Soc.* 2006, 128, 2528; (c)Y. Yang, Hao Gong and C. Kuang. *Eur. J. Org. Chem.* 2013, 5276; (d)H. Jiang, Z. Feng, A. Wang, X. Liu and Z. Chen. *Eur. J. Org. Chem.* 2010, 1227.
- 16 (a)W. Cabri and I. Candiani, Acc. Chem. Res. 1995, 28, 2; b)J. Mo, L. Xu and J. Xiao, J. Am. Chem. Soc. 2005, 127, 751; (c)H. Schenck, B. Akermark and M. Svensson, J. Am. Chem. Soc. 2003, 125, 3503; (d)
 G. Broggini, E. M. Beccalli, A. Fasana, S. Gazzola and Beilstein J. Org. Chem. 2012, 8, 1730; (e)A. Ashimori, B. Bachand, M. A.
 - Org. Chem. 2012, 8, 1730; (e)A. Ashimori, B. Bachand, M. A. Calter, S. P. Govek, L. E. Overman and D. J. Poon. J. Am.Chem.

*Soc.***1998**, *120*, 6488; (f)R. J. Deeth, A. Smith and J. M. Brown. *J. Am.Chem. Soc.***2004**, *126*, 7144; (g)P. Fristrup, S. L. Quement, D. Tanner and P.-O. Norrby, *Organometallics***2004**, *23*, 6160; (h) C. Bäcktorp and P-O. Norrby, *Dalton Trans.***2011**, *40*, 11308; (i)E. M. Beccalli, G. Broggini, M. Martinelli and S. Sottocornola. *Chem. Rev.***2007**, *107*, 5318.

5

4 | Journal Name, [year], [vol], 00-00