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Original well-defined substitution algorithm on how to construct 
the icosahedral packings is proposed, simple inflation/deflation 
rules for icosahedral quasicrystals are described, and natural 
local matching rules are derived.  

The discovering of quasicrystals by Shechtman1 showed that 
strict  long-range  order  in  solids  do  not  require  mandatory 
periodicity.  Steinhardt  et  al2,3 proposed  the  theoretical 
description of icosahedral quasicrystals having generated the 
packing  with  icosahedral  symmetry  by  the  grid  projection 
technique from six-dimensional hypercubic lattice.  The  goal 
of the present paper is to describe icosahedral quasicrystalline 
packings without appealing to higher dimensions. 

Three  main  special  features  of  quasicrystals  must  be 
highlighted.  The  first  is  that  they reveal  strong long-range 
order that  lacks any translational symmetry in the same way 
as, for example, the Penrose tiling does. 4 According to widely 
held opinion, only groupoids represent the appropriate tool for  
studying  long-range  order  in  quasicrystals  instead  of 
symmetry groups. We will abandon this point of view and will 
operate in terms of usual group theory. Such approach leads to 
fractal  tilings.  The  second  main  special  feature  is  that 
quasicrystals  exhibit  self-similarity,  which  was  usually 
considered to mean that the same patterns occur at larger and 
larger  scales.  We  will  consider  self-similarities  not  as  the 
repeating structural  motifs  in solids  or  substitution rules for  
tilings  but  as  the  true  group  automorphisms.  Under  such 
assumption, the composition of self-similarities with different 
fixed  points  takes  on  special  significance.  The  third  special 
feature  shows  that  the  diffraction  patterns  of  quasicrystals 
reveal  the  discreteness,  as  has  been  first  demonstrated  by 
Mackay.5 

There  is  no  unified  viewpoint  about  which  one  of  these 
properties  would  most  uniquely  characterize  the  aperiodic 
long-range  order.6 For  example,  Dyson7 proposed  the 
following  definition:  “A  quasi-crystal  is  a  distribution  of  
discrete  point  masses  whose  Fourier  transform  is  a 
distribution  of  discrete  point  frequencies.”  Furthermore,  he 
introduced an example of the artificial solid with distribution 
of atoms resembling the distribution of zeros of the Riemann 
zeta  function,  and  showed  that  such  solid  would  have  an 
essentially discrete diffraction pattern. Therefore, according to 
the modern definition, aperiodic crystals are not identical with 
structures that were typically referred to as quasicrystals. We 
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would like to keep the  term  quasicrystal reserved for  those 
aperiodic crystals that exhibit self-similarity, namely multiple 
self-similarity.  We do not pretend to make a balanced review 
but rather refer the reader to more detailed descriptions of the 
modern  viewpoints  on  the  structure  and  properties  of 
quasicrystals which may be found in literature.8-14 

In our study, we started with the idea of the fractal nature of  
Penrose  tiling  introduced  by  Bandt  and  Gummelt, 15 who 
proposed to replace the basic tiles in the kites-and-darts tiling 
by  corresponding  tiles  with  fractal  boundaries  obtained 
iteratively by multiple application of the deflation procedure.  
Recently,  we  have  considered  the  rhombus  Penrose  tiling 
under  the  assumption  that  both  inflation  and  deflation 
procedures were applied an infinite number of times.16,17 The 
resulting fractal  tiling may serve  as a corresponding ‘parent’ 
structure18 for the entire local isomorphism class. This ‘parent’ 
structure has maximum possible symmetry, which is revealed 
in ‘daughter’ structures as hidden or incomplete. For instance,  
one  can reveal  that  the  local  environment of any arbitrarily 
chosen  vertex  ceases  to  change  after  several  iterations 
coinciding with one of two possible self-similar arrangements, 
which are mutually inverse one in respect to another.

Goodman-Strauss19 proofed  that  every  substitution  tiling 
can  be  enforced  with  finite  matching  rules.  In  general, 
however,  the  connection  between  matching  rules  and  self-
similarity is far from being understood. 15 Recent advances in 
the  theoretical  explanation  of  substitution  tilings  and  their 
matching  rules  are  surveyed  in  the  literature. 20-22 To  our 
knowledge, no attempts have been undertaken to formulate the 
substitution  rules  for  icosahedral  packings,  as  well  as  no 
attempts  have  been made to apply the  fractal  approach  and 
derive  natural  matching  rules  for  the  practically  important 
case  of  icosahedral  quasicrystals.  Properly  speaking,  there 
exist only few papers concerning the possible fractal nature of  
actual  self-similar  tilings.  Bandt  and  Gummelt15 were  right 
when they wrote that some readers would find inconvenient to 
work with such tiles. On the other hand, there is no necessary 
need for inconvenient tiles when simply holding in mind that  
every  convenient  tile  contains  a  fractal  dust  of  quasi-lattice 
sites  and taking into  account  that  the  true  symmetry of  the 
fractal  tiling could  be higher than the apparent  symmetry of 
that one represented by finite-sized tiles.

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  1
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Fig. 1 Inflation/deflation rules for golden zonohedra. Four types of zonohedra serving as unit cells for icosahedral quasicrystals are inflated by a factor of 
3 and uniquely decorated by the tiles of the original size. (a), (b), (c), (d) Inflation/deflation rules for the prolate rhombohedron, rhombic dodecahedron, 

rhombic icosahedron, and rhombic triacontahedron, respectively. 

Consider  the icosahedral  tilings within the  frameworks of 
the fractal  approach.  The specific problem is how to fill  the 
three-dimensional space with so-called ‘golden’ zonohedra. Of 
course,  the skeptical  reader may claim that this problem has 
already been solved by Steinhardt et al.2,3 This assertion is not 
too far from the truth. The icosahedral packings have indeed 
been  described  as  a  result  of  the  unit  cell  decoration  by 
intersecting  Ammann  planes  with  the  detailed  subtiling 
specification.  Unfortunately,  because  each  cell  was  divided 
into very small  pieces  and the specification of  the Ammann 
plane decoration of the unit cells was complicated, these small 
pieces of the cells would be very difficult to track in integral 
structure. The detailed method, by which the positions of the 
planes in the zonohedra were obtained, as well as the correct 
deflation  of  each  cell,  was  difficult  to  understand  without 
access to some 3D models.  The complicated matching rules, 
the constant need to recall  higher-dimensional representation 
in order to verify the local environment of a given cell,  and 
the  need  to  cross-check  the  specification  reference  table  in 
order  to  perform  decoration  correctly  –  all  of  these 
complications hinder the accurate analysis and practical use of 
the  algorithm.  Moreover,  we  have  a  firm conviction  that  a 
three-dimensional description of a three-dimensional object is 
always preferable.

 On the other hand, the higher-dimensional approach 2,3,23-26 

represents  today  the  only  successful  way  in  solving  the 
quasicrystals puzzle,  so  it  would  be  silly to  criticize  it.  We 
don't  mean to look for disadvantages, but rather to highlight 
the inherent difficulties due to the lack of any alternative. 

Recently,  we derived an elegant  procedure enabling us  to 
construct  the  icosahedral  packings.  As  usual,  four  types  of 
unit  cells  appear  –  triacontahedron,  rhombic  isosahedron, 
rhombic  dodecahedron,  and  prolate  rhombohedron.  When 
formulating the  deflation rules,  we advise  not  to  divide  the 
unit  cells  into  very  little  pieces  but  instead  to  inflate  four 
original unit cells and deflate the enlarged cells back to their 
own original copies. In this case, the original unit cells should 
be increased by a factor of 3, where  is the golden mean, so 
that all vertices of the inflated unit cells coincide with some of 
vertices of the original quasilattice built  by the conventional 
rules. 

The inflation/deflation rules for  the golden zonohedra are 
illustrated in Fig.  1.  The golden zonohedra are inflated by a 
factor of 3 and are uniquely decorated by the polyhedra of the 
original  size.  Some  of  the  small  units  partially  exceed  the 
bounds  of  the  inflated  cells.  On  the  one  hand,  they  are 
simultaneously owned by all adjacent cells in the final tiling. 
On  the  other  hand,  they  link  the  adjacent  cells  together, 
providing the integrity of the tiling as a whole.  The inflated 
cells,  in  turn,  have  to be  assembled face-to-face  into  larger 
cells that share their own reduced copies on the boundaries as 
well  as  on the  edges.  For  example,  two adjacent  cells  may 
share reduced rhombohedra, which are divided exactly in half. 
Another  example  may  be  when  five  adjacent  inflated 
rhombohedra are assembled together around the common edge 
sharing  either  the  rhombic  triacontahedron  or  the  rhombic 
isosahedron, so that the shared polyhedra are divided exactly 
in five equal parts, etc. 

2  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year]
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Fig. 2 Deflation of the rhombic triacontahedron. (a) – (i) Consecutive steps of the deflation. We start with a triacontahedron at the center (a) and place 
thirty rhombic dodecahedra on the 2-fold axes (b), twenty rhombohedra on the 3-fold axes (c), twelve clusters of ten rhombohedra on the 5-fold axes (d), 
thirty triacontahedra on the 2-fold axes (e), twelve rhombic icosahedra on the 5-fold axes (f), and twenty clusters of ten rhombohedra on the 3-fold axes 

(g). Next, the rhombic icosahedra on the 5-fold axes are capped by twelve clusters of five rhombohedra (h), and finally, sixty rhombic icosahedra are 
placed in the middle of each edge of the inflated cell (i). 

Fig. 3 Deflation of the rhombohedron. (a) – (h) Consecutive steps of the deflation. We start with a triacontahedron (a). Next, we place three rhombic 
dodecahedra (b), four rhombohedra (c), three triacontahedra (d), and one rhombohedron (e). Next, the unfinished cell is turned upside down (f). Then, 
twenty five rhombohedra are placed as indicated (g), and finally, nine rhombic icosahedra are placed in the middle of the corresponding edges of the 

inflated cell (h). 

Fig.  2  represents  the  deflation  rule  for  the  rhombic 
triacontahedron. We start with a triacontahedron at the center 
and place corresponding zonohedra shell-by-shell as depicted 
in the figure. 

The deflation rules for the remaining three zonohedra may 
be  derived  from  the  corresponding  deflation  rule  for  the 
triacontahedron.  We  have  made  an  assumption  that,  for  the 
infinitely  fragmented  fractal  tiling,  there  must  be  an 
equivalent representation by overlapping spheres and then the 
shared  regions  must  have  identical  decompositions.  Thus, 
when the image of one of the inflated zonohedra is properly 
superimposed onto an existing inflated and deflated rhombic 
icosahedron,  the  desired  deflation  rules  may  be  simply 

obtained by the duplication of intersecting areas.
The deflation rule for the rhombohedron is shown in Fig. 3.  

Let's  take a look at  the opposite vertices on the 3-fold axis. 
They are obviously not equivalent. One vertex is accompanied 
with rhombic icosahedra in the second shell, whereas the other 
vertex  is  accompanied  with  triacontahedra.  These  opposite 
vertices  exemplify  two  alternative  vertex  types  in  the 
corresponding fractal tiling.

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  3
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Fig. 4 Deflation of the rhombic dodecahedron. (a) – (j) Consecutive steps of the deflation. We start with a triacontahedron (a). Then, we add accordingly 
the shells of rhombic dodecahedra (b), rhombohedra (c), triacontahedra (d), rhombic icosahedra (e), rhombohedra (f), and rhombic icosahedra (g). Next, 

the unfinished cell is turned upside down (h). Finally, additional rhombohedra (i) and rhombic icosahedra (j) are placed as indicated.

Fig. 5 Deflation of the rhombic icosahedron. (a) – (j) Consecutive steps of the deflation. 

The deflation rules for  the rhombic dodecahedron and for 
the  rhombic  icosahedron  are  depicted  in  Figs.  4  and  5, 
respectively. The decoration procedures are exactly analogous 
to  those  that  are  described  above.  As  previously,  we  start 
again  with  a triacontahedron.  Then,  we add accordingly the 
shells of rhombic dodecahedra,  rhombohedra,  triacontahedra, 
rhombic  icosahedra,  rhombohedra,  and  rhombic  icosahedra. 
Next, the unfinished cells are turned upside down, and finally, 
the  additional  rhombohedra  and  rhombic  icosahedra  are 
placed as indicated in the figures. Note again that the opposite  
sides of the rhombic dodecahedron are also not equivalent, as 

well  as  those  of the rhombic icosahedron.  For  example,  one 
side of the rhombic icosahedron inherits the outer surface of 
the inflated  triacontahedron and is characterized by rhombic 
icosahedra, which are placed in the middle of each edge. The 
opposite side is characterized by the ring of ten triacontahedra 
arranged face-to-face  around the  5-fold  axis.  The  upper  and 
down vertices on the 5-fold  axis of the rhombic icosahedron 
also exemplify the  same two alternative  vertex  types  in  the 
corresponding fractal tiling. 

4  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year]
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Fig. 6 Local matching rules for icosahedral tilings. (a) Two types of 
inequivalent sites. (b) Two types of edges. (c) Three types of faces. 

The  described  inflation/deflation  procedures  obey  the 
composition/decomposition  requirements.  The  cells,  which 
match together, decompose into the smaller ones that naturally 
also match together.  This rule makes it  possible to construct 
the tiling of larger and larger sizes,  which would  eventually 
cover  the  whole  space  by repeatedly  applying the  inflation 
step  with  subsequent  deflation  step,  so  that  the  size  of  the 
original  tiles  remains  unchanged.  In  that  case  the 
inflation/deflation rules described above may be considered as 
substitution rules for icosahedral quasicrystals.

Assume that there is a tiling which covers the whole space. 
Perform the  deflation  procedure  on  all  cells  once,  and  then 
superimpose  the  obtained  tiling  over  the  initial  one.  The 
alternating order of the reduced copies of the initial unit cells,  
on  the  common  faces  and  along  common  edges,  uniquely 
predefines  the  natural  local  matching  rules.  The  matching 
rules include requirements for vertices, edges, and faces (see 
Fig. 6). 

Assume  that  we  have  generated  the  tiling  covering  the 
entire space by repeatedly applying the inflation and deflation 
procedures  to arbitrary unit  cell.  Choose  an  arbitrary vertex 
and apply successively the deflation and inflation procedures  
on all  cells in its local environment,  but now in the reverse 
order.  Then,  the  both  operations  should  be  applied 
successively several times. Since we discuss an infinite tiling, 
the tiling itself in this case remains unchanged. This will only 
lead to an increase of the scale of consideration every time by 
a factor of τ3, as if we examine details of the picture through a 
very  large  magnifying  glass.  One  can  reveal  that  the  local 
environment of any arbitrarily chosen vertex ceases to change 
after sufficient iterations. The regions initially surrounding the 

chosen site,  in the  limiting case,  become removed infinitely 
far away. Any vertex becomes the center of the star, which is  
made of twenty rhombohedra. Therefore, in the corresponding 
fractal  tiling,  there  are  only two types  of  inequivalent  sites  
that  correspond  to the  centers  of  stars  surrounded either  by 
twelve rhombic icosahedra or by twelve triacontahedra in the 
second shell. 

Two vertex  types  are  referred  by us  to  as  the  A-  and  B-
types,  respectively.  The  inflation/deflation  procedure  never 
permutes the vertices of different types into each other. In the 
whole  tiling,  there  exist  no  edges  connecting  equivalent 
vertices. Only alternate vertices may be connected by edges.  
Further,  there are exactly two types of edges.  The first  type 
edge decomposes after deflation into the reduced copy of the 
second type edge,  the rhombic icosahedron,  and the reduced 
copy  of  the  first  type  edge  itself.  The  second  type  edge 
decomposes  into its own reduced copy and triacontahedron. 
We have marked the second type edge by an arrow indicating 
the  position  of  the  triacontahedron  after  deflation.  Further,  
there  are  exactly  three  types  of  inequivalent  faces.  The 
Steinhardt’s designations for faces are specifically depicted in 
Fig. 6 for further understanding.

There exist  exactly three packings  with a single  center of 
icosahedral point symmetry in the 3D Euclidean space.3 The 
deflation  rule  for  the  triacontahedron  defines  the  first  one.  
Indeed,  let's  take  the  initial  triacontahedron  (Fig.  2a)  and 
apply the inflation/deflation steps. We get the triacontahedron 
enlarged by a factor of  3 and decorated as shown in the Fig. 
2i.  Next,  we  apply  the  inflation/deflation  procedure  to  the 
enlarged  and  decorated  triacontahedron  just  obtained.  Let's  
recall  that the central triacontahedron (Fig.  2a) is surrounded 
by the shell of thirty rhombic dodecahedra (Fig. 2b) followed 
by rhombohedra (Fig. 2c,d), triacontahedra (Fig. 2e), rhombic 
icosahedra  (Fig.  2f),  and  so  forth.  Thus,  in  the  inflated 
packing, the central decorated triacontahedron (Fig. 2 i) should 
be surrounded by thirty decorated rhombic dodecahedra (Fig. 
4j)  followed by decorated  rhombohedra  (Fig.  3h),  decorated 
triacontahedra  (Fig.  2i),  decorated  rhombic  icosahedra  (Fig. 
5j),  and  so  forth.  When  applied  iteratively,  the  above 
procedure generates the unique well-defined algorithm on how 
to fill the entire space with golden zonohedra. When starting 
from  single  triacontahedron,  the  algorithm  results  in  the 
desired first packing with a single center of icosahedral point  
symmetry. 

The two remaining packings  may be  derived by the same 
manner when assembling twenty rhombohedra  either around 
the  A-  or  B-type  vertices  with  subsequent  performing  the 
inflation/deflation  procedures  for  rhombohedra  (see  Figs.  7 
and 8, respectively). 

The animated scheme of cluster assembling is available in 
an electronic supplement to the article – better viewed in full-
screen  presentation  mode  to  assemble  and  disassemble  the 
clusters step-by-step.

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  5
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Fig. 7 Building the tiling with complete icosahedral point symmetry around the A–type vertex. (a) – (j) Consecutive steps of the building procedure.

Consider the infinitely fragmented fractal tiling that is built 
around  the  A-type  vertex.  For  this  purpose,  we  assemble 
twenty rhombohedra around the A-type vertex and perform the 
inflation/deflation procedure infinitely many times, so that the 
tiling  covers  eventually  the  entire  space.  Then,  we  deflate 
every  cell  infinitely  many  times,  too.  The  resulting  fractal 
tiling reveals the true self-similarity, because it coincides with 
itself as a whole when mapping the entire space onto itself by 
single  affine  transformation.  Consider  now the  fractal  tiling 
that  is  built  around  the  B-type  vertex.  It  also  reveals  self-
similarity in the  group-theoretical  sense.  The question arises 
on  how  to  combine  self-similarities  with  different  fixed 
points.  The affine transformation has the only singular fixed 
point. It cannot move. The solution is indeed so simple that it 
seems  almost  absurd  –  it  is  necessary  to  consider  another 
topological space instead of the Euclidean one. 

For  example,  when  the  infinitely  fragmented  fractal 
Penrose tiling is the subject of interest,16,17 one should replace 

the Euclidean plane with the extended complex plane. What is 
the secret of the trick? Imagine the Penrose tiling covering the 
entire  plane  and  draw  two  axes  indicating  the  real  and 
imaginary parts of the complex variable. It seems like nothing 
has changed. The Penrose tiling itself looks  like before. But 
for now there may exist two different centers of global five-
fold symmetry in the plane – one at the origin and another at 
the infinitely distant point. Recall that the complex plane may 
be brought into correspondence with a sphere by stereographic 
projection,  so that  the  origin  corresponds  to  the  south  pole 
whereas  the infinitely distant point  corresponds  to the north 
pole. The logarithmic spirals, which represent in the plane the 
geodesic lines for  the  rotational homothety,  may be  brought 
into  correspondence  with  loxodromes  on  the  sphere.  The 
projective mappings of the Riemann sphere onto itself may be 
converted into transformations of the tangent complex plane. 

6  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year]
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Fig. 8 Building the tiling with complete icosahedral point symmetry around the B–type vertex. (a) – (j) Consecutive steps of the building procedure.

Now  the  problem  of  combining  self-similarities  with 
different  fixed  points  is  no  longer  the  case.  The  first  self-
similarity  operation that  is  acting on  the  fixed point  of  the 
second  self-similarity operation  produces  the  infinite  set  of 
singular  points  when  it  is  performed  repeatedly  and  vice  
versa. The resulting infinitely fragmented fractal tiling may be 
described  as  usual  in  terms  of  the  group  theory,  in 
contradistinction  to  the  quasicrystalline  plane  tilings  from 
which they are derived.  The corresponding group generators 
may be expressed in terms of Möbius transformations,  where 
the symmetry group of the resulting fractal would exemplify 
the symmetry of a certain discrete subgroup of the continuous 
group of linear fractional transformations.

The detailed explanation may be found elsewhere.16,17 The 
essence of the problem can be clarified by the quote from the 
monograph by Mumford  et  al,27 who noted that this kind of 
symmetry  is  characteristic  for  “...a  family  of  unusually 
symmetrical shapes, which arise when two spiral motions of a 
very special kind are allowed to interact. These shapes display 

intricate ‘fractal’ complexity on every scale from very large to 
very  small.  Their  visualization  forms  part  of  a  century  old 
dream conceived by the great German geometer Felix Klein. 
Sometimes the interaction of the two spiral  motions  is quite 
regular  and  harmonious,  sometimes  it  is  total  disorder  and 
sometimes – and this is the most intriguing case – it has layer 
upon layer of structure teetering on the very brink of chaos.”  
Simply  put,  these  groups  describe  the  interaction  of  spiral 
motions  on  the  plane  or,  in  other  words,  the  multiple  self-
similarity. 

According  to  the  known  property  of  linear  fractional 
transformations,  two-dimensional  self-similar  fractal  tilings 
must  exhibit  the  circular  property.  Any  of  their  symmetry 
operations  maps  the  given circle  again  into a  circle.  In  the 
same way, the symmetry operations of three-dimensional self-
similar  tilings  should  map  the  given  sphere  again  into  a 
sphere.  Generally,  we  have  no  right  to  cast  aside  such  
symmetries  that  map the exterior  of a  given sphere into the 
interior  of  its  image  –  the  generalized  self-inversions. 
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Therefore, the problem of the quasicrystalline order is closely 
related to the pure mathematical  problem that was raised by 
Coxeter28, namely: “...how Euclidean geometry, in which lines 
and  planes  play  a  fundamental  role,  can  be  extended  to 
inversive geometry, in which this role is taken over by circles 
and  spheres.”  Of  course,  the  polygonal  and  polyhedral 
quasicrystalline  tilings  are  inconsistent  with  reflections  in 
spherical  mirrors,  but  their  infinitely  fragmented  fractal 
‘parents’  are  apparently  fully  compatible  with  curvilinear 
symmetry, although it may seem surprising or hard to believe. 

So, we have described the original well-defined substitution 
algorithm on how to simply construct the icosahedral packing 
firstly  invented  by  Steinhardt  et  al.2,3 It  is  necessarily  to 
highlight that the golden zonohedra may be assembled without 
addressing to higher dimensions, and the local matching rules 
may be formulated without addressing to Ammann planes. Our 
description  remains  principally tree-dimensional,  though  we 
initially used the results of the higher-dimensional approach to 
formulate the first inflation/deflation rule. It is important that 
the  three-dimensional  structure  is  described  by  the  three-
dimensional  algorithm.  There  is  no  need  in  the  embedding 
space and strip-projecting. 

An additional  explanation is  necessary.  On the  one  hand,  
our tiling shown in the Fig. 2 exactly corresponds to that one 
described  by  Socolar  and  Steinhardt3 (see  Fig.  9  in  their 
paper).  On  the  other  hand,  there  is  an  essential  difference. 
Socolar and Steinhardt3 provided further subdivision of initial 
zonohedra  into  smaller,  less  regular  parts,  so  that  the 
additional  vertices  appear  inside  zonohedra.  We  do  not 
initially  decorate  zonohedra  when  considering  tilings  with 
finite-sized tiles. Danzer29 proposed the ABCK-tiling by using 
four  types  of  tetrahedra  as  prototiles.  Both  the  Socolar-
Steinhardt  and  the  Danzer  tilings  are  equivalent  and 
characterized  by  the  inflation  factor  of  .  The  detailed 
description may be found in literature.29-34 In contradistinction, 
our tiling has the inflation factor of  3 with vertices probably 
forming a subset of  those of  the  ABCK-tiling.  This becomes 
evident  by  examining  more  closely  the  inflation/deflation 
rules for edges. After scaling by a factor of 3, the second type 
edge  decomposes  into  its  own  reduced  copy  and 
triacontahedron. Thus, after scaling by a factor of , one of the 
vertices  unavoidably  falls  inside  the  triacontahedron. 
Therefore,  further  investigations  are  needed  to  establish  the 
exact  correspondence  between  our  substitutional  algorithm 
and the higher-dimensional approach. 

Now the question arises on how to fill the initial four types 
of quasi-unit  cells with specific atoms in order to obtain the 
solids with the given local atomic arrangement? The chains of 
atomic clusters in the shape of triacontahedra often occur in 
icosahedral  quasicrystals.35,36 For  example,  the  qualitative 
resemblance  with  an  actual  structure  of  the  Al6CuLi3 

icosahedral  phase  seems  clear  at  the  first  glance  (compare 
Figs. 2e and 7c above with Fig. 20 in the paper by Audier and 
Guyot35).  For  other  structural  types,  the  icosahedra  and 
interpenetrating  icosahedra  chains  are  more  common.  The 
question is whether such structures may be also generated by 
the  unique  substitutional  algorithm starting  from the  single 
triacontahedron?  Suppose,  we  have  properly  placed  the 

Mackay-,  Bergman-,  or  Tsai-type  clusters11,37 within  the 
initially empty triacontahedron.  Its  vertices  are  initially not 
occupied by any atoms,  too.  After  that,  we  have  to  fill  the 
remaining three types of  zonohedra  with  atoms in a definite 
way in order to obtain the consistent structure compatible with 
the global symmetry. In general, this problem remains open. 

Next question is whether the above results may be helpful 
in the  practical  refinement  of the  specific  structures.  At  the 
first  step of  structure analysis,  the corresponding crystalline 
approximants  are  often  used  instead  of  quasicrystals.38,39 

Recall that the approximant is a compound whose composition 
and structural units are very similar to those of a quasicrystal, 
but  are  nevertheless  a  crystal.  The  proposed deflation  rules 
may help in deriving suitable models with giant supercells. On 
the  other  hand,  we  have  to  issue  a  warning  –  our  results 
clearly indicate that one can encounter a principal difficulties 
when trying to use the 3 times enlarged golden rhombohedron 
(Fig.  3g)  immediately as  the  unit  cell  of  the  corresponding 
approximant  and  vice  versa.  Indeed,  in  order  to  form  the 
crystalline  lattice,  the  rhombohedra  in  the  structure  of 
corresponding crystalline approximant must be translated and 
placed side-by-side. The opposite sides of such rhombohedra 
must be equivalent to enable the mere possibility of arranging 
them together  by the  crystalline  manner.  In  contrast,  in  the 
quasicrystalline packings,  the opposite sides of rhombohedra 
must be inequivalent to ensure the quasicrystalline order. 

The significance  of the proposed substitution rules can be 
illustrated as follows. For example, Abe et al40 postulated that 
“quasicrystals cannot be defined as packing of identical  unit 
cells,” so that their structures can be effectively viewed only 
in terms of packing by overlapping clusters that  are the most 
stable,  energetically  favored  atomic  configurations. 
Bourdillon41 has  the  opinion that  “...mathematically,  it  is  as 
easy to multiply cells as to multiply dimensions,  but neither 
contributes to understanding why and how quasicrystals form” 
referring  the  multiple  cells  approach  to  as  “multiple  cells 
higgledy-piggledy.” We hope that substitution rules proposed 
by  us  may  bring  a  new  perspective  to  the  multiple  cell 
approach  and  turn  it  into  a  much  more  effective  tool  in 
structure analysis.

Our  results  may  be  useful  not  only  when  describing 
quasicrystals, but also in the structure prediction and analysis 
of  hollow  cage  and  core-shell  clusters, cluster  aggregates, 
inorganic fullerenes  and fullerene-like nanoparticles,  as  well 
as  in  designing  appropriate  molecular  building  blocks  for 
artificial molecular quasicrystals.42-44 

As  a  conclusion,  we  offer  clear  substitution  rules  for 
icosahedral  packings  that  make  it  possible  to  fill  the  entire 
space  with  golden  zonohedra  in  a  strictly  regular  manner 
without  addressing  to  higher  dimensions.  Natural  local 
matching rules do not contradict  the cut-and-project scheme. 
We have especially depicted the Steinhardt’s designations for 
faces to highlight the consistency of our approach. It is neither 
better  nor  worse  than  the  higher-dimensional  approach  just 
another way to describe such a  complicated phenomenon as 
quasicrystals. 
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