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An efficient Rh(III)-catalyzed ortho-selective C-H activation and tandem oxidative olefination-

cyclization of aryl sulfonamides is described. The protocol has been applied to various substrates with 

good functional group tolerance. 

Introduction 
 10 

Benzo[d]isothiazole 1,1-dioxides as privileged motifs are present 

in many heterocyclic compounds with a broad spectrum of 

biological and medicinal applications.1 For example,  6-nitro-3-

(m-tolylamino)benzo[d]isothiazole 1,1-dioxide (JMC-7) is found 

to inhibit human 5-lipoxygenase (5-LOX) and microsomal 15 

prostaglandin E synthase (mPGES)-1 with IC50 values of  1.9, 6.7 

µM, respectively (Scheme 1).1a Furthermore, JMC-7 analogues 

are identified as potential anticancer and anti-inflammatory 

drugs.1b KAN 400473 is a human leukocyte elastase inhibitor.1c 

Compound A is a selective antagonist of CRTh2 (cytokine 20 

release from Th2 cells).1d  In addition, benzo[d]isothiazole 1,1-

dioxides have found many important applications in organic 

synthesis.2 For instance, (R)-CMIT-F,2a compound B2b-g and C2h 

are widely used as chiral auxiliaries in many asymmetric 

transformations (Scheme 1).  25 

Practical approaches for the synthesis of functionalized 

benzo[d]isothiazole 1,1-dioxides are well-documented.3-8 The 

groups of Sharpless,3a Dauban,3b and Che3c developed the 

synthesis of benzo[d]isothiazole 1,1-dioxides via aziridine 

formation. 3,3-Disubstituted benzo[d]isothiazole 1,1-dioxides 30 

were prepared from N-tert-butylbenzenesulfonamide and ketones 

via mediated by TMSCl-NaI-MeCN reagent.4 Che et al also 

reported the synthetic protocol by Au(PPh3)OTf-catalyzed 

cycloisomerization of terminal alkenes.5 Hanson and co-workers 

reported the synthesis of benzo[d]isothiazole 1,1-dioxides by 35 

domino Heck-aza-Michael reactions.6  

 
Scheme 1 Some examples of benzo[d]-isothiazole 1,1-dioxides motifs 
 

Recently, transition metal-catalyzed C-H bond alkenylation has 40 

attracted much attention owing to its extraordinary potential for 

practicality, atom economy, and environmental sustainability.9 In 

particular, various useful heterocycles can be readily prepared via 

transition-metal-catalyzed domino C–H activation/cyclization 

method.10,11 However, only few concerning C–H bond 45 

activation/olefination of sulfonamides or sulfoximines have been 

reported.12-15 In 2011, Yu and co-workers reported Pd-catalyzed 

selective ortho-olefination of benzenesulfonamides using Ac-

Leu-OH as a ligand, affording exclusively the mono-olefinated 

product (Scheme 2, eq 1).12 Cramer and co-workers reported an 50 

access to benzosultams by Rh(III)-catalyzed oxidative C-H 

activation of simple acylated sulfonamides and subsequent 

addition of internal alkynes (Scheme 2, eq 2).13 Recently, 

Parthasarathy and Blom described the Rh-catalyzed oxidative 

coupling between N-acyl sulfoximines and alkenes by 55 

regioselective C-H activation, providing the ortho-olefinated 

products (Scheme 2, eq 3).14 Sulfoximine-directed Ru-catalyzed 

ortho-C-H alkenylation of (hetero)arenes was also reported by 

Sahoo.15 Recently, we reported the synthesis of benzosultams via 

an intramolecular sp2 C-H bond amination reaction of o-60 

arylbenzenesulfonamides under metal-free conditions.16 Herein, 

we report the Rh(III)-catalyzed oxidative C-H activation of N-

acylated aryl sulfonamides and subsequent Michael addition of 

activated olefins to provide an access to 2,3-

dihydrobenzo[d]isothiazole 1,1-dioxides. 65 

 

Scheme 2 Direct C-H olefination of sulfonamides and sulfoximines 
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Table 1 Optimization of reaction conditionsa 

 
entry Oxidant (x equiv) additive solvent yield (%)b 

1 Cu(OAc)2 (2.5) - DCE 10 
2 Cu(OAc)2 (2.5) - t-AmOH 12 

3 Cu(OAc)2 (2.5) - THF 0 

4 Cu(OAc)2 (2.5) - MeCN 0 
5 Cu(OAc)2 (2.5) - DMF 0 

6 Cu(OAc)2 (2.5) - toluene 73 

7 Cu(TFA)2 (2.5) - toluene 0 
8 Fe(OAc)2 (2.5) - toluene 0 

9 AgOAc   (2.5) - toluene 69 

10 Ag2CO3   (2.5) - toluene 55 
11 Cu(OAc)2 (2.5) PivOH  toluene 84 

12 Cu(OAc)2 (2.5) AcOH toluene 69 

13 Cu(OAc)2 (2.5) NaOAc toluene 39 
14 Cu(OAc)2 (2.0) PivOH toluene 95 

15 Cu(OAc)2 (1.0) PivOH toluene 85 

16 Cu(OAc)2 (0.1) PivOH toluene 33 
17 - PivOH toluene 0 

18c Cu(OAc)2 PivOH toluene 95 

19d Cu(OAc)2 PivOH toluene 39 
20e Cu(OAc)2 PivOH toluene 14 

21f Cu(OAc)2 PivOH toluene 0 

a Reaction conditions: N-tosylacetamide 1a (0.2 mmol), ethyl acrylate 2a 
(4.0 equiv, 0.8 mmol), [RhCp*Cl2]2 (2.5 mol%), oxidant (2.5 equiv, 0.5 

mmol), additive (1.0 equiv), 110 oC, solvent (2 mL). b Isolated yield. c 2a 5 

(2.5 equiv, 0.5 mmol) was used. d 2a (1.0 equiv, 0.2 mmol) was used. e 

[RhCp*Cl2]2 (1.0 mol%) was used. f Without [RhCp*Cl2]2. 

Results and Discussion 

Initially, we examined the reaction of N-tosylacetamide 1a and 

ethyl acrylate 2a in the presence of [RhCp*Cl2]2 (2.5 mol%) and 10 

Cu(OAc)2 (2.5 equiv) in DCE at 110 oC for 30 h (Table 1, entry 

1). Interesting, Rh(III)-catalyzed tandem oxidative alkenylation 

and intramolecular aza-Michael reaction product 3a was obtained 

exclusively in only 10% isolated yield. Inspired by this result, we 

explored various reaction conditions in order to optimize the 15 

transformation. Accordingly, a number of solvents such as t-

AmOH, THF, CH3CN, DMF, and toluene were examined (Table 

1, entries 2-6). The screening of solvent revealed that the use of 

toluene as a solvent improved the yield of desired product 3a to 

73%, while others solvents failed to promote the conversion.  20 

Next, a variety of oxidants were investigated in toluene. The 

results showed that the reaction was sensitive to the choice of 

oxidants used (Table 1, entries 7-10). Among them, Cu(TFA)2 

and Fe(OAc)2 were failed to facilitate the reaction. The results of 

AgOAc and Ag2CO3 (69% and 55%, respectively) are a little 25 

inferior than that of Cu(OAc)2. Further studies showed that the 

addition of 1.0 equiv PivOH improved the yield to 84% (Table 1, 

entry 11). Other additives, such as AcOH and NaOAc, were 

found less effective (Table 1, entries 12 and 13). In the case of 

decreasing the oxidant amount to 2.0 equiv, improved the yield to 30 

95% (Table 1, entry 14). Further decreasing the amount to 1.0 

equiv led to a comparable yield 85%, but inferior result (33% 

yield) was obtained when a catalytic amount (10 mol%) of 

oxidant was used (Table 1, entries 15 and 16). Obviously, the 

controlled experiment confirmed that the Cu(OAc)2 oxidant was 35 

essential for the catalytic process (Table 1, entry 17). Changing 

the ratio of 1a:2a from 1:4 to 1:2.5,  the yield remained entirely 

unaffected (Table 1, entry 18).  Further decreasing the ratio to 1:1, 

the yield dropped to 39% (Table 1, entry 19). Similarly, lowering 

the loading of catalyst considerably reduced the product yield 40 

(Table 1, entries 20 and 21).  

Table 2 Scope of substrates 

 
In order to determine the scope and limitations of the present 

protocol, subsequently we examined the generality of Rh-45 

catalyzed tandem oxidative alkenylation and intramolecular aza-

Michael reaction of various aryl sulfonamides 1 and activated 

alkenes 2 under the optimized conditions {[RhCp*Cl2]2 (2.5 

mol%), Cu(OAc)2 (2.0 equiv), pivalic acid (PivOH, 1.0 equiv) 

toluene, 110 oC} (Table 2). Initially, the reactions of acrylates of 50 

various alcohols 2a-d were proceded smoothly to give the 

corresponding products 3a-d in high yields (82-95%). It is 

noteworthy that N,N-dimethylacrylamide 1e was also effective in 

this conversion, delivering the mono-alkenylated cyclization 

product 3e in moderate yield 45%. In addition, this useful 55 

catalytic system could be applied to various electronic functional 

groups, such as halogen (fluoro, chloro, bromo), methoxyl, 

acetoxyl, and trifluoromethyl substituents, providing 

dialkenylated cyclization products 3f-l in good yields (75-93%). 

In the case of nitro substituted substrate 1m, mono- and 60 

dialkenylated products 3m and 3m’ were observed in this 

reaction. Substrates bearing a substituent at ortho-position also 

worked smoothly, resulting in the mono-alkenylated cyclization 

products 3n-p in good yields. When substrate 1q having a 2-

naphthalenyl group was used, the desired product 3q was 65 

obtained in moderate yield. In the case of substrate 1r bearing a 

3-methyl group, corresponding product 3r was obtained in 51% 

yield. 

 
Scheme 3 Removal of acetyl group 70 
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Importantly, acetyl protecting group can be removed via acid-

mediated deprotection method. For instance, the acetyl group of 

compound 3a could be easily removed in 2 N HCl in ethanol 

under reflux for 2h to afford product 6 in good yield 85% 

(Scheme 3). 5 

 

 

Scheme 4 Proposed catalytic cycle 

Based on recent reports,12-15 a plausible mechanism for the 

reaction of aryl sulfonamides 1 with activated alkenes 2 is 10 

illustrated in Scheme 4. A proposed catalytic cycle was initiated 

by the formation of rhodacycle intermediate I through 

coordination of 1 to [RhCp*Cl2]2 and the following C-H 

activation. This Rh(III) intermediate I then undergoes the 

insertion of alkene 2 to afford Rh(III) species II. The subsequent 15 

β-hydride elimination of intermediate II gives the intermediate 

III, then undergoes the reductive elimination to yield Rh(I) 

species and mono-alkenylation product 4, which undergoes the 

second olefination reaction to provide dialkenylation product 5. 

An intramolecular aza-Michael addition reaction of 5 gives rise 20 

to desired product 3. The Rh(I) species is then oxidized by Cu(II) 

to regenerate the Rh(III) catalyst.  

 

Conclusion 
In summary, we have developed an efficient Rh(III)-catalyzed 25 

tandem oxidative alkenylation and intramolecular aza-Michael 

reaction from aryl sulfonamides and activated alkenes, which 

produced 2,3-dihydrobenzo[d]isothiazole 1,1-dioxides in good to 

excellent yields. The protocol has been applied to various 

substrates and proceeds with high chemoselectivity as well as 30 

with good functional group tolerance. 

 

General procedure for Rh-catalyzed tandem oxidative 

olefination-cyclization of aryl sulfonamides: To a 25 mL tube 

containing a magnetic stir bar, was added aryl sulfonamide 1 (0.2 35 

mmol), alkene 2 (0.5 mmol), [Cp*RhCl2]2 (3 mg, 2.5 mol%), 

Cu(OAc)2 (72 mg, 0.4 mmol), PivOH (10.2 mg, 0.2 mmol), and 

toluene (2 mL). The resulting mixture was stirred at 110 oC for 30 

h (monitored by TLC). After being cooling to room temperature, 

evaporation of the solvent under reduced pressure followed 40 

purification by silica gel chromatography using petroleum 

ether/ethyl acetate (3:1-6:1) as eluent to provide the desired 

products 3.  

 

(E)-ethyl-3-(2-acetyl-3-(2-ethoxy-2-oxoethyl)-5-methyl-1,1-45 

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate (3a):  

Isolated (Rf = 0.3, EtOAc–petroleum ether = 1:3) as a white solid 

(77.8 mg, 95% yield), mp: 126-128 oC; 1H NMR (400 MHz, 

CDCl3) δ 1.20 (t, J = 7.2 Hz, 3H), 1.35 (t, J = 7.2 Hz, 3H), 2.49 

(s, 3H), 2.61 (s, 3H), 2.92-2.99 (m, 1H), 3.13 (dd, J = 16.0, 3.6 50 

Hz, 1H), 4.14 (q, J =7.2 Hz, 2H), 4.29 (q, J = 7.2 Hz, 2H), 5.64-

5.67 (m, 1H), 6.63 (d, J = 16.0 Hz, 1H), 7.35 (s, 1H), 7.56 (s, 

1H), 8.01 (d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, CDCl3), δ 

14.0, 14.2, 21.6, 23.6, 39.1, 54.8, 61.0, 61.1, 124.5, 126.1, 128.8, 

129.6, 130.9, 135.7, 136.2, 145.6, 165.4, 167.3, 169.5; HRMS 55 

(ESI): m/z [M + H]+ calcd for C19H24NO7S; 410.1273; found: 

410.1279. 

 

(E)-methyl3-(2-acetyl-3-(2-methoxy-2-oxoethyl)-5-methyl-1,1-

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate (3b):  60 

Isolated (Rf = 0.3, EtOAc–petroleum ether = 1:3) as a white solid 

(80.0 mg, 93% yield), mp: 139-141 oC; 1H NMR (400 MHz, 

CDCl3) δ 2.49 (s, 3H), 2.61 (s, 3H), 2.92-2.98 (m, 1H), 3.14 (dd, 

J = 16.0, 3.2 Hz, 1H), 3.69 (s, 3H), 3.84 (s, 3H), 5.64-5.67 (m, 

1H), 6.64 (d, J = 15.6 Hz, 1H), 7.34 (s, 1H), 7.56 (s, 1H), 8.02 (d, 65 

J = 16.0 Hz, 1H); 13C NMR (100 MHz, CDCl3), δ 21.8, 23.5, 

39.0, 52.0, 54.7, 124.1, 126.1, 128.9, 129.7, 130.8, 135.9, 136.1, 

145.7, 165.8, 167.3, 169.9; HRMS (ESI): m/z [M + H]+ calcd for 

C17H20NO7S: 382.0960; found: 382.0968.  

 70 

(E)-butyl-3-(2-acetyl-3-(2-butoxy-2-oxoethyl)-5-methyl-1,1-

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate (3c): 

Isolated (Rf = 0.3, EtOAc–petroleum ether = 1:3) as a white solid 

(78.2 mg, 84% yield), mp: 135-137 oC; 1H NMR (400 MHz, 

CDCl3) δ 0.89 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.6 Hz, 3H), 1.43-75 

1.45 (m, 2H), 1.41-1.47(m, 2H), 1.51-1.58 (m, 2H), 1.67-1.74 (m, 

2H), 2.49 (s, 3H), 2.61 (s, 3H), 2.93-2.99 (m, 1H), 3.14 (dd, J = 

16.0, 3.2 Hz, 1H), 4.09 (t, J = 5.6 Hz, 2H), 4.23 (t, J = 6.4 Hz, 

2H), 5.63-5.66 (m, 1H), 6.34 (d, J = 16.0 Hz, 1H), 7.36 (s, 1H), 

7.57 (s, 1H), 8.01 (d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, 80 

CDCl3), δ 13.6, 13.7,18.8, 19,1, 21.8, 23.5, 30.4, 30.6, 39.0, 

124.4, 126.0, 128.7, 129.5, 130.8, 135.6, 136.2, 145.6, 165.5, 

167.3, 169.6; HRMS (ESI): m/z [M + H]+ calcd for C23H32NO7S: 

466.1899; found: 466.1907. 

 85 

(E)-tert-butyl-3-(2-acetyl-3-(2-(tert-butoxy)-2-oxoethyl)-5-

methyl-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate 

(3d):  

Isolated (Rf = 0.3, EtOAc–petroleum ether = 1:3) as a white solid 

(76.3 mg, 82% yield), mp: 130-133 oC 1H NMR (400 MHz, 90 

CDCl3) δ 1.41 (s, 9H),1.55 (s, 9H), 2.46 (s, 3H), 2.61 (s, 3H), 

2.74-2.80 (m, 1H), 3.13 (dd, J = 16.0, 3.2 Hz, 1H), 5.62-5.64 (m, 

1H), 6.56 (d, J = 16.0 Hz, 1H), 7.36 (s, 1H), 7.54 (s, 1H), 7.95 (d, 

J = 16.0 Hz, 1H); 13C NMR (100 MHz, CDCl3), δ 21.7, 23.5, 

27.9, 28.1, 40.3, 54.9, 81.2, 81.8, 126.0, 126.2, 128.5, 129.5, 95 

131.1, 134.8, 136.5, 164,6, 167.2, 168.8; HRMS (ESI): m/z [M + 

H]+ calcd for C23H32NO7S: 466.1899; found: 466.1905. 

 

2-(2-acetyl-5-methyl-1,1-dioxido-2,3-dihydrobenzo[d]isothiazol-

3-yl)-N,N-dimethylacetamide (3e):  100 

Isolated (Rf = 0.4, EtOAc–petroleum ether = 1:3) as a white solid 

(23.8 mg, 39% yield), mp: 143-145 oC 1H NMR (400 MHz, 

CDCl3) δ 2.46 (s, 3H), 2.61 (s, 3H), 2.66-2.73 (m, 1H), 2.93 (s, 

3H) 3.00 (s, 3H), 3.26 (d, J = 15.6 Hz, 1H), 5.87-5.90 (m, 1H), 

7.38 (d, J = 8.0 Hz, 1H ), 7.63 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H); 105 

13C NMR (100 MHz, CDCl3), δ 21.9, 23.6, 35.5, 37.1, 38.8, 55.8, 

121.1, 126.5, 130.7, 130.8, 136.5, 145.5, 167.3, 169.0; HRMS 

(ESI): m/z [M + H]+ calcd for C14H19N2O4S: 311.1066; found: 

311.1071. 

 110 

(E)-ethyl 3-(2-acetyl-3-(2-ethoxy-2-oxoethyl)-5-fluoro-1,1-

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate (3f): 

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:5) as a white solid 

(67.7 mg, 82% yield), mp: 141-143 oC 1H NMR (400 MHz, 
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CDCl3) δ 1.22 (t, J = 7.2 Hz, 3H), 1.35, (t, J = 7.2 Hz, 3H), 2.61 

(s, 3H), 2.91-2.97 (m, 1H), 3.17 (dd, J = 16.0, 2.8 Hz, 1H), 4.13-

4.19 (m, 2H), 4.28-4.33 (m, 2H), 5.68-5.70 (m, 1H), 6.63 (d, J = 

16.0 Hz, 1H) 7.32 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 

8.00 (d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, CDCl3), δ 14.0, 5 

14.2, 23.6, 38.9, 54.6, 61.2, 61.3, 113.1 (d, JC-F = 24 Hz), 115.3 

(d, JC-F = 24 Hz), 126.1, 128.4(d, JC-F = 4 Hz), 134.0 (d, JC-F = 10 

Hz), 134.3, 139.2 (d, JC-F = 9 Hz), 164.9, 165.7 (d, JC-F = 256 Hz), 

167.0, 169.4; HRMS (ESI): m/z [M + H]+ calcd for 

C18H21FNO7S: 414.1023; found: 414.1038. 10 

 

(E)-ethyl3-(2-acetyl-5-chloro-3-(2-ethoxy-2-oxoethyl)-1,1-

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate (3g) :  

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:4) as a white solid 

(67.7 mg, 82% yield), mp: 143-145 oC, 1H NMR (400 MHz, 15 

CDCl3) δ 1.22 (t, J =7.2 Hz , 3H), 1.35 (t, J = 7.0 Hz, 3H), 2.61 

(s, 3H), 2.95 (dd, J = 16.0, 2.8 Hz, 1H), 3.16 (dd, J = 16.0, 2.8 

Hz, 1H), 4.13-4.19 (m, 2H), 4.27-4.33 (m, 2H), 5.68 (d, J = 7.2 

Hz, 1H), 6.65 (d, J = 16.0 Hz, 1H), 7.59 (s, 1H), 7.73 (s, 1H), 

7.98 (d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, CDCl3), δ 14.0 20 

14.1, 23.5, 38.9, 54.5, 61.2, 61.3, 125.8, 126.1, 128.1, 130.7, 

132.8, 134.2, 137.9, 164.9, 167.0 169.3; HRMS (ESI): m/z [M + 

H]+ calcd for C18H21ClNO7S: 430.0727; Found: 430.0721. 

 

(E)-ethyl 3-(2-acetyl-5-bromo-3-(2-ethoxy-2-oxoethyl)-1,1-25 

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate (3h)： 

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:4) as a white solid 

(81.5 mg, 86% yield), mp: 129-130 oC, 1H NMR (400 MHz, 

CDCl3) δ 1.22 (t, J = 7.2 Hz, 3H), 1.35 (t, J = 7.2 Hz, 3H), 2.60 

(s, 3H), 2.91-2.98 (m, 1H), 3.16 (dd, J = 16.4, 2.8 Hz, 1H), 4.16 30 

(m, 2H), 4.30 (m, 2H), 5.68 (dd, J = 7.6, 2.8 Hz, 1H), 6.65 (d, J = 

16.0 Hz, 1H), 7.75 (s, 1H), 7.89 (s, 1H), 7.97 (d, J = 15.6 Hz, 

1H); 13C NMR (100 MHz, CDCl3), δ 14.0, 14.2, 23.5, 38.9, 54.5, 

61.2, 61.3, 126.1, 128.8, 129.0, 131.0, 131.2, 132.8, 134.2, 137.9, 

164.9, 167.0, 169.3; HRMS (ESI): m/z [M + H]+ calcd for 35 

C18H21BrNO7S: 474.0222; Found: 474.0215. 

 

(E)-ethyl 3-(2-acetyl-3-(2-ethoxy-2-oxoethyl)-5-methoxy-1,1-

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate(3i): 

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:4) as a white solid 40 

(75.7 mg, 89% yield), mp: 147-149 oC, 1H NMR (400 MHz, 

CDCl3) δ 1.22 (t, J = 7.1 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H), 2.60 

(s, 3H), 2.91 (dd, J = 16.1, 8.0 Hz, 1H), 3.16 (dd, J = 16.2, 3.1 

Hz, 1H), 3.90 (s, 3H), 4.13 – 4.18 (m, 2H), 4.27 – 4.32 (m, 2H), 

5.65 (dd, J = 7.7, 2.8 Hz, 1H), 6.61 (d, J = 15.9 Hz, 1H), 7.03 (s, 45 

1H), 7.21 (s, 1H), 7.98 (d, J = 15.9 Hz, 1H); 13C NMR (100 MHz, 

CDCl3), δ 14.0, 14.2, 23.5, 39.2, 54.7, 56.1, 61.0, 61.2, 110.0, 

114.5, 124.3, 124.9, 132.8, 135.6, 138.5, 164.2, 165.3, 167.2, 

169.7; HRMS (ESI): m/z [M + H]+ calcd for C19H24NO8S: 

426.1223; Found: 426.1231. 50 

 

(E)-ethyl3-(5-acetoxy-2-acetyl-3-(2-ethoxy-2-oxoethyl)-1,1-

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate (3j) :  

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:3) as a white solid 

(67.7 mg, 82% yield), mp: 143-145 oC, 1H NMR (400 MHz, 55 

CDCl3) δ 1.20 (t, J = 5.3 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H), 2.35 

(s, 3H), 2.61 (s, 3H), 2.90 – 2.96 (m, 1H), 3.17 (dd, J = 16.3, 3.0 

Hz, 1H), 4.12 - 4.17 (m, 2H), 4.27 – 4.32 (m, 2H), 5.70 (dd, J = 

7.8 Hz, 2.8 Hz, 1H), 6.62 (d, J = 15.9 Hz, 1H), 7.39 (s, 1H), 7.49 

(s, 1H), 8.01 (d, J = 15.8 Hz, 1H); 13C NMR (100 MHz, CDCl3), 60 

δ 13.9, 14.2, 21.0, 23.6, 39.0, 54.7, 61.1, 61.2, 119.1, 121.4, 

125.6, 129.3, 132.9, 134.7, 138.0, 155.0, 165.1, 167.1, 168.1, 

169.5; HRMS (ESI): m/z [M + H]+ calcd for C20H24NO9S: 

454.1172; Found: 454.1163. 
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(E)-ethyl3-(2-acetyl-3-(2-ethoxy-2-oxoethyl)-1,1-dioxido-5-

(trifluoromethyl)-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate 

(3k): 

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:8) as a yellow oil 

(95.5 mg, 93% yield), 1H NMR (400 MHz, CDCl3) δ 1.21 (t, J = 70 

7.2 Hz, 3H), 1.36 (t, J = 7.2 Hz, 3H), 2.63 (s, 3H), 2.93 - 2.99 (m, 

1H), 3.21 (dd, J = 16.4, 3.2 Hz, 1H), 4.13 – 4.18 (m, 2H), 4.29 – 

4.34 (m, 2H), 5.77 (dd, J = 7.9, 2.9 Hz, 1H), 6.73 (d, J = 15.9 Hz, 

1H), 7.87 (s, 1H), 7.99 (s, 1H), 8.06 (d, J = 15.9 Hz, 1H); 13C 

NMR (100 MHz, CDCl3), δ 13.9, 14.2, 23.6, 38.8, 54.8, 51.3, 75 

51.4, 122.6 (q, 1JC-F= 272 Hz), 122.8 (d, 3JC-F = 4 Hz), 124.9 (d, 
3JC-F = 3 Hz), 126.6, 132.5, 134.08, 136.4 (d, 2JC-F = 34 Hz), 

137.3, 164.8, 167.2, 169.3; HRMS (ESI): m/z [M + H]+ calcd for 

C19H21F3NO7S: 464.0991; Found: 464.1012. 
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(E)-ethyl-3-(2-acetyl-3-(2-ethoxy-2-oxoethyl)-1,1-dioxido-2,3-

dihydrobenzo[d]isothiazol-7-yl)acrylate (3l) : 

Isolated (Rf = 0.3, EtOAc–petroleum ether = 1:4) as a white solid 

(63.2 mg, 80% yield), mp: 90-92 oC 1H NMR (400 MHz, CDCl3) 

δ 1.11 (t, J = 7.2 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H), 2.54 (s, 3H), 85 

2.85-2.91 (m, 1H), 3.07 (dd, J = 16.0, 3.6 Hz, 1H), 4.02-4.08 (m, 

2H), 4.19-4.24 (m, 2H), 5.62-5.64 (m, 1H), 6.57 (d, J = 16.0 Hz, 

1H), 7.50 (d, J = 7.6 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.69 (d, J 

= 7.2 Hz, 1H), 7.98 (d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, 

CDCl3), δ 14.0, 14.2, 23.6, 39.1, 54.9, 61.0, 61.1, 124.9, 125.7, 90 

127.9, 131.2, 132.2, 134.3, 135.4, 136.1, 165.3, 167.2, 169.4; 

HRMS (ESI): m/z [M + H]+ calcd for C18H22NO7S: 396.1117; 

found: 396.1125. 

 

(E)-ethyl 3-(2-acetyl-3-(2-ethoxy-2-oxoethyl)-5-nitro-1,1-95 

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate (3m) :  

Isolated (Rf = 0.3, EtOAc/Petroleum Ether = 1:3) as a white solid 

(15.9 mg, 18% yield), mp: 105-107 oC, 1H NMR (400 MHz, 

CDCl3) δ 1.22 (t, J =7.0 Hz , 3H), 1.37 (t, J = 7.2 Hz , 3H), 2.63 

(s, 3H), 3.02 (dd, J = 16.4, 8.0 Hz, 1H), 3.22 (dd, J = 16.4, 2.8 Hz 100 

1H), 4.14-4.19 (m, 2H), 4.30-4.35 (m, 2H), 5.78-5.81 (m, 1H), 

6.79 (d, J = 16.0 Hz, 1H), 8.06 (d, J = 16.0 Hz, 1H), 8.43 (s, 1H), 

8.58 (s, 1H); 13C NMR (100 MHz, CDCl3), δ 14.0, 14.2, 23.7, 

38.6, 54.8, 61.4, 61.6, 120.7, 122.7, 127.5, 133.4, 133.4, 136.9, 

138.3, 151.5, 164.6, 166.8, 169.0; HRMS (ESI): m/z [M + H]+ 
105 

calcd for C18H21N2O9S: 441.0968; Found: 441.0957. 

 

ethyl 2-(2-acetyl-5-nitro-1,1-dioxido-2,3-

dihydrobenzo[d]isothiazol-3-yl)acetate (3m’) : Isolated (Rf = 0.4, 

EtOAc/Petroleum Ether = 1:4) as a white solid (17.1 mg, 25% 110 

yield), mp: 98-100 oC, 1H NMR (400 MHz, CDCl3) δ 1.23 (t, J 

=7.2 Hz , 3H), 2.62 (s, 3H), 3.01 (dd, J = 16.0, 8.0 Hz, 1H), 3.25 

(dd, J = 16.0, 2.8Hz, 1H), 4.15-4.20 (m, 2H), 5.81-5.83 (m, 1H), 

8.02 (d, J = 8.4 Hz, 1H), 8.47 (d, J = 8.4 Hz, 1H), 8.51 (s, 1H); 
13C NMR (100 MHz, CDCl3), δ 14.0, 23.6, 38.6, 55.3, 61.5, 115 

121.0, 123.4, 125.4, 137.3, 139.0, 151.5, 167.0, 169.1; HRMS 

(ESI): m/z [M + H]+ calcd for C13H15N2O7S: 343.0600; Found: 

343.0612. 

 

Ethyl 2-(2-acetyl-7-methyl-1,1-dioxido-2,3-120 

dihydrobenzo[d]isothiazol-3-yl)acetate (3n): 

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:5) as a white solid 

(56.6 mg, 91% yield), mp: 125-127 oC, 1H NMR (400 MHz, 

CDCl3) δ 1.11 (t, J = 7.2 Hz, 3H), 2.53 (s, 3H), 2.57 (s, 3H), 2.82 

- 2.87 (m, 1H), 3.06 (dd, J = 16.0, 3.6 Hz, 1H), 4.14 (m, 2H), 125 

5.59 (dd, J = 7.6, 3.2 Hz, 1H), 7.27 (d, J = 7.2 Hz, 1H), 7.30 (d, J 

= 6.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H); 13C NMR (100 MHz, 

CDCl3), δ 14.0, 16.8, 23.5, 39.3, 54.9, 61.0, 121.9, 131.5, 132.2, 

134.1, 134.8, 135.3, 167.4, 169.5; HRMS (ESI): m/z [M + H]+ 

calcd for C14H18NO5S: 312.0906; Found: 312.0921. 130 
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ethyl2-(2-acetyl-7-fluoro-1,1-dioxido-2,3-

dihydrobenzo[d]isothiazol-3-yl)acetate (3o): 

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:4) as a colorless 

oil (55.5 mg, 88% yield), 1H NMR (400 MHz, CDCl3) δ 1.21 (t, J 5 

= 7.1 Hz, 3H), 2.60 (s, 3H), 2.93 – 2.99 (m, 1H), 3.11 (dd, J = 

16.1, 3.2 Hz, 1H), 4.12 – 4.17 (m, 2H), 5.74 (dd, J = 7.6, 3.0 Hz, 

1H), 7.27 (t, J = 8.4 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.67 – 7.73 

(m, 1H); 13C NMR (100 MHz, CDCl3), δ 14.0, 23.6, 39.0, 55.4, 

61.2, 116.7, 116.8, 120.6 (d, 2JC-F = 4 Hz), 136.6 (d, 2JC-F = 7 Hz), 10 

137.9, 156.5 (d, 1JC-F = 258.6 Hz), 167.1, 169.3; HRMS (ESI): 

m/z [M + H]+ calcd for C13H15FNO5S: 316.0655; Found: 

316.0629. 

   

ethyl 2-(2-acetyl-7-chloro-1,1-dioxido-2,3-15 

dihydrobenzo[d]isothiazol-3-yl)acetate (3p): 

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:4) as a colorless 

oil (60.3 mg, 91% yield), 1H NMR (400 MHz, CDCl3) δ 1.20 (t, J 

= 7.1 Hz, 3H), 2.62 (s, 3H), 2.91 – 2.97 (m, 1H), 3.15 (dd, J = 

16.2, 3.2 Hz, 1H), 4.11 – 4.16 (m, 2H), 5.69 (dd, J = 7.6, 2.9 Hz, 20 

1H), 7.50 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.63 (t, J 

= 7.9 Hz, 1H); 13C NMR (100 MHz, CDCl3), δ 13.9, 23.6, 39.0, 

54.5, 61.2, 123.2, 129.3, 130.8, 131.8, 135.1, 137.8, 167.2, 169.3; 

HRMS (ESI): m/z [M + H]+ calcd for C13H15ClNO5S: 332.0359; 

Found: 332.0347. 25 

 

 

(E)-ethyl 3-(2-acetyl-3-(2-ethoxy-2-oxoethyl)-1,1-dioxido-2,3-

dihydronaphtho[2,3-d]isothiazol-9-yl)acrylate (3q) :  

Isolated (Rf = 0.3, EtOAc/Petroleum Ether = 1:3) as a white solid 30 

(44.6 mg, 50% yield), mp: 138-140 oC, 1H NMR (400 MHz, 

CDCl3) δ 1.19 (t, J =7.2 Hz, 3H), 1.37  (t, J =7.2 Hz, 3H), 2.66 (s, 

3H), 2.95 (dd, J = 15.6, 5.2 Hz, 1H), 3.22 (dd, J = 15.6, 3.6 Hz, 

1H), 4.13-4.16 (m, 2H), 4.29-4.34 (m, 2H), 6.18-6.20 (m, 1H), 

6.74 (d, J = 15.6 Hz, 1H), 7.57-7.77 (m, 2H), 8.02 (t, J = 4.6 Hz, 35 

1H), 8.09 (t, J = 4.0 Hz, 1H), 8.11 (d, J = 15.6 Hz, 1H), 8.21 (s, 

1H); 13C NMR (100 MHz, CDCl3), δ 13.9, 14.2, 23.5,  40.7, 54.7, 

61.0, 61.3, 100.0, 123.8, 124.0, 126.1, 127.1, 129.6, 130.0, 134.1, 

135.5, 136.2, 165.6, 167.2, 169.5; HRMS (ESI): m/z [M + H]+ 

calcd for C22H24NO7S: 446.1273; Found: 446.1281. 40 

 

(S,E)-ethyl 3-(2-acetyl-3-(2-ethoxy-2-oxoethyl)-6-methyl-1,1-

dioxido-2,3-dihydrobenzo[d]isothiazol-7-yl)acrylate (3r): 

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:3) as a yellow 

soild (37.7 mg, 46% yield), mp: 125-127 oC 1H NMR (400 MHz, 45 

CDCl3) δ 1.14 (t, J = 7.0 Hz, 3H), 1.38 (t, J = 7.2 Hz, 3H), 2.46 

(s, 3H), 2.62 (s, 3H), 2.85 (dd, J = 15.2, 5.2 Hz, 1H), 3.14 (dd, J = 

15.6, 3.6 Hz, 1H), 4.04 – 4.09 (m, 2H), 4.26 – 4.32 (m, 2H), 5.72 

(t, J = 3.8 Hz, 1H), 6.60 (d, J = 16.0 Hz, 1H), 7.51 (d, J = 8.0 Hz, 

1H), 7.69 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 15.6 Hz, 1H); 13C 50 

NMR (100 MHz, CDCl3), δ 13.8, 14.2, 18.2, 23.6, 38.1, 54.8, 

61.0, 61.2, 123.9, 127.8, 128.7, 132.7, 133.7, 135.4, 135.8, 135.9, 

165.5, 167.3, 169.0; HRMS (ESI): m/z [M + H]+ calcd for 

C19H24NO7S: 410.1273; Found: 410.1266. 

 55 

(E)-ethyl 3-(3-(2-ethoxy-2-oxoethyl)-5-methyl-1,1-dioxido-2,3-

dihydrobenzo[d]isothiazol-7-yl)acrylate (6): 

Isolated (Rf = 0.3, EtOAc-petroleum ether = 1:2) as a white solid 

(85% yield), mp: 143-145 oC, 1H NMR (400 MHz, CDCl3) δ 1.27 

(t, J =6.4 Hz, 3H), 1.33 (t, J =7.0 Hz, 3H), 2.79 (dd, J = 16.8, 9.6 60 

Hz, 1H), 2.95 (dd, J = 16.8, 3.2 Hz, 1H), 4.20-4.28 (m, 4H), 5.05 

(s, 1H), 6.62 (d, J = 16.0 Hz, 1H), 7.19 (s, 1H), 7.49 (s, 1H), 8.01 

(d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, CDCl3), δ 14.1, 14.2, 

21.6, 40.4, 53.1, 60.9, 61.4, 123.7, 125.6, 128.4, 130.4, 131.8, 

136.6, 140.1, 144.5, 165.8, 170.7; HRMS (ESI): m/z [M + H]+ 
65 

calcd for C17H22NO6S:368.1168; Found: 368.1179. 
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Rh(III)-Catalyzed tandem oxidative olefination-cyclization of aryl 
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sulfonamides 

Qiuping Ding,* Tong Liu, Qiang Zheng, Yadong Zhang, Ling Long, and Yiyuan Peng* 
 
 

Abstract: An efficient Rh(III)-catalyzed ortho-selective C-H activation and tandem oxidative olefination-30 

cyclization of aryl sulfonamides is described. The protocol has been applied to various substrates with 

good functional group tolerance. 
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