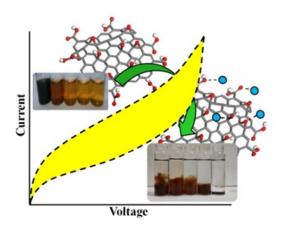


This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.


Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

The increase in oxygen functionalities on GO with increasing use of oxidizing agent, results in (i) amplification of redox pseudocapacitive current and (ii) improves metal ion adsorption.

RSC Advances Accepted Manuscript

RSC Advances

1	Impact of the Degree of Functionalization of Graphene oxide on the Electrochemical
2	Charge Storage Property and Metal ion Adsorption
3	Mahesh M. Kadam, Omkar R. Lokare, Kota V.M.K. Kireeti, Vilas G. Gaikar and Neetu Jha*
4	¹ Department of Chemical Engineering,
5	Institute of Chemical Technology,
6	Mumbai - 400019
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	Corresponding author : Tel.: +91-022-33612013;
22	Fax: +91-022-33612020;
23	e-mail: nr.jha@ictmumbai.edu.in
24	

1 Abstract

2 Graphene oxide (GO) samples were prepared at room temperature using modified Hummer's method. The quantitative variation of oxidizing agent for the oxidation of graphene sheets 3 4 resulted in increasing the oxygen functionalities on GO samples. The Qualitative analysis of functional groups and surface charge variation was studied using Fourier transform infra-red 5 6 (FTIR) spectroscopy and zeta potential respectively. Different oxidation degrees of GO was investigated by X- ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). 7 The electrochemical charge storage property of the GO samples were studied using two 8 9 electrode supercapacitor cell. The fabricated supercapacitor demonstrates linear enhancement in 10 the specific charge storage with an increase in the oxidation of GO samples. Maximum charge storage of 71 F/g has been obtained with highly oxidized GO sample at room temperature. The 11 adsorption of metal ions from the aqueous solution has also been studied with the variation in the 12 degree of functionalization of the GO samples. It was observed that increasing oxygen 13 functionalities from GO-1 to GO-5 amplifies the uptake of metal ions [Cd(II) and Cu(II)]. The 14 experimental data fits well in Langmuir adsorption model, indicating monolayer adsorption of 15 metal ion on GO samples. 16

17

Keywords: Graphene Oxide, Charge storage, Supercapacitor, Cyclic Voltammetry, Adsorption.

RSC Advances Accepted Manuscript

1 **1. Introduction**

Graphene has attracted great interest worldwide for its excellent mechanical, electrical, 2 thermal and optical properties. The remarkable properties of graphene reported so far include 3 4 high value of Young's modulus (~1100 GPa), fracture strength (125 GPa), thermal conductivity (~5000 W/m/K) and specific surface area (2630 m²/g).¹ Many techniques have been developed 5 recently for the production of graphene, such as micro-mechanical exfoliation of highly ordered 6 pyrolytic graphite, epitaxial growth, chemical vapor deposition and the reduction of graphene 7 oxide(GO).² GO is an atomic sheet of graphite containing several oxygenated functional groups 8 on its basal planes and edges, owing to the mixing of sp^2 and sp^3 hybridized carbon atoms.³ GO 9 has many applications in various fields such as photocatalysts, memory devices, energy storage 10 and drug delivery agents.⁴⁻⁷ The two amazing characteristics of GO is that; firstly, it can be 11 12 produced using inexpensive graphite as raw material by cost-effective chemical methods in high yields, and secondly, it is highly hydrophilic and forms stable aqueous colloids which facilitate 13 the assembly of macroscopic structures. Both these properties are important for large-scale use of 14 graphene oxide. 15

Three major methods have been used for the synthesis of GO. Pioneering work in this area was 16 done by Brodie for ascertaining carbon atomic weight of graphite.⁸ Later Hummer⁹ and 17 Staudenmaier¹⁰ developed popular methods with improved experimental safety and reduced 18 formation of toxic gases. Since then, oxidation of graphite has not been paid much attention until 19 recently, when GO was realized as a promising potential route for the large scale production of 20 graphene.¹¹ There are few reports in the literature focusing on optimizing the degree to which 21 graphite should be oxidized for its efficient exfoliation to single layers of GO.¹² The oxidation 22 23 mechanism of GO and their structures are still indefinable due to its nonstoichiometry and strong hygroscopic nature. Szabo et al., studied in detail the evolution of surface functional groups in a 24

series of progressively oxidized GO by the Brodie method.¹³ The model proposed that GO, 1 exhibited a carbon network comprising of two regions: trans-linked cyclohexane chairs and 2 ribbons of flat hexagons with C=C double bonds decorated with functional groups.¹³ The 3 4 aromatic structure of graphite was completely destroyed by the oxidation using Brodie method. Therefore, Hummers method has been found to be more apposite for preparing GO. Lerf et al, 5 had proposed a model for GO consisting of two kinds of regions: aromatic regions with 6 unoxidized benzene rings and regions with aliphatic six-membered rings.¹⁴ The comparative area 7 of the two regions depends on the degree of oxidation, with hydroxyl and epoxy groups located 8 on the interior of GO and carboxyl (COOH) groups at the edges of sheets.¹⁴ Wilson et al.¹⁵ found 9 that the latter model was consistent with their experimental observations. However, the influence 10 of layer spacing on the exfoliation of GO sheets was not discussed in their report. It is known 11 12 that the functional groups and heteroatoms on the carbon sheets improve the wettability of GO electrode due to increased number of hydrophilic polar sites and thus enhance the over-all charge 13 storage capacitance of the electrodes.¹⁶ Graphite and graphene possess sp² hybrid carbon atoms 14 which are partially degraded to sp^2-sp^3 hybrid atoms in GO. Because of the lesser $\pi-\pi$ stacking 15 stability and poor conductivity, GO was theoretically claimed to be inappropriate electrode 16 material for supercapacitors.¹⁷ However, Xu et al.¹⁸ reported that the GO, which is an 17 intermediate during graphene synthesis, exhibits higher capacitance than graphene due to an 18 additional *pseudo*-capacitance effect of the attached oxygen-containing functional groups on its 19 basal planes. Taking into consideration its lower cost and shorter processing time, GO may 20 become a better choice than graphene as the electrode material for supercapacitors.¹⁸ Further, the 21 presence of the negative charged oxygenated functional groups and the aromatic network 22 influences the adsorptive behavior of GO.¹⁹ It is also known as a potential adsorbent for the 23 removal of organics such as methylene blue, methyl violet, orange G, malchite green, methyl 24

1 green, acridine, phenols¹⁹⁻²² and inorganic contaminants viz; Zn(II), Cu(II), Cd(II), Pb(II), Co(II),

2 Eu(III), U(IV), Au(III), Pd(II), Pt(IV) etc. from aqueous solutions.²³⁻²⁸

In the present study, we have focused on introducing varying scale of oxygenated functional 3 groups on the GO surface. We used the modified Hummers method to synthesize GO at 300 K.³¹ 4 Different degrees of oxidation of graphite were achieved by altering the dosage of oxidizing 5 agent (KMnO₄) during the synthesis. In total, five GO samples were synthesized and labeled as 6 GO-1, GO-2, GO-3, GO-4 and GO-5, respectively in the order of increasing the level of 7 oxidation. All the samples were characterized in detail for degree of oxidation, surface 8 properties, interlayer spacing and zeta potential. The effect of degree of oxidation on the charge 9 storage property of GO was evaluated using electrochemical two electrode cyclic voltammetric 10 and galvanostatic charge-discharge method. 11

As Cu and Cd are few of the major pollutants in the marine and waste stream coming from mining operations, textile, electrochemical, and petrochemical industries.²⁹.These nonbiodegradable, persistence pollutant effects the water bodies and accumulate in the environmental elements *viz.* food cycle, which may significantly endanger human health.^{29,30} Hence, adsorption extent of metal ions, Cu(II) and Cd(II) on GO (1-5) samples at different pH (2 and 4) were also studied in detail using GO samples.

18 2. Materials and Characterization

19 2.1 Materials

Potassium permanganate (KMnO₄) (99%), cadmium chloride (CdCl₂) (99%) and copper chloride
(CuCl₂) (99%) were used as received from Sigma Aldrich Pvt. Ltd., Mumbai. Graphite powder
of 99% purity and standard solution of cadmium and copper for ICP-AES was obtained from
Alfa Aesar Pvt. Ltd. Sulfuric acid (H₂SO₄) (98%) and hydrochloric acid (36%)were obtained

3 2.2 Characterization

FTIR spectra of the GO samples were carried out using Bruker-VERTEX 80v FTIR 4 spectrophotometer in transmittance mode with 128 scan using the KBr pellet method with 5 resolution of 1 cm⁻¹. XRD spectra of the samples were recorded in a wide angle range ($2\theta = 5^{\circ}$ to 6 80°) on D8-Adavance Bruker X- ray Diffractometer, with scanning speed of 0.016 sec/step, 7 using monochromatized CuK_a radiation of wavelength 1.54 Å. Malvern zetasizer nano ZS90 was 8 used to measure the zeta potential of the GO samples. The Raman spectra of GO sample were 9 recorded in the range 1000 to 4000 cm⁻¹ at an ambient temperature (303K) with a Horiba HR 800 10 11 model equipped with laser excitation wavelength 514.5 nm, spot size 1µm and incident power ~10mW. X-ray photoelectron spectroscopy (XPS) of GO sample were carried out on AXIS 12 ULTRA, AXIS 165, equipped with integrates the Kratos patented magnetic immersion lens, 13 14 charge neutralisation system with new spherical mirror analyser and Al Ka X-rays as the source 15 (hv = 1486.6 eV). The electrochemical impedance measurements for GO samples were measured 16 at normal temperature and pressure (NTP) conditions on LCR (Wayne Kerr 6500B, Chichester, 17 West Sussex, UK) within the frequency range of 20 Hz to 20MHz and bias potential of 1V.

18 2.3 Inductive Coupled Plasma- Atomic emission spectroscopy (ICP-AES)

Metal ion (Cd(II) and Cu(II)) concentrations, before and after adsorption were analyzed by ICP-AES Arcos M/s. Spectro, Germany. The working parameters of charge coupled device (CCD) and the radio frequency generator maximum were 1.6 KW, 27.12 MHz. For injection of samples into the plasma, the pump speed was maintained at 30 rpm. The flow rate of argon was maintained at 1, 0.8, and 12 dm³.min⁻¹ for auxiliary gas, the nebulizer gas, and plasma generation
respectively.

3 3. Experimental Details

4 *3.1. Synthesis of graphene oxide*

5 The suspension of exfoliated graphite (Ex-G) (200 mg) particles were prepared in conc. H_2SO_4 (100 cm³), followed by the slow addition of oxidizing agent (KMnO₄) and kept for 3hr under 6 continuous stirring. ³¹ The reaction mixture was diluted with 100 cm³ DI water and subsequently 7 stirred for 24 hr. The reaction mass was further treated with 600 cm³ of water, followed by 8 addition of 30% H_2O_2 solution (20 cm³), which acts as the bleaching agent. The resulting 9 mixture was then centrifuged and the solid residue obtained was sonicated in 7N HCl (100 cm³) 10 for the removal of MnO₂ impurities. The GO thus obtained was washed thoroughly with DI 11 water till neutral pH was obtained. The samples prepared were labelled as GO-1, GO-2, GO-3, 12 13 GO-4 and GO-5 corresponding to the quantitative variation of KMnO₄ dosage as 0.2, 0.6, 1.0, 1.4 and 1.8 g, respectively. GO suspensions obtained in DI water has been pictorially shown in 14 Fig. S1 of ESI. 15

16 *3.2 Electrode fabrication and electrochemical measurements*

The aqueous GO suspension was prepared by sonicating the sample for 30 mins. The electrode for capacitor was prepared by dropcasting the GO suspension on 1 cm (diameter) circular graphitized carbon paper followed drying at 303K for 24 h and further use in Teflon swagelok cell with stainless steel current collector.³² The swagelok cell comprise of two electrodes that are isolated from electrical contact by a porous separator soaked in 0.5M H₂SO₄. The electrochemical performance was examined on multichannel potentiostat and galvanostat using Metrohm, μ Autolab type III electrochemical workstation. The cyclic voltammetry was carried

1 out at the scan rate of 30 mV/s and galvanostatic charge / discharge at 1A/g (current density) at

2 an operating voltage window of 0 - 0.8V.³³

3 *3.3 Metal ion Adsorption from aqueous solutions*

The batch adsorption equilibrium uptake of divalent Cu and Cd ions on GO was determined at pH 2 and pH 4. The GO samples (4 mg) were ultrasonicated in 10 cm³ of DI water and then mixed with 10 cm³ of metal ion solution. The pH of solution was adjusted by the addition of 0.1M HCl and NaOH. The suspension was equilibrated for 24 h at 303 K. After equilibration, the GO particles were separated by centrifugation. The amount of metal ions adsorbed on GO was estimated from eq (1)^{19, 23}

10
$$q_e = \frac{(C_0 - C_e)V}{m}$$
 (1)

11 where, C_0 (mg.dm⁻³) is initial metal ion concentration in aqueous solution and the C_e (mg.dm⁻³) is 12 equilibrium liquid phase metal ion concentration, *V* is the volume of the suspension, and *m* is the 13 mass of GO used for the adsorption. For the isotherm studies, the metal ion (Cd and Cu) were 14 varied from 10 to 200 mg dm⁻³ at pH = 4 as both the metal ions exist as divalent positive ions at 15 this pH.^{19,23}

16 **4. Results and Discussion**

17 **4.1. X-ray diffraction analysis**

The XRD patterns provide information on the contents of oxidized GO part and nonoxidized graphite part in the sample.¹⁹ The XRD spectra (Fig. 1) of the synthesized GO samples shows significant change in the crystallinity of GO at different degrees of oxidation. The starting material graphite shows a highly intense peak at 26° corresponding to (002) reflection from hexagonal carbon structure. The sample GO-1 shows two peaks which is characteristic of the ordered (002) hexagonal graphitic planes ($2\theta = 26^\circ$) and (001) reflections at 2θ =11.10°

corresponding to defected hexagonal graphitic structure due to the insertion of oxygenated 1 functional group on the oxidized graphitic surface.^{19,34-40} Further, with an increase in oxidation 2 from GO-2 to GO-5 the peak at 26° disappears and simultaneously we get a single peak in the 3 4 range of 10-12°. This reveals that large number of oxygen-containing groups have been introduced on GO sheet.¹⁹ The addition of oxygenated functional groups (-OH, C-O-C, C=O) on 5 graphite lattice, shifts (001) reflections to lower 20 value of 11.10, 11.0, 10.82, 10.52 and 10.34 6 for the samples GO-1 to GO-5 compared to 26° for graphite. This also increases the interlayer 7 spacing (Bragg's equation) of graphite sheets from 0.34 nm in case of graphite to 0.79, 0.8, 0.82, 8 0.84 and 0.85 for GO-1, GO-2, GO-3, GO-4 and GO-5 samples, respectively (Fig. S2, ESI⁺). 9 The interlayer spacing of all GO samples is more than ~2.4 times higher than pristine graphite 10 (0.34 nm), which is well in agreement with reported literature.¹⁹ 11

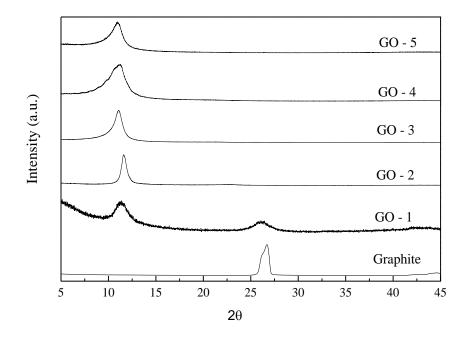
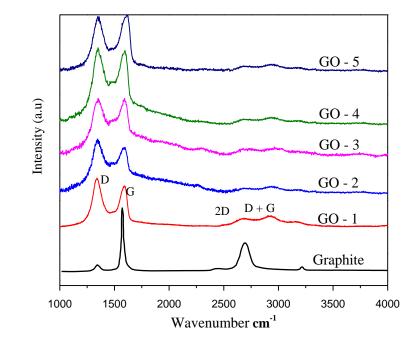
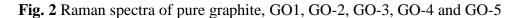


Fig. 1: XRD patterns of GO samples


1 4.2. Raman spectroscopy analysis

Raman spectra (Figure 2) of all GO samples shows two characteristic peaks viz. (D 2 band)~1340 cm⁻¹ and (G band)~1590. It is known that the G band indicates the first-order 3 scattering of the E_{2g} mode related to sp^2 hybridized C atoms while the D band designates the A_{1g} 4 symmetry mode signifying the generation of defects in the graphite material (such as bond-angle 5 and bond-length distortions, vacancies, edges etc) due to the conversion of sp² -hybridized 6 carbon to sp³-hybridized carbon.^{19,40} Oxidation of graphite in GO-1 leads to the G band shift 7 towards higher wavenumber (1592 cm⁻¹) while the D band has a higher intensity, which can 8 attributed to the formation of defects and disorder such as the presence of in-plane hetero-atoms, 9 grain boundaries, aliphatic chain, etc. As the oxidation increases, the G band shifts towards a 10 higher wavenumber, the maximum shift of 1599 cm⁻¹ was observed for the highest oxidation 11 level, GO-5 sample. This shift in G band is related to the formation of new sp³ C centers in the 12 graphite lattice.⁴⁰ The full width half maxima (FWHM) of the G band with increasing oxidation 13 level was obtained as 75, 92, 131, 136, and 142 cm⁻¹, for the samples GO-1, GO-2, GO-3, GO-4 14 and GO -5, respectively. Similarly, the intensity of D band also gets affected with the varying 15 16 oxidation level in all GO samples. The D band intensity increases with increasing oxidation for 17 (GO-1 to GO-3) while it becomes constant at higher oxidation level (GO-4 and GO-5). The FWHM of the D band linearly increase with increase in the oxidation levels representing that the 18 oxidation process influences the in-plane sp^2 domains of the graphite with defects.^{40,41} The 19 intensity ratio of I_D/I_G bands is inversely relative to average aromatic cluster size in GO.¹⁹ Fig. 20 S3 of ESI⁺ shows non monotonous pattern of I_D/I_G ratio for the five samples, it increases for 21 GO-1 and GO-2 (lower oxidation levels) and then decreases followed by saturation for higher 22 level oxidized samples. The average aromatic cluster size was calculated by using eqn. 2.^{40,42} 23

1
$$L_a = [(2.4 \times 10^{-10})(\lambda)]/(I_D/I_G)$$
 (2)

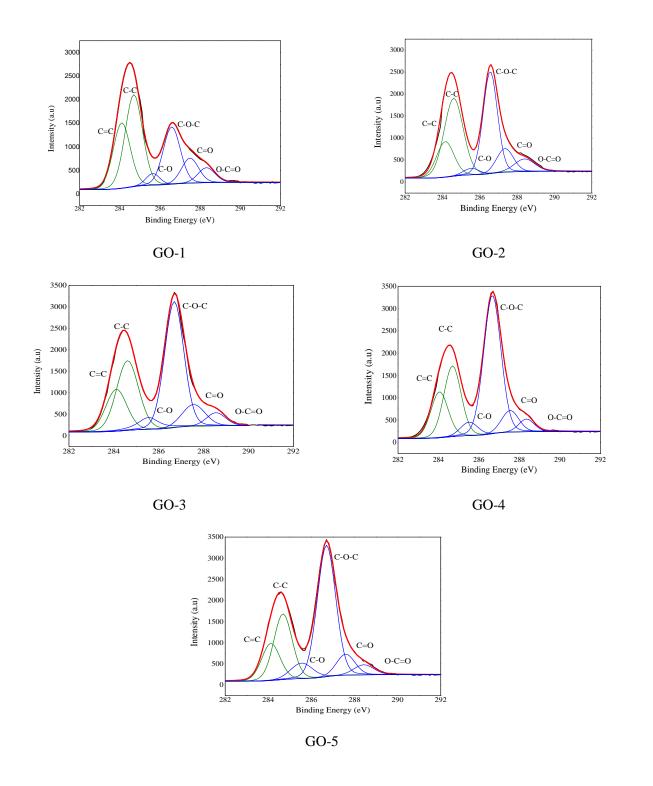

where, L_a is the average crystallite size of the sp² domains, λ is the input laser energy, I_D and I_G 2 are the intensity of the D and G bands, respectively. The L_a value of the precursor graphite was 3 calculated to be 124.5 nm while for samples GO-1, GO-2, GO-3, GO-4 and GO-5, the calculated 4 values are 16.14, 13.45, 14.13, 15.25, 15.85 nm, respectively. These results indicate that the 5 6 average crystallite size decreases with oxidation, resulting in breaking of crystallites and the formation of defects, disorders, sp^3 hybridization and changes in crystallinity. Further, L_a starts 7 increasing for GO-3 sample and becomes almost constant (GO-4 and GO-5) at higher levels of 8 oxidation. The decrease in I_D/I_G ratio and increase in the L_a values at higher oxidation levels is 9 compensated by the increase in the FWHM of the G band.⁴⁰ The above results are in well 10 11 agreement with the previous investigations on the crystallite size of GO for different degrees of oxidation.40,43 12

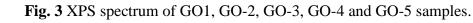
13 Another significant feature in the Raman spectra of graphite is the presence of 2D (an overtone of the D band) and D + G band at ~2680 cm⁻¹ and ~2945 cm⁻¹, respectively.^{35,43} The 2D 14 band is very sensitive to the stacking order of the graphite along the c-axis and hence is used to 15 evaluate the structural parameters of the c-axis orientation.⁴² The intensity of the 2D and D + G16 band is smaller and broadens after oxidation. Decrease in the 2D band intensity is attributed to 17 the breaking of the stacking order due to the harsh chemical oxidation reactions which results in 18 the formation of different types of oxygenated functional groups at the basal plane and also at the 19 edges. 20

3 4.3. X-ray photoelectron spectroscopic(XPS) analysis

XPS provides clear evidence of percentage and type of functional group attached to GO 4 sheets (Fig. 3). The C1s peaks of the XPS spectra shows the main peak at 284.0 and 284.5 eV 5 corresponding to the graphitic carbon, and other peak at 285.5 eV, 286.5 eV, 287.5 and 288.4 eV 6 corresponding to C-O, C-O-C, C=O bonds in carbonyl and O-C=O in carboxylic and/or ester 7 groups respectively.^{19,44} The consecutive increase in the intensity of epoxide (O–C–O) groups 8 form GO-1<GO-2<GO-3<GO-4<GO-5 as compared to O-C=O and C-O was observed. The GO-9 10 5 shows \sim 5 times higher amount of epoxy group as compare to GO-1. As the oxidation level is 11 increased, total intensity of non-aromatic carbon increases with the corresponding lowering of aromatic carbon intensity. This above trends is in agreement with earlier report in GO by 12 Krishnamoorthy et al.⁴⁰ 13

The integrated intensity of aromatic $(I_{aromatic \ carbon})$ and non-aromatic $(I_{non-aromatic \ carbon})$

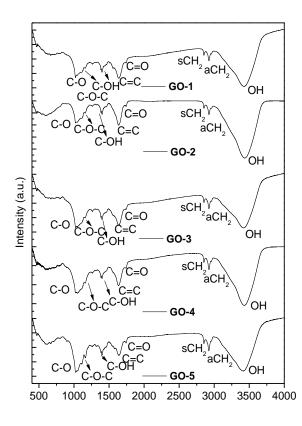

carbon obtained from C1S XPS spectra and the integrated intensity of GO (I_{GO}) and graphite 2 $(I_{Grapite})$ obtained from XRD spectra was further employed to calculate oxidation degree of the 3 GO series by using eqn. 3. ¹⁹ 4 Degree of Oxidation (%) = $\frac{I_{non-aromatic carbon}}{I_{non-aromatic carbon} + I_{aromatic carbon}} \times \frac{I_{GO}}{I_{GO} + I_{Grapite}} \times 100\%$ 5 6 (3) The degree of oxidation (21%, 52%, 58%, 62%, and 64% was calculated for GO-1, GO-7 2, GO-3, GO-4 and GO-5 samples respectively. It confirms increases in the degree of oxidation 8 from GO-1 to GO-5. Yan et al.¹⁹ reported successive increment in degree of oxidation with 9

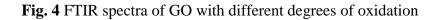

11 and XPS pattern confirms that increase in the oxidant dosage increases the degree of oxidation.

increase in oxidant amount with maximum 58% of oxidation degree of GO. The Raman, XRD

12

10



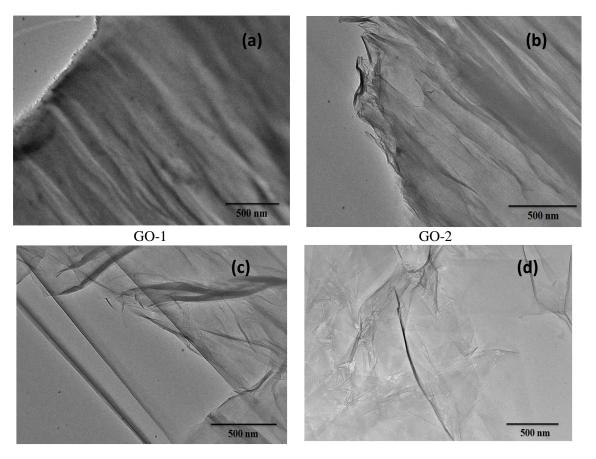

RSC Advances Accepted Manuscript

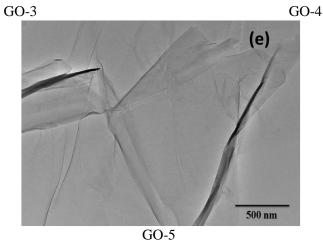
1 4.4 FTIR spectroscopic analysis

The FTIR spectra of the GO samples are shown in Fig. 4. The spectra show a band at 2 1573 cm⁻¹ due to the presence of C–C stretching in the graphitic structure. The peak at 3416 cm⁻¹ 3 is attributed to the O-H stretching vibrations, which appears due to the presence of moisture or 4 adsorbed water. The band at 1728 cm⁻¹ corresponds to the stretching vibrations from C=O, 1620 5 cm⁻¹ to skeletal vibrations from unoxidized graphitic domains and hydroxyl groups at GO, 1420 6 cm⁻¹ corresponds to OH deformation peak, 1220 cm⁻¹ corresponding to C-O stretching vibrations 7 and 1052 cm⁻¹ is attributed to C-O stretching vibrations.^{40,44} The presence of these peaks 8 confirms the synthesis of functionalized graphene oxide sheets.⁴⁰ The polar oxygen functional 9 group renders hydrophilic character to GO and hence it can be easily dispersed in the polar 10 solvents. 11

12

1 4.5. Zeta Potential


The zeta potential is a physical property exhibited by the particles in dispersion and is a 2 vital parameter for characterizing the electrical properties of interfacial layers in dispersion. The 3 4 zeta potential values of GO-1, GO-2, GO-3, GO-4 and GO-5 were measured to be -40, -43, -54, -58 and -61 mV respectively (Fig. S4, ESI⁺). The successive increment in the degree of oxidation, 5 6 increases negatively charge oxygenated functional groups that are attached to the GO samples resulting in the linear increase of the zeta potential of the GO samples.^{40,46} These is in well 7 correlation with XRD, Raman and XPS analysis. Hence, increment of the oxidant dosage 8 9 increases degree of oxidation. As per the American Society for Testing and Materials (ASTM) 10 standards, the zeta potential value for colloidal suspension ranging between 30 and 40 mV shows moderate stability. However, any value higher +40 mV or lower than -40 mV exhibits high 11 stability.⁴⁰ Hence, samples GO-1 to GO-5 show high stability in the form of aqueous suspension. 12 Further, this negatively charged behavior of GO is related to both, the pseudocapacitive nature of 13 electrode materials in supercapacitors⁴⁶ and for the adsorption of metal ions on GO surface. 14


15

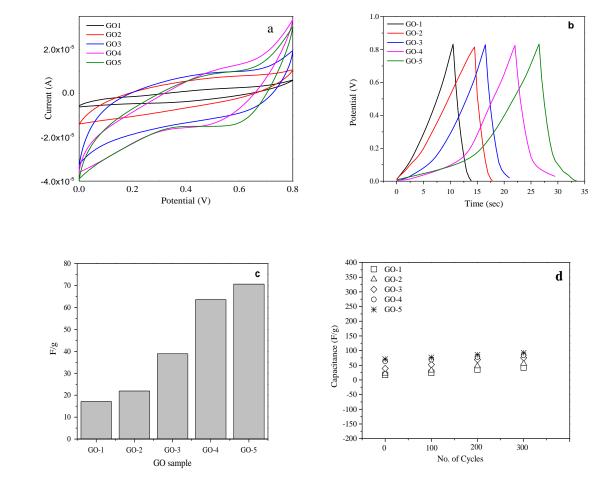
16 **4.6. Morphological studies**

17 The morphological changes due to the degree of oxidation in five GO samples were analyzed by TEM. Fig. 5 shows difference in the transparency of GO sheet, this may due to 18 different number of GO sheet stacked in the structure. The GO-1 shows opaque or less 19 transparent sheet as compare to rest of the GO samples, this may be due to multilayer of partially 20 unoxidized GO sheet. As explained earlier by XRD, Raman and XPS, the percentage of 21 functional group attached to GO sheet in GO-1 sample is minimum, which further restrict the 22 23 exfoliation of multilayer GO sheet. As the oxidation increases more transparent, thin few layer GO sheets were observed indicating improvement in exfoliation of multilayer sheets, due to 24

- **RSC Advances Accepted Manuscript**
- increment in oxygenated functional groups attached to the GO planes. This is well in co ordination with information obtained from XRD, XPS and Raman spectroscopy. ¹⁹
- 3

5

Fig. 5 TEM image of GO-1, GO-2, GO-3, GO-4 and GO-5 samples.


1 4.7 Electrochemical studies

2 The cyclic voltammetry of GO in Fig. 6a shows an elliptical curve, deviated from an ideal rectangular voltamogram indicating a faradaic reaction of electrolyte ions at the interface of 3 the electrodes.⁴⁷ This charge storage mechanism is a characteristic behavior of pseudocapacitors. 4 The specific capacitance of GO samples were measured by galvanostatic charge/discharge curve 5 shown in Fig. 6b. The charge-discharge curve was obtained at the constant current of 1 A/g and 6 charge storage was calculated to be 17, 21, 36, 64 and 71 F/g for GO-1, GO-2, GO-3, GO-4 and 7 GO-5 respectively (Fig. 6c). The increase in percentage of oxygenated functional group from 8 9 GO-1 to GO-5 significantly increases the pseudo-capacitance. The presence of functional groups, defects and grain boundaries on the GO planes acts as effective redox centers for the charge 10 storage reactions, due to weak interaction of electrolyte ions with the electrode interface.⁴⁸ 11 Enhancement in the charge storage was obtained with the cycles as shown in Fig.6d. This 12 enhancement is due to the better percolation of the electrolyte ions in the electrode material used, 13 with increase in the number of cycles.⁴⁹ 14

The impedance spectra is a direct evidence to understand the behavior of material in actual 15 operating conditions.^{32,49} Fig. S5 of ESI shows the electrochemical impedance spectroscopy 16 17 (EIS) data of five GO samples, which were analyzed by using a Nyquist plot containing imaginary (Z") and real component (Z') of the impedance in the frequency range of 20Hz -18 20MHz.³² As seen from the spectra, the degree of oxidation and charge transfer resistance has 19 20 direct linear co-relation. The diameter of semicircle curve at higher frequency region represents the ESR of the cell, which depends on the characteristic of the electrode material and ionic 21 accessibility into the electrode material.⁵⁰ The diameter of semicircle increase with the increase 22 in degree of oxidation which is an indication of the enhanced ESR of the supercapacitor cell.⁴⁹ It 23 was also observed that the Warburg curve was missing which is attributed to the short ion 24

diffusion path, which facilitate the efficient access of electrolyte ions to the surfaces of the electrodes (Fig S5 of ESI).^{51,52} Further detailed analysis and optimization of the degree of

3 oxidation is required for commercial supercapacitor electrodes.

4

1

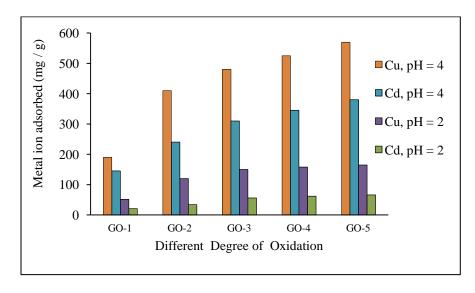
2

Fig. 6(a) Cyclic voltammetry obtained at the scan rate of 30 mV/s (b) Galvanostatic chargedischarge obtained at the constant current of 1A/g (c) Charge storage capacitance and (d)
Stability curves for GO1, GO-2, GO-3, GO-4 and GO-5 samples.

1

4.8. Adsorption of heavy metal ion

As discussed earlier, increase in the degree of oxidation increases the amount of functional groups (O-C=O, C=O, C-O, C-OH, C-O-C etc) on the surface of GO. These functional groups present in GO assist in forming hydrogen bonding with water molecules leading to stable dispersion of carbon based GO. This dispersion further facilitates the adsorption of heavy metals from the aqueous solution.^{23,27} Fig. 7 & 8 shows, as the degree of oxidation increases from GO-1 to GO-5, the adsorption of metal ion viz., Cd (II) and Cu (II) on the surface of GO increases.


It is well known that with the variation in the pH of the solution, metal ions in water solution may be exist in various forms. For the current study, adsorption of these metal ions was performed at pH = 2 and 4. At pH = 4, more than 90% of Cd is present in its divalent cationic form, while > 99% copper exists as Cu^{2+} ion form.²³ Further, the pH_{pzc} (point of zero charge) value of GO is 3.8–3.9. Therefore, at pH > 3.9 (pH > pH_{pzc}), the electrostatic interactions between the metal ions and GO become stronger or positively charged divalent metal ions undergoes organo-metal ion complexation because the surface charge of GO is negative.^{23,27,53}

Hence at pH = 4, GO-5 which contains maximum oxygen functionalities shows approximately 16 three times higher adsorption for Cu(II) and 2.5 times higher adsorption for Cd(II) as compared 17 to GO-1. Further, any decrease in the charge on the functional group or metal ion affects the 18 adsorption pattern. Fig. 7 showed that adsorption of Cu (II) and Cd (II) ion at pH = 2 was less 19 compared to that of pH = 4. This is attributed to the simultaneous presence of high H⁺ ions which 20 result in protonation of oxygenated functional groups and also hinder the dissociation of COOH 21 functional groups.²³ At higher pH (pH > 6), Cu (II) and Cd (II) precipitated from the solution, so 22 23 studies were restricted to pH = 4.

The isothermal batch equilibrium adsorption mechanism was understood, by fitting the experimental data into the linear form of with Langmuir isotherm, eqn. (4).⁵⁴

$$q_e = q_{max} K_L C_e / (1 + K_L C_e) \tag{4}$$

where, q_{max} is the maximum metal ion adsorption capacity per unit weight of GO (mg.g⁻¹), C_e is 3 metal ion concentration in aqueous phase at equilibrium (mg.dm⁻³). K_L represents the Langmuir 4 adsorption constant. The Langmuir adsorption isotherms were obtained by fitting the adsorption 5 equilibrium data to the isotherm model, as shown in Fig. 8 (a & b) for Cu and Cd ions, 6 7 respectively. The Langmuir model shows the best fit, confirming monolayer adsorption of metal ion on to the surface of GO. It was also observed from the adsorption studies that Cu ions adsorb 8 9 preferentially compared to Cd(II) ions on the same adsorbent material. This agrees very well with the metal electronegativity values for Cu and Cd. The electronegativity is a contributing 10 parameter in the metal ion uptake by graphene oxide sample.^{23,55} 11

1

2

13 Fig.7 Adsorption of cadmium and copper ions on GO with different degree of oxidation at pH 2

14 & 4.

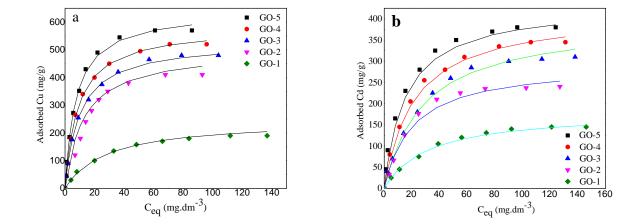


Fig.8 Adsorption isotherm for (a) copper ions and (b) Cadmium ions on GO with different
degree of oxidation at pH = 4.

3 5. Conclusion

The series of GO with different degree of oxidation have been successfully synthesized 4 by altering the oxidant dose. The XRD, Raman, XPS and zeta potential analysis confirms 5 successive increment in negatively charged oxygenated functional group on the GO surface with 6 increase in oxidation level. As the percentage of oxygenated functional groups present on GO 7 increases, it leads to enhancement in redox pseudocapacitive current, which further boost its 8 charge storage capacity. The negatively charged GO sample exhibits stronger affinity to 9 10 positively charge metal ion in water. The GO with higher degree of oxidation shows higher adsorption capacity following Langmuir adsorption pattern. The enormous amount of negatively 11 charged functional group on surface of GO, it's good dispersion ability and strong affinity 12 towards metal ion is an important aspect in field of extraction, separation and purification. 13

14

15 Acknowledgment

- 1 Authors would like to thank the Department of Science and Technology, Government of India
- 2 (Dy. No.JS & FA/2163) University Grant Commission- SAP and UGC-Networking resource
- 3 center for the financial support.
- 4 *†*Electronic supplementary information (ESI) available
- 5 **Fig. S1** Pictorial presentation of the GO samples prepared
- 6 **Fig. S2** Interlayer spacing for GO samples with different degrees of oxidation.
- **Fig. S3** Plot I_D / I_G ratio for graphite and different GO samples (GO-1 to GO-5).
- 8 Fig. S4 Plot of zeta potential vs. samples with different oxidation levels
- 9 Fig. S5: Impedance vs frequency plot of GO1, GO-2, GO-3, GO-4 and GO-5 samples.

10

1

References

2	1. S.Park and R.S. Ruoff, <i>Nat. Nanotechnol.</i> , 2009, 4 (4), 217.
3	2. J. H.Warner, , F. Schaffel, M. Rummeli and A. Bachmatiuk, Graphene: Fundamentals and
4	emergent applications, Elsevier, Newnes2012, ch. 4.
5	3. D.R. Dreyer, S. Park, C. W. Bielawski and R.S. Ruoff, <i>Chem. Soc. Rev.</i> , 2010, 39 (1), 228.
6	4. S.Chen, J. Zhu, X. Wu, Q. Han and X. Wang, ACS Nano., 2010,4(5), 2822.
7	5. U.Khan, , P. May, A. O'Neill and J. N. Coleman, <i>Carbon.</i> ,2010, 48 (14), 4035.
8	6. K.Krishnamoorthy, R. Mohan and S. J. Kim, Appl. Phys. Lett., 2011, 98(24), 244101.
9	7. G.Wang, X. Sun, C. Liu and J. Lian, Appl. Phys. Lett., 2011, 99(5), 053114
10	8. B.C. Brodie, Philos. Trans. R. Soc. London, 1859, 149, 249.
11	9. W.S. Hummers, Jr., and R. E. Offeman, J. Am. Chem. Soc., 1958, 80(6), 1339.
12	10. L. Staudenmaier, Ber. Dtsch. Chem. Ges., 1898, 31, 1481.
13	11. C.Y.Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang and L. J. Li,
14	Acs. Nano., 2010, 4 (9), 5285.
15	12. G. Eda, J. Ball, C. Mattevi, M. Acik, L. Artiglia, G. Granozzi, Y. Chabal, T.D.
16	Anthopoulos and M. Chhowalla. J Mater Chem, 2011, 21(30), 11217.
17	13. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis and I. Dékány,
18	Chem.Mater., 2006, 18(11), 2740.

RSC Advances Accepted Manuscript

RSC Advances

1	14. A. Lerf, H. He, M. Forster and J. Klinowski. J. Phys. Chem. B., 1998, 102(23), 4477.
2	15. N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K.
3	Suenaga, J.P. Rourke and S.J. York, ACS Nano, 2009, 3 (9), 2547-2556.
4	16. S. Shukla and S. Saxena, Appl. Phys. Lett., 2011, 98(7), 073104.
5	17. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, J. Phys. Chem C.,
6	2009, 113 (30), 13103.
7	18. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao and Y. Yang, Energy Environ. Sci., 2011,
8	4 (8), 2826.
9	19. H. Yan, X. Tao, Z. Yang, K. Li, H. Yang, A. Li and R. Cheng, J. Hazard. Mater., 2014,
10	268 , 191.
11	20. P. Sharma and M.R. Das., J. Chem. Eng. Data., 2013, 58(1), 151.
11 12	 20. P. Sharma and M.R. Das., J. Chem. Eng. Data., 2013, 58(1), 151. 21. G. K. Ramesha, A. Vijaya Kumara, H. B. Muralidhara and S. Sampath., J. Colloid Interf.
12	21. G. K. Ramesha, A. Vijaya Kumara, H. B. Muralidhara and S. Sampath., J. Colloid Interf.
12 13	21. G. K. Ramesha, A. Vijaya Kumara, H. B. Muralidhara and S. Sampath., <i>J. Colloid Interf. Sci.</i> , 2011, 361 (1), 270.
12 13 14	 21. G. K. Ramesha, A. Vijaya Kumara, H. B. Muralidhara and S. Sampath., <i>J. Colloid Interf. Sci.</i>, 2011, 361(1), 270. 22. L. Sun, H. Yu and B. Fugetsu, <i>J. Hazard. Mater.</i>, 2012, 203–204, 101.
12 13 14 15	 21. G. K. Ramesha, A. Vijaya Kumara, H. B. Muralidhara and S. Sampath., <i>J. Colloid Interf. Sci.</i>, 2011, 361(1), 270. 22. L. Sun, H. Yu and B. Fugetsu, <i>J. Hazard. Mater.</i>, 2012, 203–204, 101. 23. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R.
12 13 14 15 16	 G. K. Ramesha, A. Vijaya Kumara, H. B. Muralidhara and S. Sampath., <i>J. Colloid Interf. Sci.</i>, 2011, 361(1), 270. L. Sun, H. Yu and B. Fugetsu, <i>J. Hazard. Mater.</i>, 2012, 203–204, 101. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik., <i>Dalton Transaction.</i>, 2013,42(16), 5682.

1	26. Y. Sun, Q. Wang, C. Chen, X. Tan, and X. Wang, Environ. Sci. Technol. 2012, 46(11),
2	6020.
3	27. L. Liu, S. Liu, Q. Zhang, C. Li, C. Bao, X. Liu and P. Xiao, J. Chem. Eng. Data. 2013,
4	58 (2), 209.
5	28. G. Zhao, T. Wen, X. Yang, S. Yang, J. Liao, J. Hu, and X. Wang, Dalton. Trans., 2012,
6	41 (20), 6182.
7	29. M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh and H. R. Kermani, J.
8	Hazard. Mater., 2011, 150 , 322.
9	30. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Bioresour. Technol. 2005, 96, 1518.
10	31. M.M., Kadam, M.B. Sravani, V.G. Gaikar, and N. Jha, AIP Conf. Proc., 2013, 1538, 249.
11	DOI: <u>10.1063/1.4810067</u> .
12	32. W. Chen, R. B. Rakhi, M. N. Hedhili and H. N. Alshareef, J. Mater. Chem. A, 2014, 2,
13	5236.
14	33. Sheng, Y. Sun, C. Li, W. Yuan and G. Shi, <i>Scientific Report</i> , 2012, 2(247), 1-5.
15	34. N. A. Kumar, H-J. Choi, Y. R. Shin, D. W. Chang, L. Dai, and J-B. Baek, ACS Nano,
16	2012, 6 (2) 1715.
17	35. P. Ramesh, S. Bhagyalakshmi, and S. Sampath J. Collo. Inter.Sci., 2004, 274, 95.
18	36. D.C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B.
19	Alemany, W. Lu and J. M. Tour, ACS Nano 2010, 4(8), 4806.
20	37. G. Wang, X. Sun, C. Liu and J. Lian, Appl. Phys. Lett., 2011, 99(5), 053114.

1	38. G. Venugopal, K. Krishnamoorthy, R. Mohan and SJ. Kim, Mater. Chem. Phys., 2012,
2	132 (1), 29.
3	39. C. Hontoria-Lucas, A. Lopez-Peinado, J. d. D. López-González, M. Rojas-Cervantes and
4	R. Martin-Aranda, Carbon, 1995, 33(11), 1585.
5	40. K. Krishnamoorthy, M. Veerapandian, K. Yun and SJ. Kim, Carbon, 2013, 53, 38-49.
6	39
7	41. A.C. Ferrari and J. Robertson, Phys Rev B., 2000, 61, 14095.
8	42. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorioa and R. Saito,
9	Phys Chem Chem Phys., 2007, 9, 1276.
10	43. C.H. Lucas, A.J.L. Peinado, D.L. Gonzalez, M.L.R. Cervantes and R.M.M. Aranda,
11	<i>Carbon</i> , 1995, 33 , 1585.
12	44. Y-Li. Huang, H-W. Tien, C-C. M. Ma, S-Y. Yang, S-Y. Wu, H-Y. Liu and Y-W. Mai, J.
13	Mater. Chem., 2011, 21 , 18236.
14	45. F.A. de La Cruz, and J. Cowley, <i>Nature</i> , 1962, 196 , 468.
15	46. I. Jung, D. A. Dikin, R. D. Piner and R. S. Ruoff, Nano Lett., 2008,8(12), 4283.
16	47. H-K. Jeong, M. Jin, E. J. Ra, K. Y. Sheem, G. H. Han, S. Arepalli, and Y. H. Lee, ACS
17	Nano, 2010, 4 (2), 1162.
18	48. M. Zhi, C. Xiang, J. Li, M. Li and N. Wu, Nanoscale, 2013, 5, 72-88.
19	49. C. Fu, G. Zhao, H. Zhang and S. Li, Int. J. Electrochem. Sci., 2013, 8, 6269.

1	50. E. Teer, M. Deraman I. A. Talib, S. A. Hashmi, A. A. Umar, Electrochim Acta., 2011, 56
2	(27), 10217.
3	51. B. A. Abd-El-Nabey, A. M. Abdel-Gaber, E.Khamis, Aly.I.A. Morgaan1 and N.M.Ali1,
4	Int. J. Electrochem. Sci., 2013, 8, 11301.
5	52. A. K. Mishra and S. Ramaprabhu, J. Phys. Chem. C., 2011, 115, 14006.
6	53. S. Park, K-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R.S. Ruoff, ACS Nano, 2008,
7	2 (3), 572.
8	54. S.T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang, Y. Liu, A. Cao, J. Colloid.
9	Interf. Sci., 2010, 351 (1), 122.
10	55. S.A. Dastgheib and D.A. Rockstraw, <i>Carbon.</i> , 2002, 40 (11), 1843.