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Chemical computing based on Turing patterns in two 
coupled cells with equal transport coefficients 

F. Muzika, L. Schreiberová and I. Schreiber*  

We study instabilities leading to inhomogeneous stationary states (discrete Turing patterns) using a 
simple model of glycolytic oscillatory reaction in two mass-coupled stirred open reactors with equal 
coupling coefficients of the activator and inhibitor and explore their ability to serve as logical devices. 
The system represents the simplest coupled cell system. It is found to possess coexisting stable 
homogeneous oscillations and a pair of stable complementary asymmetric Turing patterns. We examine 
transitions from the oscillatory regime to Turing patterns, or from one pattern to another, elicited by 
targeted perturbations specific for each type of the transition. We further develop our earlier proposition 
of using the Turing patterns in chemical computing and explore logical functions available in the two 
cell system. Digital memory storage, a sensor, a signal conducting module and simple logic gates using 
NAND, AND, OR, NOR, and NOT functions are found. The main advantage of the two-cell systems is 
that it can serve as a basic unit in construction of a lattice representing a universal chemical processor, 
whereas larger linear or circular arrays are more suitable for tailor-made operations. 

 
 

I. Introduction 

In an array of coupled cells with diffusive transport of species 
spatiotemporal patterns  may occur due to interaction of transport 
with reaction possessing positive and negative feedback.1,2 Turing 
described four types of spatiotemporal patterns that he proposed to 
serve as a chemical basis of morphogenesis.3 The case when spatial 
distribution is inhomogeneous and stationary is called a Turing 
pattern. Even though involvement of Turing patterns in biological 
morphogenesis is a matter of controversy, there is growing body of 
experimental work, which supports a Turing pattern triggered 
genetic program for cell differentiation.4,5 The ligand-receptor model 
of development of mice limbs shows importance of concentration 
field of key species based of a Turing mechanism for occurrence of 
proper growth Otherwise excessive or insufficient number of digits 
would occur.6 Necessary conditions for emergence of a spontaneous 
Turing pattern are open system and differential transport for 
activatory and inhibitory species7,8 – a situation frequently termed 
short range activation and long-range inhibition. Diffusion usually 
makes the system uniform, but at a time scale comparable to that for 
the reaction it becomes a key element of nonuniformity. Turing 
patterns occurring in a tissue can be modeled in a continuous spatial 
domain, or the tissue can be resolved into population of discrete cells 
treated as open stirred chemical reactors if the purpose is to study 
smaller multicellular systems or artificial cell structures. The number 
of cells in the tissue affects the form of Turing pattern (dots, stripes, 
labyrinth, hexagons, or their combination), which can be a key 
element for stabilization of pattern selection. 9-11 

Spontaneous occurrence of Turing pattern has been 
demonstrated experimentally on several chemical systems, notably 
on chlorite-iodide-malonic acid (CIMA) system in a thin layer of 
gel.12-17 The activator (iodide ions) has a lowered diffusivity due to 
addition of starch in the solution, thus creating long-range inhibition 
leading to a hexagonal pattern. Diffusivity of iodide ions can be also 

decreased by introducing micelles,18 thus creating hexagonal and 
labyrinth like patterns with characteristic size about 10μm. Other 
chemical systems displaying Turing patterns include the Belousov-
Zhabotinsky (BZ) reaction in reverse micelles,19 the system with pH-
sensitive thiourea-iodate-sulfite reaction20  in gel and the chlorine 
dioxide-iodine-malonic acid (CDIMA).17,21 In addition to spatially 
continuous systems, the spatially discrete system allowing the BZ 
reaction to proceed in tightly packed droplets arranged in 1D or 2D 
arrays also display Turing patterns.22,23 

Remarkably, Turing patterns can occur even with equal 
diffusivities (or transport coefficients in the coupled cell 
systems).24,25 In this case Turing patterns do not occur 
spontaneously, yet they exist and can be reached by targeted 
perturbations. Typically, the stationary pattern coexists with stable 
oscillations and switching the dynamics from oscillations to the 
Turing pattern is known as oscillation death.4,26,27 Our primary 
interest is studying transitions from oscillations to Turing pattern and 
back by using targeted perturbations. Controlled transitions may 
serve various purposes. For example, regulation of positive and 
negative feedback with time delay leads to transitions between 
antispirals, maze and hexagon type of Turing patterns.11 They can 
also be used for collective decision making of cell arrays or 
assemblages. Alternatively, decision making can be realised by 
controlling outputs of a cascade of enzymes that can amplify the 
signal, operate as a logic gate or work as neural network when 
coupled with other cascades.28,29 

Experimental coupled cell systems26,27,30,31 frequently use non-
selective coupling, such condition may occur in nature as well, for 
example, DNA coupling during chromosomal replication,32 
temperature and domain size during cellular division,33 calcium 
coupling in cell division34 and potassium coupling in neural 
networks.35 Because of its biological relevance and also because of 
potential amenability to experimenting the system chosen for 
analysis is glycolysis in two coupled reactors with equal coupling 
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coefficients. We have shown earlier that in the linear three-array 
with glycolytic reaction the available coexisting inhomogeneous 
patterns can be conveniently used as logical devices with multiple 
functions enabling collective decision making.25 Here we show that 
despite its simplicity even the two-cell system allows for 
construction of simple logical gates. A core model of glycolysis due 
to Moran and Goldbeter 36 is used in modelling. The main tool for 
our analysis is numerical continuation37,38 which involves two-
parameter bifurcation diagrams used to find ranges of parameters 
favorable for occurrence of Turing patterns, one-parameter 
bifurcation diagrams (or solution diagrams)37 to identify details of 
bifurcations leading to stabilization of Turing patterns and to provide 
information on concentration levels of reacting species. 
Perturbations that lead to pattern switching were searched for by 
using direct numerical integration. Because of coexistence of Turing 
patterns with homogeneous oscillations, all logic gates require 
special preconditioning perturbations to suppress homogeneous 
oscillations. 

In Sect.II we introduce a model of two coupled cells with 
glycolytic reaction and in Sect. III we analyze space of relevant 
parameters to find proper conditions for stationary stable Turing 
patterns. In Sect. IV we use perturbations to obtain desired 
dynamical behavior and interpret the result in terms of various 
logical devices. We also propose construction of such devices. In 
Sect. V we discuss the chemical computing techniques obtained with 
two coupled cells and compare them with other proposed strategies. 
 
 
II. Formulation of the model 
 
Two coupled cells 
We consider two cells coupled by diffusive transport. The cells are 
modelled as open stirred reactors operating at identical conditions. 
The evolution equations are based on the mass balances for n species 
in each cell: 

 
( ) ( )( )

( ) ( )( ) ,

,

212
2

121
1

XXKdiagXF
dt

dX

XXKdiagXF
dt

dX

−+=

−+=
  (1)    

where iX  is n-vector of concentrations in cell i and the rate n-vector
( )iXF  includes input/output and chemical production/consumption 

of each species in cell i. Transport coefficients for all species are 
arranged in the vector ( )nkkK ,,1 = . A special case of interest 
occurs when the transport coefficients are all equal, 

nkkkk ==== 21 . The homogeneous stationary state satisfies 

 21 XXX ==  and ( ) 0=Xf .  (2) 

Turing3 found that variation of coupling strength in discrete systems 
such as eqn (1) as well as in spatially continuous reaction-diffusion 
systems may lead to spontaneous emergence of an inhomogeneous 
stationary state – the Turing pattern provided that transport/diffusion 
coefficients are unequal and the homogeneous stationary state is 
unique. For eqn (1), this instability occurs when the Jacobi matrix J
of eqn (1) at X  has a real eigenvalue which becomes unstable upon 
variation of K , while other eigenvalues remain stable. 
Consequently, the homogeneous stationary state becomes unstable 

via a primary symmetry breaking bifurcation and a stable 
inhomogeneous stationary state occurs past the bifurcation point. 
Turing discovered that this phenomenon requires the transport 
coefficient of an activator to be less than that of an inhibitor. This 
observation is commonly phrased as short range activation and long 
range inhibition because the activator is entrapped in one place due 
to slow diffusion, while the inhibitor can diffuse over significantly 
larger distances.  
The situation is more subtle when equal transport coefficients are 
considered.8 Eigenvalues λ of J are the roots of39 
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dX
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 .0det =





 − E

dX
dF λ    (3b) 

In the case of equal transport coefficients, ( ) kEKdiag = . It has been 
shown in ref. 8 that variation of k  makes the eigenvalues calculated 
from eqn (3a) unstable in the presence of already unstable 
eigenvalues determined by eqn (3b). Therefore the homogeneous 
stationary state is already unstable, when the symmetry breaking 
bifurcation occurs. Consequently, the inhomogeneous stationary 
state is also unstable and, given the uniqueness of the homogeneous 
stationary state, stable homogenous oscillations bifurcating via a pair 
of pure imaginary eigenvalues associated with eqn (3b) are observed. 
However, the unstable Turing stationary state can be stabilised due 
to further variation of k  via a secondary bifurcation.8,26,40 Thus  
stable oscillations and stable Turing pattern can coexist within a 
range of coupling strength k. In this paper we focus on perturbations 
capable of inducing transitions between these modes. 
 
Kinetics of glycolysis 
The kinetic model used here is a two-variable core model of 
glycolysis proposed by Moran and Goldbeter.36 The model possesses 
activation (positive feedback) mediated by a cooperative enzyme 
phosphofructokinase (PFK) and inhibition (negative feedback) 
mediated by enzyme(s) from lower part of the glycolytic reaction 
chain. The variables are concentrations of adenosine triphosphate 
(ATP) – the inhibitor x, and adenosine diphosphate (ADP) – the 
activator y. eqn (1) with incorporated core glycolytic kinetics take 
the form: 
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  (4a) 

where the kinetic terms are 
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 (4b) 

In eqn (4b)ν  is the ATP uptake rate, Mσ   is the rate coefficient of 
the autocatalytic step, L  is the corresponding allosteric constant, 

Iσ  is the rate coefficient of the recycling inhibitory reaction, n is 
the corresponding Hill coefficient and M  is the corresponding 
Michaelis constant, Sk  is the rate coefficient of ADP degradation, p 
is a stoichiometric factor. All parameters and variables except for 
time are dimensionless.36 The parameters Mσ , Iσ  are taken as 
adjustable to be used in constructing bifurcation diagrams, the value 
of 1s84.1 −=ν is chosen so that the system has a unique 
homogeneous stationary state. Other parameters are taken from ref. 
36: 6105×=L , 4=n , 10=M , 106.0 −= sk S , 1=p .  

Relation to a more comprehensive model of glycolysis41 is 
indicated in Fig.1. The PFK mediated phosphorylation of fructose-6-
phosphate is consuming ATP and producing ADP. The resulting 
ADP activates PFK (back double activation42), which implies 
autocatalysis. The ATP also acts as an allosteric inhibitor. The 
inhibitory reaction that recycles ATP is mediated by pyruvate kinase 
and phosphoglycerate kinase. Negative feedback necessary for 
oscillatory dynamics is two-fold, one part is due to limited uptake 
rate of ATP, the other is implied by the recycling reaction. Positive 
feedback coupled with two-fold negative feedback provides for 
multistable stationary states, but also for multistable limit cycles 
(birhytmicity36) in a single cell. Since we focus on emergent 
behavior in coupled cells, we choose parameters corresponding to a 
unique stationary state and limit cycle in a single cell. 

Since both activator and inhibitor have essentially the same 
diffusivity, we assume equal transport rate coefficients. The relevant 
range of k can be roughly estimated as follows: k=(diffusion 
coefficient / membrane thickness ) x (cell surface / cell volume). 
Entire surface of the cell would yield ( ) 1s6000300 −−=k ,when 
considering the value of the diffusion coefficient of ATP/ADP 

126 scm10~ −− ,43 cell diameter ( )μm 20010 − and membrane 
thickness nm10≈ . Adjacent cells can diffusively exchange 
ATP/ADP by only a small fraction of their surface. In our 
calculations the instabilities leading to Turing stationary states occur 
for a range of k on the order of  11 s10 −−  thus we chose 1s1.0 −=k  
for detailed analysis. Glycolysis can be also performed in vitro, for 
example using yeast extract in a CSTR;44 in such experiments k 
would be rather easily controlled either by the choice of a specific 
membrane or by using reciprocal pumping26 between two CSTRs. 
Preliminary experiments in such an arrangements have already been 
initiated.45 Below we will refer to coupled CSTRs experiments when 
discussing relevant ranges of parameter. 

 

 

 

 

 

Fig. 1 Simplified scheme of the glycolytic reaction chain. Reactions in circles 
are used in the core model. 

 

III. Occurrence of Turing stationary states – 
bifurcation analysis 

Two-parameter analysis in Mσ – Iσ  and Iσ – k  planes. 
In general, the bifurcation diagram partitions a parameter space 
(typically of dimension two or three) into regions having distinct 
dynamics and separated from each other by boundaries 
corresponding to various kinds of bifurcations. The most relevant to 
the occurrence of Turing stationary states are the saddle-node (or 
fold) bifurcation, the Hopf bifurcation and the symmetry breaking 
bifurcation from stationary states. In a two-parameter space these 
codimension one bifurcations occur along curves delineating regions 
as shown in Fig. 2. In addition, the curves may intersect in 
codimension two bifurcation points. These diagrams can also be seen 
as representative cross-sections of the three-dimensional parameter 
space involving the rate coefficients of all three major processes: 
activation, inhibition and mutual transport. The original values of the 
kinetic parameters proposed in ref. 36 corresponding to 
characteristic conditions in the yeast are 1s10 −=Mσ  and 

1s)40( −−=Iσ , here we explore a broader range 1s2000 −− for 
both Mσ , Iσ  since these parameters may heavily depend on actual 
conditions.  

Fig. 2a is a cross-section through the ( Mσ , Iσ , k ) space for 
1s1.0 −=k . It shows two embedded regions delimited by curves of 

Hopf bifurcation. The larger one corresponds to stable homogeneous 
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oscillations emerging from the stable homogeneous stationary state 
through a primary Hopf bifurcation. Enclosed within this region is 
the second region where the two mutually symmetric stable 
inhomogeneous stationary states coexist with stable homogeneous 
oscillations. This region is circumscribed by the curve of a 
secondary Hopf bifurcation, which stabilizes the inhomogeneous 
stationary state but does not give rise to stable oscillations. The 
unstable inhomogeneous stationary state is bifurcating from the 
unstable homogeneous stationary state along the curve of symmetry 
breaking bifurcation. The entire region of inhomogeneous stationary 
states including both stable and unstable ones is delimited in part by 
the curve of saddle-node bifurcation (black curve) and in part by the 
curve of symmetry breaking bifurcation (blue curve beyond the point 
of meeting with the black curve). In contrast to the Hopf bifurcation 
curves, crossing these bifurcation curves transversally does not lead 
to a change of stability. Other features (codimension two points, 
Hopf bifurcation curves that do not imply loss of stability of 
stationary states or emergence of stable oscillatory regimes) are 
subsidiary and hence omitted for clarity.  

The pair of asymmetric stable Turing patterns is found in a 
diagonally extending region requiring 1s41 −>Mσ and 1s23 −>Iσ . 
These values are higher than those mentioned above and used in 
modelling glycolytic oscillations. The elevated values may be 
obtained in a number of ways in experiments with the yeast extract: 
either by increasing temperature or the concentration of the extract, 
or by adding metabolites affecting the autocatalytic step, for 
example, fructose-2-6-bisphosphate,46 which cancels out ATP  

 

 

 

Fig. 2 Bifurcation diagrams for eqn 4 (a) Mσ  vs Iσ , 1s1.0 −=k ; (b) Iσ  vs 

k , 1s100 −=Mσ . Red curve – Hopf bifurcation, black curve – saddle-node 
bifurcation, blue curve – symmetry breaking bifurcation; full line delimits a 
stable regime, dashed lines indicate no change of stability when crossed 
transversally. TPI, TPII - mutually symmetric Turing patterns (stable 
inhomogeneous stationary states); SHSS – stable homogeneous stationary 
state; UHSS – unstable homogeneous stationary state; UISS – unstable 
inhomogeneous stationary state, SHO – stable homogeneous oscillations. 

inhibition, increases affinity for fructose-6-phosphate and increases 
thermal resistance of PFK.  

Fig. 2b is another cross-section for fixed 1s100 −=Mσ . In this 
rendering the Turing stationary states occur in a closed region and 
coexist there with stable homogeneous oscillations, which occupy a 
larger region delimited both from below and from above by two 
primary Hopf bifurcation curves.  

One-parameter analysis for varying Iσ  
The solution diagram is a plot of a norm of stationary states, periodic 
cycles, etc. against a chosen parameter (this is frequently and 
somewhat confusingly also called a bifurcation diagram in nonlinear 
physics and chemistry community). One-parameter branches of 
stationary states represented by the value SSyy 11 =  together with 
branches of periodic cycles represented by minimum and maximum 
of 1y  are plotted against Iσ  in Fig. 3 for fixed values of 

1s100 −=Mσ  and 1s1.0 −=k . In addition, linearised stability of the 
solutions and local bifurcations are indicated. Because the inhibition 
reaction is strictly recycling and 1=p , the two reactions form a 
futile cycle. As a consequence, y  at the homogeneous stationary 
state, SSSSS kyy ν== 21  does not depend on Iσ  (nor on Mσ ). As 

Iσ  is increased, the diagram indicates a primary Hopf bifurcation 
yielding homogeneous oscillations, followed by the symmetry 
breaking bifurcation from the homogeneous stationary state giving 
rise to the pair of inhomogeneous stationary states that are mutually 
related by the cell-exchanging transformation 

),,,( 2211 SSSSSSSS yxyx ↔ ),,,( 1122 SSSSSSSS yxyx .These stationary 
states display the same stability and both become stable Turing 
patterns via a secondary Hopf bifurcation. Upon further increase the 
sequence of bifurcations is reversed. Namely, the Turing patterns 
become unstable through a secondary Hopf bifurcation, then merge 
and disappear via a symmetry breaking bifurcation and the 
homogeneous stationary state becomes stable along with 
simultaneous disappearance of homogeneous oscillations at another 
primary Hopf bifurcation. Other Hopf bifurcation points indicated in 
Fig. 3 are not associated with stable oscillations or stable stationary 
 

 

Fig. 3 Solution diagram plotting 1y  vs Iσ  for stationary states and 
homogeneous periodic oscillations. Red curve – stationary state, black curve 
– maxima and minima of homogeneous oscillations; full line– stable solution; 
dashed line – unstable solution; squares – Hopf bifurcation; diamonds – 
symmetry breaking bifurcation. 
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states. As a result, a pair of stable Turing patterns occurs within 
1s)7031( −−≈Iσ  and coexists with stable homogeneous 

oscillations. The chemical computing techniques described below 
are built on the observation that targeted perturbations can induce 
transitions among the two stationary patterns and oscillations. 

IV. Chemical computing devices 

The bifurcation analysis in Sect. III shows in detail that stable 
homogeneous oscillations cover entire interval of Iσ , where Turing 
patterns may occur. Since the oscillations preclude spontaneous 
occurrence of Turing patterns, transitions from homogeneous 
oscillations to Turing stationary states need to be ensured by targeted 
perturbations. Such perturbations allow us to construct elementary 
chemical computing devices. In addition to 1s100 −=Mσ  we chose 

1s35 −=Iσ  to maintain compatibility with anticipated yeast extract 
experiments (see Sect. III). There are two types of perturbations 
acting either to add or to remove selected species to/from a chosen 
cell. We call them positive/negative perturbations. Provided that we 
choose ATP as the perturbed species the dynamics is governed by: 
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where ( )tpi  is a sequence of perturbations in reactor i applied by 
imposing a constant inflow/outflow rate iA , within a time T∆ . We 
call  iA  the amplitude (positive or negative) of x, perturbations are 
applied at kt . A sequence }{ kt  of m perturbations (not necessarily 
periodic) is specifically chosen in each examined case to toggle 
between Turing patterns and oscillations. We set s100=∆T , the 
amplitude of a positive perturbation 2.1=iA  and that of a negative 
perturbation 5.0−=iA . Furthermore, we assume that the level of y 
(ADP) is monitored in each cell, which serves to evaluate the state of 
the system. The perturbation may be applied to one cell only or 
simultaneously to both cells, for the initial perturbation at s1001 =t
we always use 2.11 =A  and 5.02 −=A  which leads to the {high, 
low} Turing pattern as described below. 
 

Sensor and neural network module 
Our calculations indicate that homogeneous oscillations cannot be 
switched to a Turing pattern by a perturbation applied to a single cell 
only. Instead, perturbation of both reactors simultaneously must be 
used. When the Turing pattern  is established, the system can be 
switched to the other Turing pattern and back only by perturbation of 
one cell. Such transitions are achieved, when the positive 

perturbation with 2.1=iA is applied to the cell having a low 
stationary concentration of y. Clearly, autocatalysis is promoted by 
addition of ATP which eventually results in a switch to the 
complementary Turing pattern. If the positive perturbation with the 
same amplitude is applied to the cell with a high stationary 
concentration of y, the Turing pattern is disrupted only temporarily 
by an oscillatory transient and then the original stationary pattern 
reforms. The same result is obtained even when the perturbation 
time is doubled.  

Let us denote the pattern {high, low} as TPI and the pattern 
{low, high} as TPII. The actual concentration profiles at the chosen 
parameter values are shown in Table I. 
 
TABLE I: Dimensionless concentration profiles of inhomogeneous stationary 
states for TPI, TPII. 

 1x  2x  1y  2y  
TPI 37.2 86.8 49.7 11.6 
TPII 86.8 37.2 11.6 49.7 
 
An example of transitions between TPI and TPII is shown in Fig. 4, 
indicating two effective switches followed by an ineffective one.  

 

Fig. 4 Dynamic transitions between TPI and TPII for {tk}={100, 500, 1000, 
1500} s. Red curve – first cell, green curve – second cell. Vertical bar 
indicates the cell to which the perturbation with 2.1=iA  is applied. 

We can use these observations to create a sensor that would detect an 
input signal (infusion of ATP) in the cell with low y by indicating a 
switch in the Turing pattern. Alternatively, the system may 
constitute an element of a neural network chain consisting of the 
two-cell modules that would mediate transfer of the input signal via 
sequence of pattern switches. Similar sensors or elements of neural 
network can operate in organisms.47 

 
Memory unit 
Simultaneous perturbation of both cells can also lead to a transition 
between TPI and TPII. It is convenient to introduce the symbol 1 
(logic 1) associated with 2.1=iA  and the symbol 0 (logic 0) 
assigned to 5.0−=iA . Likewise, for the purpose of reading the 
output signal, a high concentration of y (40 < y < 79) in a Turing 
pattern is interpreted as output logic 1 and a low concentration of y 
(y < 15) as output logic 0. In order to reach one of the two 
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complementary stationary patterns, complementary perturbations {1 
0} or {0 1} are required. Thus the response dynamics of the system 
can be used as a memory array. The memory unit can be built in two 
ways: a) a unit based on the one-cell perturbation as described in the 
sensor/neural network module (Fig. 4) or b) a unit based on 
perturbing both cells shown in Fig. 5. The first method is simpler, 
due to usage of only one port for perturbation. However, sufficiently 
strong noise in the perturbation amplitude can break the Turing 
pattern and impose homogeneous oscillations. The second option 
requires two input ports for storing information in the form of a TP 
but the system is much more resistant to noise imposed 
homogeneous oscillations. In both cases, though, an exceedingly 
strong noise will result in a loss of memory due to oscillations. On 
the other hand, targeted strong perturbations may serve to erase the 
memory. 

 

Fig. 5 Dynamic transitions between TPI and TPII for {tk}={100, 500, 
1000, 1500} s. Red curve – first cell, green curve – second cell. 
 
Logic gates 
Turing patterns in two coupled cells can be also used for parallel 
chemical computing. In contrast to the inhomogeneous input signals 
{1 0} and {0 1}, the homogeneous input signals {1 1} and {0 0} 
lead to homogeneous oscillations. In order to have a complete logic 
gate, a knockout (control) perturbation needs to be introduced to 
restore a stationary pattern after the occurrence of homogeneous 
oscillations is indicated. The knockout perturbation should be 
applied automatically via a separate port combined with a reader 
indicating oscillations. In our simulations the knockout perturbation 
is triggered when the level of y if found to exceed 80. This level is 
well within the oscillatory amplitude but far above the high 
stationary level as seen in Fig. 3. Using the four types of input 
signals, we can construct a parallel logic gate performing two 
different logical functions. The homogeneous input signal induces 
homogeneous oscillations that are immediately overwritten by the 
knockout perturbation, which may be either {0 1} or {1 0}. The 
results shown in Fig. 6 can be used to deduce the corresponding 
logical truth tables. Tab. II summarizes input and output signals 
found in Fig. 6a. Based on these results, the two-array of cells works 
as two-input, two output logic gate calculating simultaneously two 
logical functions, ( )( )21 ANORANOT  and ( )( )21 ANOTNANDA . 
By using DeMorgan’s theorem the functions can be also written as

( )( )21 ANOTANDA  and ( )( )21 AORANOT , which shows that the 
two logical functions are mutually inverse. An important aspect of 

these logic functions is the NAND  operation, which is conveniently 
used for more complex logical constructions. Therefore using a 
number of Turing pattern based gates, we can construct any logical 
function and therefore create a processor using a system of modules 
made up by two coupled reaction cells. In a similar fashion, from the 
dynamics in Fig. 6b the truth table in Tab. III is constructed. 

 
Fig. 6 Dynamic responses for all four types of input signals with additional 
use of knockout perturbation. Red curve – first cell, green curve – second 
cell; (a) knockout perturbation {0 1}; (b) knockout perturbation {1 0}. 

TABLE II. Truth table using the knockout perturbation {0 1}. 
Input signals Output signals 

1st ( )1A  2nd ( )2A  1st cell ( )1y  2nd cell ( )2y  
1 1 0 1 
1 0 1 0 
0 1 0 1 
0 0 0 1 

Resulting function: ( )( )21 ANORANOT  ( )( )21 ANOTNANDA  

 
TABLE III. Truth table using the knockout perturbation {1 0}. 

Input signals Output signals 
1st ( )1A  2nd ( )2A  1st cell ( )1y  2nd cell ( )2y  

1 1 1 0 
1 0 1 0 
0 1 0 1 
0 0 1 0 

Resulting function: ( )( )21 ANANDANOT  ( )( )21 ANOTNORA  

 

Implementation of a chemical logic gate 

Since the outlined technique seems suitable for chemical 
computing, we make a further step toward a design of a 
chemical logic gate based on the glycolytic oscillatory reaction, 
e.g. using the yeast extract. The concept follows our earlier 
proposal25 and is sketched in Fig. 7. It consists of two cells 
coupled by a membrane permeable for medium sized molecules 
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such as ATP and ADP. Every cell has two input perturbation 
valves and an output reading sensor (e.g., optical), which 
discerns {high, low} and {low, high} Turing patterns as well as 
oscillations. Perturbation valves are means of delivering ATP 
or glycolytic enzymes (e.g., yeast extract) for positive 
perturbation and an ATP scavenger such as the enzyme apyrase 
can be used for a selective negative perturbation. Alternatively, 
adding water implies a simultaneous negative perturbation for 
all species, which we verified to be equally effective in the 
glycolytic model. Both cells have inputs for feeding yeast 
extract and glucose. A logic gate would require a knockout 
perturbation system. 

 

Fig. 7 Schematic design of a device working as chemical logic gate using two 
coupled reaction cells. Red cylinder – inlet for yeast extract and glucose, 
orange cylinder – product outlet, green cylinder – inlet for perturbing the 
system with ATP, blue cylinder – inlet for perturbing the system with an ATP 
scavenger or water, yellow cylinder – inlet for knockout perturbations, black 
square window – optical sensor detecting concentration of ADP/ATP.  
 
An alternative design more suited for a device on a microscale may 
be based on receptors, ports and special membranes mimicking 
devices used by living cells. All receptors need to be capable of 
reading ADP concentration (or any other suitable metabolite) and 
driving release of ATP for a defined amount of time. Ports 
transporting ATP are already available, for example, an artificial 
self-assembled hybrid membrane containing macrocyclic receptors 
that concurrently transport Na+ ions with ATP48 could be used for 
ATP input. In addition, purinergic receptors49 are known to initiate 
extracellular release of ATP through pannexin 1 channels,50 which 
can be used as ATP output. An ultimate solution for microdevices 
used for memory storage and chemical computing based on Turing 
patterns would be based on artificial genome synthesis,51,52 where 
types of receptors, ports, membranes and cell-cell junctions would 
be possible to design. 

 

V. Discussion and conclusions 

We analyzed simplest conceptual device for chemical computing 
based on two mass-coupled reactors with equal coupling coefficients 
for all species and a skeleton model of glycolysis. We found a region 
in the parameter space, where the stationary stable inhomogeneous 
state (Turing pattern) coexists with a homogeneous oscillatory 
regime. Such a situation is favorable for constructing various logical 
devices. We show that the array of two reaction cells provides 
simple binary and unary functions. Apart from direct use as a sensor 
or memory storage, the simplicity of the system makes it a 
convenient building block that may be used to construct a spatially 
distributed lattice functioning as a universal processor unit. In 
contrast, larger linear arrays used our earlier work25 perform 
complex simultaneous functions more suitable for single purpose 

operations. Also, we have aimed to set the parameters to correspond 
to conditions available in in vitro experiments with yeast extracts 
and conclude that experiments displaying the predicted patterns 
should be feasible.45 

We developed techniques capable of sensing, signal 
transduction, memory storage and signal processing based on two-
valued logic. A system of concurrent memory devices would act as a 
digital memory storage bank as opposed to an analogue pattern 
storage technique based on the Hebbian learning rule developed by 
Hjelmfelt and Ross.53-55 They developed a system based on a block 
of coupled bistable reactors, which works as a chemical alternative 
of a Hopfield network.56 Bistability acts as substitution for excited 
and non-excited states, mass transport acts as connections through 
dendrites and axons. Mass transport has to be switched on and off to 
achieve proper functionality of this technique. The basic function of 
this “chemical” Hopfield network is pattern recognition within hours 
and it is robust against random noise. 

The logic gate technique, which uses a specific glycolytic 
metabolic pathway occurring in a spatially homogeneous system 
(i.e., an open stirred reactor) was also developed by Hjelmfelt and 
Ross.57 In connection with an invertor NOT , it works as a fuzzy
NAND  gate, which can be subsequently used to create any logic 
gate desired. In comparison, our technique requires at least two 
coupled reactors and performs only two-valued logic calculations. 
On the other hand, rather than employing specific pathways, the 
glycolysis as a whole is used. Moreover, glycolysis can be 
substituted by essentially arbitrary oscillatory reaction. Our 
technique demands more physical space, but in constructing a more 
complex systems such as a processor, we can assume microreactor 
arrays and parallelism to substitute for unavailable types of logic 
gates and thus overcome direct use of NAND  gates.57  

Another type of systems capable of chemical computing is based 
on chemical waves in excitable or oscillatory regime within a 
microfluidic system containing lipid-encapsulated vesicles with the 
Belousov-Zhabotinsky (BZ) medium.58 In particular, logic 
computing, signal transduction and diode functions  were studied  in 
a system analogous to the BZ-vesicles consisting of interconnected 
arrangements of gel disk subunits loaded with a photosensitive 
Belousov-Zhabotinsky medium.59,60 The disk array is created by 
illuminating the gel layer with a computer generated pattern. The 
size of the disk influences its functionality and transduction. By 
coupling disks of varying size into an array with certain geometry, 
diode and various logical gates are obtained, for example, by using 
frequency coded variables.59 Apart from using nonoscillatory 
(Turing) states, the system examined here also differs in performing 
more logic functions simultaneously. 

Logic gates, memory and sensors can also be created by using 
the slime mold Physarum polycephalum and its protoplasmic 
tubes.61,62   Light and heat stimuli affect the frequency of streaming 
oscillations leading to logic gates derived from the measured 
frequency change.  

Yeast Saccharomyces cerevisiae cultivated in a bioreactor can be 
used to create a simple AND gate or sensor by taking  fatty acids and 
copper as a input signals.63 This technique does not readily provide 
small modular blocks and seems to be less suitable for the purpose of 
universal chemically based computing. 

Finally, let us make a remark on the relation of the Turing 
patterns found in our work to those examined originally by Turing.3 
In a recent work aimed at testing the type of bifurcating patterns 
predicted by Turing against experiments with linear and cyclic 
arrays of aqueous BZ droplets in oil64 five out of six predicted modes 
have been observed as stable regimes: homogenous oscillations, 
maximum wavenumber oscillatory and stationary inhomogenous 
patterns, and intermediate wavenumber oscillatory and stationary 
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inhomogenous patterns. In our case of two cells, the intermediate 
and maximum wavenumber cases coincide and thus out of the four 
possible modes we observe only stable homogeneous oscillations  
and stable inhomogeneous stationary states. 

In conclusion, our aim is to point out that the Turing pattern 
technique may constitute a basis for sensors, memory banks, 
specially designed processing units and ultimately artificial cellular-
scale computers based on combining two-cell units in a lattice. In 
future such microprocessors might be an interesting solution both for 
medical and biotechnological purposes. 
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Graphical content 

 

Two diffusively coupled reaction cells with a nonlinear 
reaction are used to perform chemical computing based 
on targeted perturbations switching between two Turing 
patterns defining two states of a logical device. 
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