

RSC Advances

Nanorod-like a-Bi2O3 nanoparticles: a highly active photocatalyst synthesized by using g-C3N4 as a template

Journal:	RSC Advances
Manuscript ID:	RA-COM-08-2014-008541.R2
Article Type:	Communication
Date Submitted by the Author:	06-Oct-2014
Complete List of Authors:	Jiang, Haiying; National Institute for Materials Science, Research Unit for Enviromental Remediation Materials; Renmin University of China, Department of Chemistry Liu, Guigao; National Insititute for Materials Science, Research Unit for Enviromental Remediation Materials Science Li, Peng; National Insititute for Materials Science, Environmental Remediation Materials Unit Hao, Dong; National Insititute for Materials Science, Environmental Remediation Materials Unit Meng, Xianguang; National Insititute for Materials Science, Environmental Remediation Materials Unit Wang, Tao; National Insititute for Materials Science, Environmental Remediation Materials Unit Unit Wang, Tao; National Insititute for Materials Science, Environmental Remediation Materials Unit Lin, Jun; Renmin University of China, Department of Chemistry Ye, Jinhua; National Insititute for Materials Science, Environmental Remediation Materials Unit

SCHOLARONE[™] Manuscripts Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Nanorod-like α -Bi₂O₃ nanoparticles: a highly active photocatalyst 1 synthesized by using $g-C_3N_4$ as a template 2

Hai-Ying Jiang^{a, b}, Guigao Liu^a, Peng Li^a, Dong Hao^a, Xianguang Meng^a, Tao Wang^a, Jun Lin^{b,*}, Jinhua Ye^{a,*} 3

4

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5

DOI: 10.1039/b000000x 6

The nanorod-like α -Bi₂O₃ nanoparticles have been synthesized from the microrod-like α -Bi₂O₃ by using g-C₃N₄ 7 as a template. The photocatalytic activity of α -Bi₂O₃ is highly improved by nearly 800% in the oxidation of the 8 gaseous IPA (isopropyl alcohol). The formation mechanism of the nanorod-like a-Bi₂O₃ nanoparticles was further studied, and demonstrated to be the CO₂ corrosion effects. 10

Semiconductor photocatalysis, as a new rising discipline with the primary focus on anatase TiO₂, has attracted an 11 increasing attentions and interests in the past decades¹. This is mainly because it can directly convert the solar energy 12 into chemical energy with the excitation of the semiconductors². However, the only UV light response of the traditional 13 photocatalysts highly limits their practical applications. In order to realize the extensive utilization of the solar light, 14 some narrow band gap semiconductors have been proposed to develop the visible-light-responsive photocatalytic 15 materials³⁻⁵. α -Bi₂O₃ is such a semiconductor with visible light response (Eg = 2.8 eV). Besides that, it can be seen as a 16 potential photocatalyst candidate also because of its other distinctive properties, such as deep valence band, 17 environment friendship (non-toxic and low-radioactivity), and thermal stability⁶⁻¹⁰. Nevertheless, α -Bi₂O₃ shows very 18 poor activity as a photocatalyst, as previously reported^{4-6, 11, 12}. Generally, the poor activity is considered to be caused by 19 the following two aspects: i) its conduction band is too low (+ 0.33 eV vs. NHE) to oxide the surface O_2 into O_2^{-1} (-20 0.33 eV vs. NHE), leading to a high recombination rate of the photogenerated electrons and holes; ii) the grain size of 21 α -Bi₂O₃ prepared by the ordinary methods is too large (dozens of micrometers), resulting in a very low surface area⁵. 22 About the first point, there have been many strategies being developed to decrease the recombination rate of the 23 photogenerated electrons and holes^{4-6, 11, 12}. But researches about the second point were rarely reported^{13, 14}. As we 24 know, the grain size and surface area are very important factors which strongly affect the photocatalytic activities. 25 Therefore, preparing α -Bi₂O₃ nanoparticles by a simple method is very helpful for α -Bi₂O₃ to become a promising 26 photocatalyst in the future research. 27

g-C₃N₄ is a novel stable metal-free photocatalyst with the band gap of 2.7 eV, and consequently can absorb visible 28 light ($\lambda < 460 \text{ nm}$)¹⁵. However, its photocatalytic activity is limited by the high recombination of the photocarriers¹⁶. As 29 reported, heterojunction construction is one of the methods to enhance its photocatalytic activity¹⁶⁻¹⁸. In this study, 30 however, the g-C₃N₄ was just only used as a template to synthesize the nanorod-like α -Bi₂O₃ nanoparticles from the 31 microrod-like α -Bi₂O₃, to enhance the photocatalytic activity of α -Bi₂O₃. This work is derived from an accidental 32 discovery in the construction processes of the α -Bi₂O₃/g-C₃N₄ heterojunctions. The microrod-like α -Bi₂O₃ was 33 fabricated by a typical method in the earlier reports^{5, 6}. The g-C₃N₄ was synthesized by heating the melamine at 520°C 34

for 4 hours in a half-open system¹¹. The g-C₃N₄ induced nanorod-like α -Bi₂O₃ nanoparticles were prepared as follows¹², 1 ¹³: The g-C₃N₄ and microrod-like α -Bi₂O₃ with different weight fractions were thrown into 100 ml alcohol (95%), 2 following with 3 hours' ultrasonication and 24 hours' stirring at room temperature. Before the last calcinations at 450°C 3 for 3 hours and 6 hours in a half-open system, the products were dried at 100°C for 12 hours in advance. The prepared 4 samples were named as Sn, and 10*n equals to the weight fraction percentage of $g-C_3N_4$ in the mixture of 5 α -Bi₂O₃/g-C₃N₄. The microstructures, surface areas, crystal structures, optical properties of the samples were studied 6 by the scanning electron microscope (SEM), X-ray diffraction (XRD) combining with ultraviolet-visible light diffuse 7 reflectance accessory (UV-vis DRS) and Fourier transform-infrared (FT-IR) spectra. The photocatalytic activities of 8 the α -Bi₂O₃ samples were performed by the oxidation of the gaseous IPA. Furthermore, the formation mechanism of the 9 nanorod-like a-Bi2O3 nanoparticles from the microrod-like a-Bi2O3 was studied detailedly by the combination of 10 TG-DTA and XRD. 11

The microstructure changes of the α -Bi₂O₃ samples induced by g-C₃N₄ were listed in Figure 1. After the 12 treatments of the α -Bi₂O₃ samples with different weight fractions of g-C₃N₄ for 3 hours' calcination, there are some 13 pores emerged on the surface of the a-Bi2O3 microrods. The amounts of the pores show an increasing trend with the 14 increase of the $g-C_3N_4$ weight fractions used in the prepared processes. For the S5 and S7, expectedly, the 15 pore-structures of the α-Bi₂O₃ samples were further destroyed into smaller particles when the calcination time were 16 prolonged to 6 hours from 3 hours, ultimately, resulting in the formation of the nanostructure α-Bi₂O₃. Since the particle 17 size of the α -Bi₂O₃ decreased, the surface areas of the samples were speculated to have a gradually increase, and proved 18 in Table 1. From Figure 2, we can clearly see that the shapes of the nanostructure α -Bi₂O₃ look like some nanorods with 19 hundreds of nanometres' length, so we call it as nanorod-like α -Bi₂O₃ nanoparticles. 20

According to the XRD spectra of the α -Bi₂O₃ samples in Figure 3, the crystal structures of all the samples with 6 21 hours' calcinations show good crystals in a single monoclinic phase, being in accordance with the JCPDS file 22 (No.41-1449)⁵. Obviously, the intensities of the main peaks (120) have sharply decreased for the S5 – 6h and S7 - 6h, 23 indicating the disappearances of the preferred orientations. This is most probably caused by the exhaustive 24 microstructure changes of the α -Bi₂O₃ samples. Surprisingly, we can't found any diffraction peaks of g-C₃N₄ in the 25 XRD spectra of all the samples. According to the FT-IR spectra (Figure S1), no any vibration peaks derived from 26 g-C₃N₄ (820 cm⁻¹, 890 cm⁻¹, 1000-1900 cm⁻¹, 1965 cm⁻¹, 2054 cm⁻¹, 2141 cm⁻¹, and 2800-3700 cm⁻¹) was observed in 27 all the α -Bi₂O₃ samples; this means that g-C₃N₄ resolves out during the heat treatment process at the high temperature. 28 The optical properties of the pure α -Bi₂O₃ samples with different microstructures were characterized by the UV-vis 29 DRS spectra (Figure S2), showing no obvious changes occurs. Detailedly, there are some inconspicuous gradual blue 30 shifts with the decrease of the particle size, indicating an increase of the band gaps (inset in Figure S2). The change of 31 the band gap between microrod-like α -Bi₂O₃ and nanorod-like α -Bi₂O₃ is observed about 0.1 eV. 32

The photocatalytic activity of the as-prepared α -Bi₂O₃ samples were appraised by the oxidation of gaseous IPA. The production of acetone, the one-hole oxidation product of IPA, was monitored as the unique index to judge the reaction activities. Figure 4 describes the acetone productions over the α -Bi₂O₃ samples with different microstructures, under the visible light irradiations (420 nm $\leq \lambda \leq 800$ nm) for 8 hours. Different α -Bi₂O₃ samples show different photocatalytic activities, although all of them can oxidize the IPA to acetone under visible light irradiations. With the 1

RSC Advances

weight fraction increase of the g-C₃N₄ used in the prepared process, the photocatalytic activities of the samples have

² progressive increase. Naturally, the S7 - 6h produces the most acetone (1356 ppm), being nearly 8 times more than S0 -

 $_{3}$ 6h (174 ppm). Meanwhile, the g-C₃N₄ produces only 111 ppm acetone at the same conditions. At the same time, the

- ⁴ photooxidation of gaseous IPA over S7- 6h without irradiation were also carried out, and little acetone was produced
- 5 (Figure S3).

Based on the individual physical properties of the α -Bi₂O₃ samples referred above, the photocatalytic activity 6 enhancement is mainly caused by the BET surface area incrase of the sample. However, the increase of the sample's 7 BET surface area is only less than 3 times. Obviously, the increase of the BET surface area is not enough to explain the 8 improvement of the photocatalytic activity (800%). Besides the increasement of the BET surface area, the decrease of 9 the (120) facet is the unique change between the microrod- and nanorod-like α - Bi₂O₃ samples, according to our 10 characterization on different samples. It is widely reported that the exposed crystal planes play a critical role in 11 determining the photocatalytic activity and efficiency, such as $AgPO_4^{19}$ and TiO_2^{20} . Therefore, we speculate that the 12 enhancement of the photocatalytic activity is also related to the decrease of the (120) facet exposure. In another word, 13 the (120) facet is probably not an active facet for the photocatalytic oxidation of IPA. 14

The formation mechanism of the nanorod-like α -Bi₂O₃ nanoparticles from microrod-like α -Bi₂O₃, induced by 15 g-C₃N₄, was studied detailedly by the combination of the TG-DTA and XRD. The TG-DTA experiments were carried 16 out in almost the same manner with the prepared process of S7 - 6h. According to the TGA spectra in Figure 5, about 17 70% weight (3.5 mg in 5 mg) lost in the process of the heat treatment, corresponding to the weight fraction of $g-C_3N_4$ in 18 the mixtures. Generally, pure $g-C_3N_4$ is stable in air below 600°C, but according to the report, the stability of $g-C_3N_4$ 19 will significantly decrease when there is a second phase, such as $DyVO_4^{21}$. Based on our results, we think the existence 20 of α -Bi₂O₃ have the same effect on the stability of g-C₃N₄. Therefore, this result further explains the g-C₃N₄ totally 21 dissolved out in the heat treatment process, being accordance with the XRD (Figure 3) and FT-IR (Figure S1) spectra. 22 The DTA spectrum in Fig. 5 combined with the XRD spectra in Figure 6, we found that there are three thermonegative 23 peaks for the S7 g-C₃N₄/ α -Bi₂O₃ mixtures, while there is only one thermonegative peak for the pure α -Bi₂O₃ sample. 24 The same thermonegative peak at about the 42nd minute can be attributed to the phase transition of Bi₂O₃ from α -phase 25 to β -phase (metastable phase). After that, the thermonegative peak in the range of the 50th minute to the 250th minute, 26 for the S7 g-C₃N₄/ α -Bi₂O₃ mixtures, is ascribed to the decomposition of the g-C₃N₄, due to the rapidly weight loss in 27 this period. Before the phase transition peak, at about the 40th minute, there is an unknown thermonegative peak 28 emerged in the DTA spectrum of S7 g-C₃N₄/ α -Bi₂O₃ mixtures. Considering the time and temperature of its emergence, 29 we calcinate the S7 g-C₃N₄/ α -Bi₂O₃ mixtures at 450°C for 30 minutes, with the temperature increase speed of 30 10°C/min, to study the composites of the reaction products at this condition. The XRD spectrum in Figure 6 helps us to 31 uncover the truth, and tells us that the new component is finally determined to be the Bi₂O₂CO₃ crystals. Accordingly, 32 the whole formation mechanism of the nanorod-like α -Bi₂O₃ nanoparticles from the microrod-like α -Bi₂O₃, induced by 33 g-C₃N₄, can be described as follows: The g-C₃N₄ dissolves into CO₂ slowly at about 400°C; the released CO₂ corrodes 34 the surfaces of the microrod-like α -Bi₂O₃ by reacting with the α -Bi₂O₃, producing the Bi₂O₂CO₃ crystals²²; the 35 Bi₂O₂CO₃ products further decompose into α -Bi₂O₃ and CO₂ again at 450°C^{23, 24}, resulting in the great changes of the 36 microstructure for α -Bi₂O₃ (Scheme 1). In order to further confirm this conclusion, we also use the (NH₄)₂CO₃ 37

1	(inorga	nics) and citric acid (organics) as the template to treat the microrod-like α -Bi ₂ O ₃ , and get the α -Bi ₂ O ₃ samples							
2	with th	e similar microstructures [Figure S4 (A) and (B)].							
3	By summary the nanorod-like α -Bi ₂ O ₂ nanonarticles were successfully transformed from the microrod-like								
4	α-Bi ₂ O	$_{2}$ by using g-C ₂ N ₄ as a template. The significant microstructure changes occurred in this process, resulting in the							
+	u-Di ₂ O ₃ , by using g-O ₃ N ₄ as a template. The significant incrossitucture changes occurred in this process, resulting in the								
5	progressively decreases of particles and gradually increases of the surface areas. Besides, the formation mechanism of								
6	the nanorod-like α -Bi ₂ O ₃ nanoparticles was further studied detailedly, and demonstrated to be the CO ₂ corrosion effects. This work shows that the photocatalytic activity of a Bi ₂ O ₂ can be afficiently improved by decreasing its								
7	effects. This work shows that the photocatalytic activity of α -Bi ₂ O ₃ can be efficiently improved by decreasing its								
8	particle	particle size, and promotes the research of α -Bi ₂ O ₃ in the field of photocatalysis into a new step.							
9	ACKN	OWLEDGMENT							
10	This w	ork is supported by the National Natural Science Foundation of China (21273281), National Basic Research							
11	Progra	n of China (973Program, No. 2013CB632405), the Fundamental Research Funds for the Central Universities							
12	and the Research Funds of Renmin University of China (13XNH121), and the China Scholarship Council.								
13	Notes a	and references							
14	^a Research Unit for Environmental Remediation Materials, National Institute for Materials Science (NIMS), 1-1,								
15	Namiki, Tsukuba, Ibaraki 305-0044, Japan, Email: Jinhua.YE@nims.go.jp								
16	^b Department of Chemistry Renmin University of China Reijing 10087? People's Republic of China								
17	†Electr	onic Supplementary Information (ESI) available: Sample characterizations photocatalytic activity							
10	measur	ements ET_IR spectrum UV_vis DRS spectrum the Photoovidation of IPA spectrum by S7 - 6h with and							
18	incasur	time disting SEM of the re Di O complex indexed her (NUL) CO, and situit and							
19	withou	t irradiation, SEM of the α -B1 ₂ O ₃ samples induced by (NH ₄) ₂ CO ₃ and citric acid.							
20	1.	X. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891-2959.							
22	2.	H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Adv. Mater., 2012, 24, 229-251.							
23	3.	G. Xi, Y. Yan, Q. Ma, J. Li, H. Yang, X. Lu and C. Wang, Chem. Eur. J., 2012, 18, 13949-13953.							
24	4.	M. Ge, Y. Li, L. Liu, Z. Zhou and W. Chen, J. Phys. Chem. C, 2011, 115, 5220-5225.							
25	5.	HY. Jiang, J. Liu, K. Cheng, W. Sun and J. Lin, J. Phys. Chem. C, 2013, 117, 20029-20036.							
26	6.	HY. Jiang, K. Cheng and J. Lin, Phys. Chem. Chem. Phys., 2012, 14, 12114-12121.							
27	7.	J. Eberl and H. Kisch, Photochem. Photobiol. Sci., 2008, 7, 1400-1406.							
28	8.	T. Saison, N. Chemin, C. Chanéac, O. Durupthy, V. Ruaux, L. Mariey, F. o. Maugé, P. Beaunier and JP. Jolivet, J. Phys. Chem.							
29		<i>C</i> , 2011, 115 , 5657-5666.							
30	9.	L. Zhou, W. Wang, H. Xu, S. Sun and M. Shang, Chem. Eur. J., 2009, 15, 1776-1782.							
31	10.	F. Qin, G. Li, R. Wang, J. Wu, H. Sun and R. Chen, Chem. Eur. J., 2012, 18, 16491-16497.							
32	11.	A. Hameed, T. Montini, V. Gombac and P. Fornasiero, J. Am. Chem. Soc., 2008, 130, 9658-9659.							
33	12.	S. Chen, Y. Hu, L. Ji, X. Jiang and X. Fu, Appl. Sur. Sci., 2014, 292, 357-366.							
34	13.	F. Qin, H. Zhao, G. Li, H. Yang, J. Li, R. Wang, Y. Liu, J. Hu, H. Sun and R. Chen, <i>Nanoscale</i> , 2014, 6 , 5402-5409.							
35	14.	G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, J. Qiu and Z. Xu, J. Alloys Compd., 2010, 507, L43-L46.							
36	15.	X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, <i>Nat. Mater.</i> , 2008, 8 , 76-80.							
37	16.	L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu and G. Cai, <i>Dalton Trans.</i> , 2013, 42 , 8606-8616.							
38	1/.	L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels and P. Feng, J. Phys. Chem. C, 2012, 116, 13/08-13/14.							

Page 5 of 11

RSC Advances

1	18.	B. Chai, T. Peng, J. Mao, K. Li and L. Zan, Phys. Chem. Chem. Phys., 2012, 14, 16745-16752.
2	19.	Y. Bi, S. Ouyang, N. Umezawa, J. Cao and J. Ye, J. Am. Chem. Soc., 2011, 133, 6490-6492.
3	20.	H. Xu, P. Reunchan, S. Ouyang, H. Tong, N. Umezawa, T. Kako and J. Ye, Chem. Mater., 2013, 25, 405-411.
4	21.	Y. He, J. Cai, T. Li, Y. Wu, Y. Yi, M. Luo and L. Zhao, Ind. Eng. Chem. Res., 2012, 51, 14729-14737.
5	22.	L. Huang, G. Li, T. Yan, J. Zheng and L. Li, New J. Chem., 2011, 35, 197-203.
6	23.	G. Zhu, J. Lian, M. Hojamberdiev and W. Que, J. Cluster Sci., 2013, 24, 829-841.
7	24.	Z. Ai, Y. Huang, S. Lee and L. Zhang, J. Alloys Compd., 2011, 509, 2044-2049.
8		

19

Figure 1. SEM spectra of the α -Bi₂O₃ samples induced by g-C₃N₄ with the calcinations time of 3 and 6 hours

Figure 2. TEM image of the worm-like α -Bi₂O₃ nanoparticles (S7-6h)

Figure 3. XRD spectra of all the α -Bi₂O₃ samples induced by g-C₃N₄ with 6 hours' calcination

Figure 4. Acetone production over all the α -Bi₂O₃ samples induced by g-C₃N₄ with 6 hours' calcination

Figure 5. The TG-DTA spectra of the S7 g-C₃N₄/ α -Bi₂O₃ mixtures

Figure 6. XRD spectra of the S7 g- C_3N_4/α -Bi₂O₃ mixtures after the calcination at 450°C for 30 minutes

Scheme 1. The formation mechanism of worm-like α -Bi₂O₃ from microrod-like α -Bi₂O₃

Table 1. BET Surface Areas of the α - Bi₂O₃ with Different microstructures

Fig. 2

Fig. 3

 $CH_{3}CH(OH)CH_{3} \xrightarrow{hv (\lambda \ge 420nm)} CH_{3}COCH_{3}$

Fig. 4

Fig. 5

Fig. 6

Scheme 1

Samples	S0 - 6h	S1 – 6h	S3 – 6h	S5 – 6h	S7 – 6h
BET surf. Area (m²/g)	0.80 ± 0.10	0.80 ± 0.10	1.0 ± 0.10	1.2±0.10	2.4 ± 0.10

Table 1

323x168mm (150 x 150 DPI)