This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Onset of Mixing-Induced Thixotropy in Hydrogels by Mixing Two Homologues of Low-Molecular-Weight Hydrogelators

Yutaka Ohsedo,* Masashi Oono, Kowichiro Saruhashi and Hisayuki Watanabe

Graphical Abstract:

We determined the onset of thixotropy in hydrogels when two homologues of low-molecular-weight hydrogelators, N-alkyl-D-glucamides (CnNG), were mixed.
We determined the onset of thixotropy in hydrogels when two homologues of low-molecular-weight hydrogelators, N-alkyl-D-glucamides, were mixed. Intriguingly, the hydrogels generated from the individual components did not show such behaviour. The mixing induced onset of thixotropy might be attributed to the improved network quality.

Hydrogels, which are hydrophilic polymeric materials, facilitate activity of cells and have applications in pharmaceuticals, biomedical, and tissue engineering. Low-molecular-weight gelators (LMWGs) are novel hydrogels, which show unique properties comparable to polymer-based hydrogels, such as multi-stimuli responsiveness, and have potential applications in medicinal and optoelectronic fields. Suitable molecular motifs containing various functionalities and methods to easily and effectively add functionalities to hydrogels made from known LMWGs need to be explored. Moreover, extensive investigation is required for the creation of novel hydrogels based on LMWGs, which are different from ordinary hydrogels, which are primarily composed of polymers, is a developing field in material chemistry. Low-molecular-weight gelators (LMWGs) are novel hydrogels, which show unique properties comparable to polymer-based hydrogels, such as multi-stimuli responsiveness, and have potential applications in medicinal and optoelectronic fields. For creating such types of LMWGs extensive investigation is required for the suitable molecular motifs containing various functionalities. Moreover, methods to easily and effectively add functionalities to hydrogels made from known LMWGs need to be explored.

Here, we report the functionalization of hydrogels by mixing two LMWGs, N-alkyl-D-glucamides, with alkyl chains of different lengths. We observed that mixing of the two components enhances the gelation effect and mechanical properties of the two-component systems, especially the thixotropic property, which is known as shear thinning, and other unique properties related to molecular network in the hydrogel. Previously, we reported the enhancement in thixotropic properties of organogels by mixing LMWGs (alkylhydrazides, alkylamides or alkylureas having different alkyl chains). We now extend this two-component mixing method for the creation of a new hydrogel based on N-alkyl-D-glucamide, which is a LMWG that has been studied extensively by Fuhrhop et al. and other researchers. Note that hydrogelation properties and the ability of each compound. Table 1 lists the critical gelation concentration (CGC) for each CnNG, i.e. one-component hydrogels. As described previously in literature, C8NG formed an opaque hydrogel, but started to crystallize within several days. Furthermore, C10NG, C9NG and C7NG formed opaque hydrogels, but crystallized within several hours, whereas C5NG remained as an aqueous solution after the gelation test. A weak hydrogelation was observed with C6NG (7 wt%), but no crystallization was observed over a 3 month period. Next, we evaluated hydrogelation with binary mixtures of CnNGs (Table 1). In this case, we observed that mixing of the two components enhanced the gelation effect and mechanical properties of the two-component systems, especially the thixotropic property, which is known as shear thinning, and other unique properties related to molecular network in the hydrogel.

Table 1. Critical gel concentration (CGC) for hydrogels from CnNGs (see ESI† Fig. S1 and Fig. S2 for photos after gelation test).

<table>
<thead>
<tr>
<th>Sample</th>
<th>CGC (wt%)</th>
<th>Sample' ratio(w/w)</th>
<th>CGC (wt%)</th>
<th>Sample' ratio(w/w)</th>
<th>CGC (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10NG</td>
<td>5.0</td>
<td>C10/C9 1/1</td>
<td>5.0 (PG)</td>
<td>C9/C7 1/1</td>
<td>3.0</td>
</tr>
<tr>
<td>C9NG</td>
<td>3.0</td>
<td>C10/C8 1/1</td>
<td>3.0</td>
<td>C9/C6 1/1</td>
<td>3.0</td>
</tr>
<tr>
<td>C8NG</td>
<td>3.0</td>
<td>C10/C7 1/1</td>
<td>3.0</td>
<td>C8/C6 1/1</td>
<td>2.0</td>
</tr>
<tr>
<td>C7NG</td>
<td>3.0 (K)</td>
<td>C10/C6 1/1</td>
<td>3.0</td>
<td>C7/C6 1/1</td>
<td>2.0</td>
</tr>
<tr>
<td>C6NG</td>
<td>7.0</td>
<td>C9/C8 1/1</td>
<td>3.0</td>
<td>C7/C6 1/1</td>
<td>2.0</td>
</tr>
<tr>
<td>C5NG</td>
<td>S(10.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*‘Cn’ etc. denotes CnNG. wt% refers to the total weight of all of the components. Key: K: solidified with crystalline appearance. S: solution at the concentration. PG: partial gel at the concentration.
Fig. 1 Images of hydrogels before, during and after gelation and thixotropic tests. (a) C8NG/C6NG 1/1 (w/w) 5 wt%, (b) C8NG 5 wt%, and (c) C6NG 7 wt% hydrogels.

Fig. 2 Periodic step-shear test results for hydrogels. (a) C8NG/CnNG 1/1 (w/w) 5 wt%, (b) C8NG 5 wt% and C6NG 7 wt% hydrogels.

Fig. 3 SEM images of CnNG xerogels. (a and b) C8NG (3 wt%); (c and d) C6NG (7 wt%); (e and f) C8NG/C6NG 1/1 (2 wt%); and (g and h) C8NG/C7NG 1/1 (2 wt%). The values in parentheses are the concentration of the hydrogels prior to generation of the xerogels.

these results, all hydrogels, i.e. two-component hydrogels, were either opaque or turbid, and the hydrogenation ability of different CnNG mixtures showed gelation ability that is either similar to or better than individual components. The poor hydrogelation ability of C7NG/C6NG (5 wt%) was probably due to the high CGC of C6NG and the tendency of C7NG to crystallize. The obtained hydrogels were evaluated for their thixotropic properties. One-component hydrogels did not exhibit thixotropic behavior; however, the hydrogels obtained from two-component mixtures C8NG/C6NG (1/1, w/w) and C8NG/C7NG (1/1, w/w) were clearly thixotropic (Fig. 1). Whereas previous reports show that the two-component hydrogel formed with C8NG /sodium dodecyl sulfate as better hydrogel, it was only weakly thixotropic (see ESI† Fig. S3). Therefore, these results, showed that C8NG/C6NG and C8NG/C7NG were good examples of mixing-induced thixotropy in hydrogels.

Rheological tests identified that gelation occurred with both one- and two-component mixtures, and the results obtained were similar to that observed for polymer-based gel (see ESI† Fig. S4 and Fig. S5). In the frequency sweep, the existence of a gel was shown by a profile with a pseudo plateau and a storage modulus \(G' > G'' \). With increasing stress, the relationship between the \(G' \) and \(G'' \) for each hydrogel was switched from \(G' > G'' \) (gel state) to \(G' < G'' \) (sol state).

To evaluate the thixotropic behaviours, the rheometry of each hydrogel was investigated by step-shear measurement (Fig. 2). The C8NG/C6NG hydrogels repeatedly showed recovery of \(G' \) and \(G'' \) (with \(G' > G'' \)) after a large shear, whereas the hydrogel with C8NG/C7NG showed recovery only after the first deformation shear and subsequently attained a sol-like state (similar values were obtained for \(G' \) and \(G'' \)). The moduli were also recovered for hydrogels made with C8NG and C6NG (C8NG showed a two-fold recovery). However, these measurements using small amounts of gels possibly do not reflect the large-scale properties of the gel, e.g. self-support of the gel itself as observed in Fig. 1c. Fig. 2 shows the mixing induced changes in mechanical properties of CnNG(s) hydrogels qualitatively.

The thermal properties of one- and two-component CnNG hydrogels were characterized by differential scanning calorimetry (DSC). The analysis of DSC curves (see ESI† Table S1 and Fig S6) indicated that sol-to-gel and gel-to-sol transition for these hydrogels involved similar \(\Delta H \)'s. However, the peak temperatures for the transitions in two-component hydrogels were higher than that observed for one-component gels. This suggested that hydrogelation with two-component...
mixtures led to the formation of a denser and finer structural network than that in one-component hydrogels.

The investigation into the microstructures of hydrogels were conducted by scanning electron microscopy (SEM) analysis of the xerogels obtained from the one- and two-component hydrogels (Fig. 3). These results suggested that the two-component CnNG hydrogels had the same submicrometer order fibrous and network character as that of the one-component hydrogel. Fuhrhop et al. have provided SEM evidence for the formation of fibres of a single component in a CnNGs-based multi-gelator gels through a process of self-sorting\(^{10c}\); however, no evidence for self-sorting could be discerned in the data from our experiments.

X-ray diffraction (XRD) analysis of the crystal fibres of the hydrogels (see ESI,† Fig. S7) showed that similar single peaks were observed for two- and one-component hydrogels; moreover, the XRD peak positions for the hydrogels were observed for two- and one-component hydrogels; however, no evidence for self-sorting could be discerned in the data from our experiments.

Notes and references

