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Images acquired using optical microscopes are inherently subject to vignetting effects due to 

imperfect illumination and image acquisition. However, such vignetting effects hamper 

accurate extraction of quantitative information from biological images, leading to less effective 

image segmentation and increased noise in the measurements. Here, we describe a rapid and 

effective method for vignetting correction, which generates an estimate for a correction 

function from the background fluorescence without the need to acquire additional calibration 

images. We validate the usefulness of this algorithm using artificially distorted images as a 

gold standard for assessing the accuracy of the applied correction, and then demonstrate that 

this correction method enables the reliable detection of biologically relevant variation in cell 

populations. A simple user interface called FlattifY was developed and integrated in the image 

analysis platform YeastQuant to facilitate easy application of vignetting correction to a wide 

range of images. 

 

 

 

Introduction 

Biological research increasingly relies on imaging cellular 

processes to extract quantitative information using fluorescence 

microscopy. However, image acquisition by microscopy has 

inherent limitations due to imperfect illumination of the 

specimen and optical aberration in the objectives. These 

deviations result in reduced intensity of the images at the 

periphery, a phenomenon generally referred to as vignetting. As 

such, vignetting reduces overall intensity of objects, while 

increasing noise. Moreover, vignetting effects can significantly 

affect image segmentation and thus reduce the number of 

measured objects. In particular, when single cells need to be 

tracked over multiple frames of a time-lapse experiment, high 

efficiency of segmentation is critical for reliable analysis. Thus, 

strong vignetting effects might hinder reliable discrimination of 

subtle phenotypes when comparing quantitative readouts in 

different samples, or confound the detection of the intrinsic 

cell-to-cell variability. Indeed, dissecting the contribution of the 

various sources of biological variation of different cellular 

readouts has recently attracted significant interest,1-4 but 

requires effective methods to minimize the technical noise in 

these measurements. Thus, when using quantitative 

microscopy, images have to be computationally corrected by 

applying a correction function to revert vignetting effects 

before quantitative information can be reliably extracted. 

 Different approaches have been taken to derive correction 

functions to revert effects of vignetting. For example, images of 

a uniformly fluorescent sample acquired under identical 

conditions as in the actual experiment can be used to 

experimentally determine the optical aberration. Although this 

technique allows very accurate correction of the images, the 

need to acquire calibration images for each illumination setting 

often adds undesired additional experimental complications, 

especially when using complex imaging devices, such as 

microfluidic chips. Therefore, correction of vignetting is mostly 

performed a posteriori by estimating the correction function 

using the information present in the acquired images and a 

number of different approaches to correct for vignetting 

correction have been proposed. Often, these methods are based 

on the assumption of a strong prior, for example on the shape of 

the correction function.5, 6 Other approaches have aimed to 

correct vignetting by means of segmenting the images into 

background and objects, which can subsequently be used to 

derive a correction function.7-11 Similarly, these approaches 

typically rely on priors on the relative intensity of background 

and objects,11 and often fail for images, in which a large 

fraction of the image is covered by the objects under study.8, 9 

 Here, we describe a new implementation of a vignetting 

correction that is based on estimating the correction function 

using the intensity of the image background. In particular, we 

use a simple filtering approach based on assessing the variation 

of pixel intensities across multiple images to identify regions of 

the images that only contain background information without 
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assuming any a priori information about the nature of the 

imaged objects before a correction function is calculated. We 

apply our vignetting correction to a set of in silico generated 

images to quantitatively asses the accuracy of the technique and 

compare the performance of the this algorithm with an 

available open source solution. We also apply the image 

correction on typical biological images and characterize its 

effect on image segmentation and object quantification. We 

demonstrate that our vignetting correction reduces technical 

noise in the images and therefore allows to more effectively 

extract additional biological information from the corrected 

images.  

Results and Discussion 

Implementation of the correction algorithm 

Vignetting is inherent to the imaging process and thus equally 

affects pixel intensities within the background as well as within 

objects. However, image intensities within objects can fluctuate 

substantially due to biological variation, which may hinder the 

accurate estimation of a vignetting correction based on 

intensities derived from the imaged objects. In contrast, 

variations of background intensities across the entire image are 

exclusively caused by vignetting effects and technical 

(Gaussian) noise and are thus often the method of choice for 

vignetting correction.7, 10  

 To identify regions of the images that only contain 

background information, we used several images taken at 

different positions of the specimen, assuming that objects are 

randomly distributed within the field of view. This assumption 

is best fulfilled when imaging many, relatively small objects, 

such as yeast cells, but may preclude the effective application 

of this method for large objects imaged a high magnification, 

such as mammalian cells.  

Thus, for a set of images  

(1)    

we calculated the coefficient of variation (CV) of the 

fluorescence intensities for each pixel across multiple images, 

CVI (x,y). Following our assumption, pixels that contain only 

background information are characterized by low CVI (x,y), 

while a high CVI (x,y) is likely caused by pixels (partially) 

containing information from objects. Visual inspection of 

histograms of the CVI (x,y) confirmed a relatively broad 

distribution with a distinct population with low CVI (x,y) and 

fitting a Gaussian distribution with mean  and the 

standard-deviation  to this population efficiently allows to 

separate pixels containing only background information from 

others. Importantly, using the CVI (x,y) yielded a much better 

separation of background and non-background pixels than  

using mean intensity (Supplemental Figure 1). Thus, we chose 

all pixels with a CVI (x,y) lower than a certain threshold 

(cutoff) for further analysis.   

Thus, pixels with 

(2)    

were assumed to only contain background information and the 

image  

(3)    

contains an incomplete representation of the background 

intensity. To efficiently interpolate the undefined pixels, we 

randomly sampled 500 pixels fulfilling condition (3) and 

applied a lowess regression model to derive an estimate of the 

background intensity. Subsequent scaling yields the correction 

function, CorrFunct, with  

(4)    

 Finally, division of the original images by the CorrFunct 

allows correcting for vignetting effects in the images, while 

preserving overall intensity levels of the images.  

 An important advantage of this algorithm is the lack of 

assumptions on the relative intensities of objects and 

background. Typical images from fluorescent microscopy 

experiments are characterized by bright objects and rather low 

background intensity. However, for live cell microscopy, the 

use of fluorescent dyes in the medium can also help to simplify 

image segmentation, yielding images with dark objects and 

bright background intensity.12, 13 In contrast, objects in bright 

field images display regions of higher and lower intensity than 

I(1...i ) = I1(x, y)...Ii (x, y)[ ]

µ fitCV

σ fitCV

CVI (x, y) < cutoff

cutoff = µ fitCV +σ fitCV

Icf (x, y) =mean(I1...i (x, y) CVI (x, y) < cutoff )

CorrFunct(x, y) = Icf (x, y) / max(Icf )
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the background. Thus, different algorithms have been proposed 

that allow vignetting correction for these different scenarios.10 

Importantly, our algorithm can readily be applied to all these 

different images without adjustments and thus should equally 

well allow correcting vignetting effects from a wide range of 

images (see Supplementary Figure 2 for an example).  

Testing of the vignetting correction on artificial images 

To provide a quantitative assessment of the accuracy of our 

algorithm, we wanted to test if the method is capable of 

retrieving an appropriate correction function from in silico 

generated images that were artificially distorted using a user 

defined, known aberration. We simulated a typical biological 

experiment, in which the absolute and relative fluorescence 

intensity of objects in two channels is determined. Such 

measurements are frequently used in ratiometric measurements 

using biosensors, for example, employing FRET approaches.14 

We thus chose pairs of images with small circular objects of 

defined mean intensity and distribution in both images and 

applied two different distortions to the images (Figure 1A). 

Images were then analyzed for various parameters on the 

original images, after distortion and on the corrected images 

(Figure 1B and C, Supplementary Figure S3). As expected, 

distortion of the images leads to reduced average intensity of 

the objects (Supplementary Figure S3) and drastically increases 

the noise in the ratiometric measurements (Figure 1B and 1C). 

However, application of our vignetting correction readily 

recovered the uniform appearance of the images (Figure 1A) 

and effectively restored quantitative measures of object 

parameters. Importantly, the quality of correction was 

independent of the number of objects contained in the 

simulated images and performed comparable to the popular, 

publically available software package CellProfiler,10 suggesting 

its usefulness for correcting vignetting effects (Figure 1B and 

C, Supplementary Figure S3A and C). 

 However, applying this quantitative assessment of our 

correction algorithm is only suitable when object intensities are 

known, which is hardly the case for real biological experiments. 

We therefore sought to apply a measure that is independent of 

object segmentation and thus prior knowledge of object 

intensities and simulated the appearance of partially 

overlapping images. In the absence of vignetting, the 

overlapping region of two such images should yield an identical 

representation of the field of view, with the exception of 

inevitable random Gaussian noise (Figure 2A). However, 

vignetting effects are strongly position dependent, causing 

strong differences in the appearance of the overlapping region 

of the two images (Figure 2B), which was effectively restored 

by vignetting correction (Figure 2C). We used the mean 

squared difference of pixel intensities to quantitatively assess 

the difference in the pixel intensities due to vignetting under 

these conditions. Thus, for two images I1 and I2 with size sx and 

sy that overlap over a region of m x n pixel, this measure, 

hereafter referred to as DiffScore, is given by 

(5)    

Indeed, calculation of the relative DiffScore on the original 

images and after distortion revealed a strong increase of the 

relative DiffScore upon artificial distortion of the images that 

was almost completely restored upon application of our 

vignetting correction method. Similar to our previous analysis, 

our method performed very much comparable to CellProfiler 

software (Figure 2D). 

Effect of vignetting correction on real biological data 

Having established the usefulness of our technique on in silico 

generated data, we aimed to further test the effect of vignetting 

correction on large number of parameters of real images. 

Therefore, cells expressing a GFP-fusion of the highly 

abundant cytoplasmic protein Cdc19 were loaded into a 

microfluidic chip and sets of partially overlapping images were 

recorded. In addition, a fluorescent dye (with fluorescence 

emission in the Cy5 channel) was added to the growth medium 

to facilitate segmentation of the cells without using information 

of the GFP intensity. Visual inspection confirmed uniform 

appearance of dye and GFP intensities across the entire images 

upon application of our correction method (Figure 3A) and 

reduced the relative DiffScore in both Cy5 (Figure 3B) and the 

GFP images (Figure 3C). Similarly, application of the 

correction algorithm significantly increased the number of 

segmented cells (Figure 3D). Although the effect on the 

improvement of object detection may seem small on these 

images, small improvements in image segmentation are 

sufficient to significantly enhance the faithful tracking of 

individual cells through multiple frames in a time-lapse 

analysis. Importantly, the method also significantly increased 

average GFP intensity (Figure 3E and Supplementary Figure 

S4A) and reduced the coefficient of variation of the cellular 

DiffScore =
1

m.n
(I1(sx−m ...sx , sy−n ...sy )− I2 (1...m,1...n))2∑
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GFP intensity (Supplementary Figure S4B), confirming that the 

application of our correction method effectively reduces one 

source of noise in the biological images and might thus help to 

reveal weak, but biologically significant phenotypes that are 

otherwise confounded by vignetting effects.  

Dissection of sources of noise in biological images 

Therefore, we chose to use our method to dissecting different 

sources of gene expression noise in cells exposed to varying 

levels of salt stress. When exposed to high osmolarity by 

addition of NaCl to the growth medium, yeast cells elicit a 

complex cellular response that is orchestrated by a classical 

MAP kinase pathway leading to the transient activation of the 

MAP kinase Hog1.15 This response involves activation of a 

transcriptional program, which can be readily monitored by 

using transcriptional reporters driving the expression of 

fluorescent proteins under the control of the STL1 promoter3, 4, 

16. Interestingly, analysis of cells expressing the STL1-qV 

reporter (a translational fusion of four copies of the fluorescent 

protein Venus under the control of the STL1 promoter) revealed 

a high cell-to-cell variation. Specifically, only a fraction of cells 

efficiently express qV in low salt concentrations. The fraction 
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of expressing cells increases in a concentration dependent 

manner and is caused by the transient nature of Hog1 

activation, which precludes to overcome a repressive chromatin 

state and thus efficient induction of transcription in all cells.13 

Bimodality in gene expression using fluorescent reporters is 

best observed by flow cytometry, which allows to measure a 

large number of cells after full maturation of the fluorophore. 

However, this method does not allow to follow the evolution of 

fluorescence intensity in single cells throughout the time course 

of the entire experiment, which can only be provided by live 

cell microscopy at the expense of largely reduced numbers of 

analyzed cells.  

 Therefore, we set out to analyze the expression of qV 

emanating from an STL1 promoter by live cell microscopy. In 

such an experiment, fluorescence intensity of the reporter 

construct is not only determined by concentration-dependent, 

intrinsic cell-to-cell variation in the kinetics of gene expression, 

but also influenced by the dynamics of maturation of the 

fluorophore and technical noise in the detection, including 

vignetting effects.  

 We followed cells expressing the STL1-qV reporter over 

time upon addition of different concentrations of salt and 

analyzed the data before and after vignetting correction. As 

expected, this analysis revealed rapid and strong salt-dependent 

induction the fluorescent reporter. Yet, the mean intensity was 

largely unchanged upon application of vignetting correction 

(Figure 4A). To assess cell-to-cell variation of reporter gene 

expression, we calculated histograms of fluorescence intensities 

for all conditions (Figure 4B). At higher salt concentrations, all 

cells displayed uniform expression of the reporter (0.2 M and 

0.4 M salt, Figure 4C and data not shown), with populations 

being best described using a single Gaussian distribution. At 

lower salt concentrations, we detected several populations of 

cells expressing the reporter with different efficiency.  As 

expected, a fraction of cells failed to induce the transcriptional 

reporter at very low salt concentrations.3, 4, 16 Surprisingly, 

however, cells expressing the reporter could further be 

discriminated into low and high expressing cells. Similarly, at 

intermediate salt concentrations (0.15 M), most cells 

significantly induced the expression of the reporter construct, 

but analysis of the histograms again suggested two distinct 

populations of cells, which induce the marker with higher or 

lower efficiency. 

 Importantly, correcting for vignetting effects before image 

analysis revealed even better discrimination of the different 

subpopulations. While all other parameters were kept constant, 

vignetting correction allowed the more reliable dissection of 

subpopulations that contribute to the measured histograms. 

Moreover, vignetting correction lead to better separation of the 

subpopulations. Thus, we conclude that our vignetting 

correction helps to reduce noise in quantitative imaging 

experiments and therefore can be used to more efficiently 

extract new biologically relevant information from such 

experiments. Interestingly, previous experiments using flow-

cytometry have only identified two distinct populations of 

expressing and non-expressing cells at low salt concentrations. 

However, these measurements have been performed upon 

treatment with the translation inhibitor cycloheximide (CHX), 

to allow complete maturation of the fluorophores. It therefore 

seems possible that the different outcome of experiments using 

these different techniques is caused by an increased auto-

fluorescence of cells treated with CHX, which may mask small 

differences in reporter gene expression.  

 While the underlying mechanism leading to this unexpected 

cell-to-cell variation in reporter gene expression remains to be 

identified, it seems likely that several stable chromatin states 

may exist at the promoter of the reporter gene that can 

differentially affect gene expression in response to salt stress. 

Indeed, the activation transcription is a tightly regulated multi 

step process that underlies control by salt dependent activation 

of Hog1 signaling,15 but is likewise subject other environmental 

inputs, such as glucose repression.17  

Implementation of the algorithm and integration into 

YeastQuant 

The described algorithm was encoded in the widely distributed 

MATLAB computing software. To facilitate easy application of 

vignetting correction to a wide range of images, we have 

developed a simple user interface, called FlattifY, which guides 

the user through the necessary steps for vignetting correction 

(Figure 5A). After selection of the folder containing the raw 

images and entering a search string common to all files that 

need to be corrected, a small number of files can be selected to 
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define the training set, which is used to calculate the correction 

factor. Similarly, all files that need to be corrected can be 

selected and are displayed in the corresponding file list. If the 

files for correction are contained in multiple folders, this 

process is simply repeated until all files have been selected and 

included in the file lists. Then, the correction factor is 

calculated and displayed. Selecting specific files in the current 

folder allows previewing the image before and after correction. 

Finally, applying the correction factor will correct all files from 

the respective list and save the files under the same name. In 

addition, a copy of the files before correction is kept. 

 To integrate vignetting correction with image segmentation 

and analysis, we have incorporated the algorithm into the 

recently developed YeastQuant software package.13 This 

software package combines a filemaker database with 

MATLAB-based image analysis routines. For image analysis, 

all necessary data are entered into the filemaker database, 

which connects to MATLAB to start image analysis. For 

illuminations that should be subjected to vignetting correction 

using the FlattifY algorithm, vignetting correction can be 

activated in the Analysis tab (Figure 5B) and image correction 

is automatically executed before image segmentation.  

Conclusions 

The algorithm described here provides a novel implementation 

of a vignetting correction for quantitative microscopy. The 

proposed non-parametric algorithm is based on estimating a 

correction function solely from the background intensity. We 

suggest a simple filtering method that allows to identify regions 

of the images that contain only background information by 

comparing the variation of pixel intensities across images taken 

from a small number (typically 4-6) of different positions of the 

samples without any other prior knowledge about the objects 

such as shape or intensity. Therefore, this algorithm is also 

readily applicable to both images from fluorescence or bright 

field microscopy irrespective of the relative intensity of objects 

and background. Obtaining images from different positions of 

the sample as the only prerequisite for applying our correction 

algorithm is almost always fulfilled in quantitative microscopy 

experiments as multiple positions are typically used to 

maximize the number of cells followed in a given experiment, 

or to simultaneously compare different genotypes. In fact, when 

applying the algorithm to our in silico generated test sets, a 

minimum of three images in the training set was sufficient to 

obtain satisfactory correction (data not shown). Together with 

the intuitive user interface and integration into the YeastQuant 

software, the algorithm therefore provides a straightforward and 

simple method applicable to a wide variety of microscopy 

experiments. Using a framework to quantitatively assess the 

performance of the correction algorithm we provide evidence 

that the algorithm successfully reduces technical noise in the 

measurements, and allows to efficiently extract novel biological 

information. Importantly, these data underline the power of 

quantitative microscopy to study the dynamics and cell-to-cell 

variation in biological systems and highlight the benefits of 

often overlooked vignetting correction for the reliable 

extraction of quantitative information from microscopy images.  

Material and Methods 

Yeast culture 

Yeast strains are listed in Supplementary Tables 1. Cells were 

grown in synthetic medium (SD) as described.4 Saturated 

overnight cultures of were diluted to OD600 0.05 and grown 

for at least four hours before the start of the experiment. For the 

experiment presented in Figure 3, cells were loaded into 

microfluidic chips (Cellasics Y04C, Millipore Corp.) following 

manufacturers recommendations and imaged while 

continuously providing fresh SD medium containing 

fluorescently coupled dextran (Dextran conjugated Alexa 680, 

M.W.=3000, Invitrogen, 1 µg/ml). For the experiment 

presented in Figure 4, well-slides (MGB096-1-2LG, Matrical 

Bioscience), were coated by incubation with Concanavalin A 

(Sigma, 1 mg/ml in PBS) and rinsed with SD. Following mild 

sonication (1 min), 200 µl of cells were immobilized in the well 

slides and imaged following stimulation by adding 100 µl of 

NaCl adjusted to the appropriate concentration in SD. 

Microscopy setup 

Images were acquired on automated inverted fluorescence 

microscopes (Ti-Eclipse, Nikon) in an incubation chamber set 

at 30°C using a 60X objective lens and a CCD camera (Orca 

Flash 4.0, Hamamatsu Photonics). Microscopes were controlled 

using Micromanager software.18 For the experiment presented 

in Figure 3, imaging was performed using a pE2 LED light 

source (CoolLED) and appropriate filter sets (GFP: F49-470 

and F47-525; Cy5: F39-651, F37-684, AHF Analysentechnik 

AG). For the experiment presented in Figure 4, a SpectraX 

LED light source (Lumencor) was used and images were taken 

using relevant excitation and emission filters (F49-500 and 

F47-535, respectively, AHF Analysentechnik AG) to visualize 

YFP. 

In silico generation of test images: 

Test images for the analysis shown in Figure 1 were simulated 

with a size of 2048x2048 pixels by randomly placing non-

overlapping circular objects with a diameter of 50 pixels and 

object intensity following a normal distribution with mean 1600 

and standard deviation of 400. Object positions were saved and 

used for subsequent analysis to avoid the need for image 

segmentation prior to object quantification. Background 

intensity, represented by a normal distribution with a mean of 

200 and a standard deviation of 50, was added to each pixel. To 

artificially distort images to resemble vignetting effects, images 

were multiplied with a distortion function following a two 

dimensional Gaussian distribution, dist = e
−

(x−x0 )2

σ 2
+

(y−y0 )2

σ 2











 with

x0 = 800  and  y0 = 800  for illumination “C”, and  x0 =1200 and 

y0 = 500   for illumination “Y”; σ 2 = 2�106  for both 

illuminations. 

Test images for the analysis shown in Figure 2 were simulated 

with a size of 3062x3062 pixels and 300 objects were randomly 

placed on the image with an intensity of 300 and noise was 

added as described for Figure 1. The resulting image was 

divided into two images of size 2048x2048 pixels, with an 

overlap of 1024x1024 pixels and separately distorted as 

described for Figure 1, illumination “C”. 

 

Image and data analysis  

Image analysis for experiments shown in Figure 3 and 4 was 

performed as described using YeastQuant.13 Efficiency of 

image segmentation was calculated by comparing the number 

of objects obtained by automated segmentation to manual 

counting. Data are shown as the mean ± SEM for three 
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independently analyzed data sets. For the analysis of cell 

population in Figure 4, histograms were calculated from the 

average intensity of the brightest 500 pixels of each cell that 

was detected in each condition and time point. Histograms were 

calculated for log-transformed intensities and fitted to a sum of 

three Gaussian distributions. In Figure 4C, circle position 

corresponds to the mean value of each single Gaussian, and 

circle size corresponds to relative area that each single 

Gaussian distribution contributes to the fitted curve.  

System requirements and code availability: 

FlattifY uses Matlab, 2012 or higher, on MAC, PC or LINUX. 

YeastQuant V8 uses Filemaker 13 and MATLAB 2012 or 

higher. Code can be downloaded at 

http://www.bc.biol.ethz.ch/research/peter/ResearchTools and 

http://www.unil.ch/quantitativesignaling/software.  
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We describe a novel and versatile algorithm for vignetting correction and demonstrate its 

usefulness for quantitative microscopy. 
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