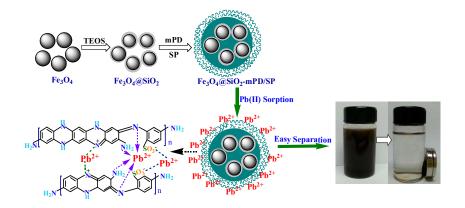


This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.


Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Multifunctional nanocomposites Fe₃O₄@SiO₂-mPD/SP for selective removal of Pb(II) and Cr(VI) from aqueous solutions

Lisha Tan, Jiang Xu, Xiaoqin Xue, Zhimo Lou, Jin Zhu, Shams Ali Baig, Xinhua Xu^{*}
Department of Environmental Engineering, Zhejiang University, Hangzhou 310058,
People's Republic of China

Abstract: Silica-coated magnetite ($Fe_3O_4@SiO_2$) nanoparticles functionalized with 6 7 amino, imino and sulfonic groups (Fe₃O₄@SiO₂-mPD/SP) were successfully 8 synthesized via a facile chemical oxidative polymerization of *m*-phenylenediamine (mPD) and *m*-sulfophenylenediamine-4-sulfonic acid (SP) monomers, and utilized for 9 10 selective removal of Pb(II) and Cr(VI) from aqueous solutions. It was revealed by the 11 characterizations that the polymers formed on $Fe_3O_4@SiO_2$ nanoparticles were the 12 true copolymers with a mPD-SP unit, rather than a mixture of mPD and SP homopolymers. Fe₃O₄@SiO₂-mPD/SP nanocomposites could be easily separated from 13 14 aqueous solutions within 30 s. The maximum adsorption capacity of Pb(II) (83.23 mg g^{-1}) and Cr(VI) (119.06 mg g^{-1}) on Fe₃O₄@SiO₂-mPD/SP nanocomposites were 15 obtained at the mPD/SP molar ratio of 95:5 and 50:50, respectively. Moreover, 16 17 satisfactory selective removal of Pb(II) and Cr(VI) from their mixtures with Cu(II) 18 Ni(II) ions were exhibited by the $Fe_3O_4(a)SiO_2-mPD/SP(95:5)$ and and $Fe_3O_4(a)SiO_2-mPD/SP(50:50)$, respectively. The Pb(II) adsorption equilibrium was 19 20 reached within 5 min by $Fe_3O_4@SiO_2-mPD/SP(95:5)$. The adsorption data of Pb(II) 21 and Cr(VI) were both fitted well to the Freundlich isotherm and followed the 22 pseudo-second-order kinetic model. The adsorption mechanism of Pb(II) and Cr(VI)

23	on Fe ₃ O ₄ @SiO ₂ -mPD/SP nanocomposites included five processes, namely:
24	ion-exchange, complexation adsorption, reduction reaction, electrostatic attraction and
25	physical adsorption. The enhanced adsorption performance of nanoparticle-based
26	magnetic adsorbents for selective removal of heavy metal ions can be achieved with
27	such a copolymerization strategy.
28	Keywords: Fe ₃ O ₄ @SiO ₂ ; Functionalization; Magnetic; Heavy metals; Adsorption
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
55 56	
50 57	
58	
59	
60	* Corresponding author. E-mail: xuxinhua@zju.edu.cn

61 **1. Introduction**

62 A variety of adsorption techniques have been extensively used to remove heavy metals from water, due to the advantages of high efficiency, low cost, and ease of 63 operation. Various adsorbents have been developed for the removal of heavy metals 64 from different water environments, including activated carbon, biosorbent materials, 65 industrial waste, mineral adsorbents and nanofibers etc.¹⁻⁷. However, some shortages 66 67 have limited their practical applications in wastewater treatment, such as poor selectivity and regeneration potential, a strong tendency to produce secondary 68 69 pollution, and difficult to achieved fast and efficient separation from aqueous 70 solutions after adsorption.

71 Recently, magnetic nanoparticles such as Fe_3O_4 and γ -Fe₂O₃ have been investigated to remove heavy metals from contaminated aqueous environments⁸⁻¹⁰. 72 73 These magnetic nanoparticles not only possess good performance which could be 74 ascribed to the high surface area and optimal magnetic properties, but also can be rapidly recollected via external magnetic field and used repeatedly with low loss^{11,12}. 75 76 To improve the adsorption performance of Fe_3O_4 magnetic nanoparticles (Fe_3O_4) 77 MNPs) toward heavy metals, an increasing number of investigations have been 78 concentrating on the modification of Fe_3O_4 MNPs with different functional groups in recent years. For instance, the amino-functionalized Fe₃O₄ MNPs modified with 79 triethoxysilane^{13,14}, (3-aminepropyl) 1,6-hexadiamine¹⁵, diethylenetriamine¹⁶, 80 1.2-diaminobenzene¹⁷ and ethylenediamine¹⁸ 81 showed excellent adsorption Pb(II), 82 performance toward Cr(VI), Cu(II), Cd(II), As(III) and Cr(III). 83 Thiol-functionalized Fe₃O₄ MNPs prepared using (3-mercaptopropyl) triethoxysilane¹⁹ and dimercaptosuccinic acid²⁰ can effectively remove Hg(II) and 84 Pb(II) ions. Carboxy-terminated Fe₃O₄²¹, multi-functionalized Fe₃O₄ MNPs coated by 85

organic molecules such as humic $acid^{22}$, cetyltrimethylammonium bromide²³ and rhodamine hydrazide²⁴ were used as highly effective magnetic adsorbents for the removal of metal ions. The good performance of these magnetic adsorbents indicated that the large number of active sorption sites is vital and necessary for the efficient adsorption of heavy metal ions from aqueous solutions, which are provided by the free functional groups grafted on the Fe₃O₄ MNPs.

92 Polymer sorbents with functional groups have attracted more attention as new 93 efficient sorbents of the metal ions, due to their excellent adsorbability and good selectivity toward the heavy metal ions²⁵⁻²⁷. In particular, copolymer sorbents of 94 95 m-phenylenediamine/its sulfonate (mPD/SPD) and aniline/sulfoanisidine (AN/SA) 96 both exhibit good thermal stability, remarkable chemical resistance, and excellent 97 adsorbability for Pb(II), Hg(II) and Cr(VI) ions. This is mainly attributed to the introduction of sulfonic groups and the optimal combination of free amino, imino and 98 99 sulfonic groups with different amounts. Moreover, the adsorbents can also be easily regenerated and reused through desorption^{28, 29}. Polymer encapsulation provides the 100 surface functionalization and protects the Fe₃O₄ MNPs from environmental 101 102 disturbances. However, no studies using copolymer to modify Fe₃O₄@SiO₂ 103 nanoparticles with amino/imino/sulfonic groups for selective removal of heavy metals 104 have been reported so far. To the best of our knowledge, this is the first study of its 105 kind to explore the effect of monomer ratio on the removal performance and discuss 106 the adsorption mechanisms.

In this study, $Fe_3O_4@SiO_2-mPD/SP$ magnetic nanocomposites were synthesized via chemical oxidative polymerization of *m*-phenylenediamine (mPD) and *m*-sulfophenylenediamine-4-sulfonicacid (SP). The effects of monomer ratio on the selective removal of Pb(II) and Cr(VI) ions from aqueous solutions were discussed.

Different characterization techniques were employed to investigate physico-chemical properties of $Fe_3O_4@SiO_2-mPD/SP$ nanocomposites. The applicability of $Fe_3O_4@SiO_2-mPD/SP$ in Pb(II) and Cr(VI) ions adsorption was evaluated with respect to its adsorption kinetics and isotherm. Additionally, the possible adsorption mechanisms of Pb(II) ions on $Fe_3O_4@SiO_2-mPD/SP(95:5)$ and Cr(VI) ions on $Fe_3O_4@SiO_2-mPD/SP(50:50)$ were also analyzed.

117 **2. Materials and methods**

118 2.1 Materials

FeCl₃·6H₂O, FeSO₄·7H₂O, NH₃·H₂O, polyethylene glycol 4000 (PEG4000),
tetraethoxysilane (TEOS) and (NH₄)₂S₂O₈ were obtained from the Sinopharm Group
Chemical Reagent Co., Ltd., China. mPD, Pb(NO₃)₂, and K₂Cr₂O₇ were purchased
from Aladdin Reagent Co., Ltd., China. SP was purchased from Maya Chemical
Reagent Co., Ltd., China. All chemicals were of analytical grade and used as received.

124 2.2 Preparation of Fe₃O₄@SiO₂-mPD/SP

Fe₃O₄ MNPs were firstly prepared by the co-precipitation method as reported previously³⁰ with a slight modification. Briefly, 4.7067 g FeCl₃·6H₂O and 3.025 g FeSO₄·7H₂O were dissolved in 50 mL PEG4000 solution (0.2 g mL⁻¹), then 10 mL NH₃·H₂O mixed with 25 mL PEG4000 solution was added dropwise into the reaction mixture under nitrogen atmosphere with vigorous mechanical stirring for 2 h (60 °C). Afterward, the black precipitates were collected using a magnet and washed to neutral with deionized water.

132 $Fe_3O_4@SiO_2$ nanoparticles were synthesized via a sol-gel approach³¹. Typically,

133	the as-prepared Fe ₃ O ₄ MNPs (~2 g) were homogeneously dispersed in a mixture of
134	methyl alcohol (100 mL), deionized water (50 mL) and TEOS (1.76 mL) by
135	sonicating for 30 min, followed by the addition of $\rm NH_3 \cdot H_2O$ (4 mL). After 4 h
136	continuous mechanical stirring at room temperature, Fe ₃ O ₄ @SiO ₂ nanoparticles were
137	magnetically separated, washed to neutral, and then dried in a vacuum oven at 60 $^\circ\mathrm{C}$
138	for 12 h.

139 Fe₃O₄@SiO₂-mPD/SP nanocomposites were synthesized by chemical oxidative 140 polymerization of mPD and SP in distilled water, using $(NH_4)_2S_2O_8$ as the oxidant. A 141 typical procedure was as follows: Firstly, 0.5 g $Fe_3O_4@SiO_2$, 1 mmol mPD and 1 142 mmol SP were dispersed into 100 mL distilled water to form Solution 1. Secondly, 143 Solution 2 was obtained by dissolving 2 mmol $(NH_4)_2S_2O_8$ into 10 mol distilled water. 144 Both of the solutions were put into a water bath at 30 °C for 30 min. Thirdly, Solution 145 2 was added to the Solution 1 at a rate of one drop every 3 seconds with constant 146 stirring at 30 °C for 24 h. The obtained black precipitates were magnetically separated, 147 and washed repeatedly with distilled water. Lastly, the final products 148 (Fe₃O₄@SiO₂-mPD/SP) were dried in a vacuum oven at 60 °C for 12 h.

149

2.3 Characterization

The morphology of the Fe₃O₄@SiO₂-mPD/SP nanocomposites was observed using transmission electron microscopy (TEM, JEM-1230, JEOL, Japan). Fourier transformed infrared spectra were recorded on an IR spectrophotometer (FTIR, IRaffinity-1, SHIMADZU, Japan) with KBr pellets at room temperature. The crystal structure of the particles was identified by X-ray diffraction (XRD, X'pert PRO,

155 analytical B.V., Netherlands). The binding energies were measured by X-ray photoelectron spectroscopy (XPS, Kratos Axis Ultra DLD, SHIMADZU, Japan). The 156 157 thermal stability the Fe₃O₄@SiO₂-mPD/SP investigated of was via 158 thermo-gravimetric analysis (TGA, TGA/SDTA851, SWRTZER LAND, USA) at a 159 heating rate of 10 °C/min under N₂ flow. Magnetic measurements were obtained using 160 a multifunctional physical property measurement system (PPMS-9, QUANTUM 161 DESIGN, USA) under a magnetic field up to 20 kOe at 298 K. 162 **2.4 Adsorption experiments**

163 Adsorption of Pb(II) and Cr(VI) ions from aqueous solution was performed 164 through batch experiments. We set out to find out the optimum mPD/SP ratios for 165 Fe_3O_4 (@SiO_2-mPD/SP nanocomposites to remove Pb(II) and Cr(VI). The adsorption 166 kinetics and isotherms of Pb(II) adsorption using Fe₃O₄@SiO₂-mPD/SP(95:5) and 167 Cr(VI) adsorption by Fe₃O₄@SiO₂-mPD/SP(50:50) were also studied. Unless 168 otherwise noted, all the experiments were performed in duplicate in Erlenmeyer flasks, 169 which were placed in the water bath oscillators at 180 rpm for 24 h at 30 °C. After 170 magnetic separation, the final concentration of Pb(II) was determined by an atomic 171 absorption spectrophotometer (AAS, AA-6300, SHIMADZU, Japan), and the 172 remaining concentration of Cr(VI) was analyzed via an ultraviolet-visible 173 spectrophotometer (UV-vis, UV1800, Puxi, China).

174 **3. Results and discussion**

175 **3.1 Characterization of Fe₃O₄@SiO₂-mPD/SP**

176 Fig. 1 shows the XRD patterns of Fe_3O_4 , $Fe_3O_4(a)SiO_2$, and Fe₃O₄@SiO₂-mPD/SP nanoparticles. Six diffraction peaks (220, 311, 400, 442, 511, 177 and 440) were observed, indicating the presence of cubic spinel structure of pure 178 magnetite³². The same characteristic peaks were observed for Fe₃O₄@SiO₂ and 179 180 Fe_3O_4 (*a*)SiO₂-mPD/SP nanoparticles, indicating that the crystalline structure of Fe_3O_4 181 was stable during silica coating and subsequent surface modification. Fig. 2 presents 182 TEM images of the four nanoparticles. Fig. 2a shows that the Fe₃O₄ MNPs obtained 183 by a modified co-precipitation method were composed of spherical and uniform 184 particles with an average size of 20-30 nm. The dispersibility of $Fe_3O_4(a)SiO_2$ 185 nanoparticles was improved after coating with a SiO₂ layer (Fig. 2b). However, it was 186 difficult to observe the SiO_2 layer coated on Fe_3O_4 , which could be the result of small 187 amount of TEOS added into the reaction solution. As shown in Figs. 2c and 2d, it 188 could be clearly observed that the mPD/SP copolymers with a thickness of ca. 8 nm 189 were uniformly coated on Fe_3O_4 (*a*)SiO₂ surface.

- 190
- 191

<*Fig 1 about here*>

<*Fig 2 about here*>

192 To identify the presence of silica and mPD/SP copolymers on Fe₃O₄ surface, the 193 FTIR spectra of Fe_3O_4 , $Fe_3O_4(a)SiO_2$, $Fe_3O_4(a)SiO_2$ -mPD/SP(95:5), and 194 Fe_3O_4 (a)SiO₂-mPD/SP(50:50) were recorded (Fig. 3). The peaks at 592 and 1631 cm⁻¹ were attributed to the Fe-O vibration from $Fe_3O_4^{33}$. The characteristic peaks at 1083 195 and 802 cm⁻¹ could be attributed to the asymmetric and symmetric stretching vibration 196 197 of SiO₂, respectively. The vibration of SiO₂ as well as the weak bending vibration of Si-OH band at 964 cm⁻¹ indicated the successful coating of silica shells on the surface 198 199 of Fe₃O₄. A broad and strong peak centered at 3372 cm⁻¹ was attributed to the characteristic N-H stretching vibration^{27,34}, which suggested the presence of a large 200

RSC Advances Accepted Manuscript

201 amount of amino and imino groups in the polymer-coating on Fe_3O_4 MNPs. The absorption peaks at 1622 and 1514 cm⁻¹ were associated with the stretching of quinoid 202 and benzenoid rings, respectively. The absorption peak at 1220 cm⁻¹ was assigned to 203 C-N vibration in mPD units in mPD/SP copolymers²⁹. A peak at 1124 cm⁻¹ could be 204 205 attributed to the C-N stretching on the SP units, because the relative band intensity 206 increases as the SP content rises from 5 to 50 mol%. The two absorptions at 1049 and 1020 cm⁻¹ were associated with the S=O asymmetric and symmetric stretching 207 vibration of the -SO₃⁻ group on the SP units, respectively^{25, 35, 36}. The peaks at 706 and 208 625 cm⁻¹ correspond to the stretching vibration of C-S and S-O bonds on the SP units. 209 respectively. The intensity of bands at 1124, 1049, 1020, and 706 cm⁻¹ significantly 210 211 rose with increasing SP unit content from 5% to 50%, which indicated the copolymers on the Fe₃O₄@SiO₂ were the true copolymers with a mPD-SP unit, rather than a 212 213 mixture of mPD and SP homopolymers.

214

<Fig 3 about here>

215 TGA analyses were used to determine the content of organic functional 216 copolymers coated on Fe₃O₄ MNPs. As shown in Fig. 4, weight loss at temperatures 217 below 200 °C was assigned to the water desorption from the surface of 218 Fe_3O_4 (2)SiO₂-mPD/SP, while weight loss above 600 °C was caused by the loss of the 219 structural water. The weight loss from 200 to 680 °C was associated with the 220 decomposition of mPD/SP copolymers and silica layer grafted onto the Fe₃O₄, as well 221 as two water loss. It suggested that the content of mPD/SP copolymers in the 222 Fe₃O₄@SiO₂-mPD/SP(95:5) and Fe₃O₄@SiO₂-mPD/SP(50:50) were found to be 223 about 31.05 and 32.82 wt.%, respectively. The saturation magnetization curves of Fe₃O₄, Fe₃O₄@SiO₂, Fe₃O₄@SiO₂-mPD/SP(95:5), and Fe₃O₄@SiO₂-mPD/SP(50:50) 224 were shown in Fig. 5. The saturation magnetization value was 75.00 emu g⁻¹, 62.47 225

226	emu g ⁻¹ , 43.92 emu g ⁻¹ , and 41.33 emu g ⁻¹ for bare Fe ₃ O ₄ , Fe ₃ O ₄ @SiO ₂ ,
227	$Fe_3O_4@SiO_2-mPD/SP(95:5)$, and $Fe_3O_4@SiO_2-mPD/SP(50:50)$, respectively.
228	Although the saturation magnetization decreased after surface modification, the
229	adsorbents could still be easily separated from aqueous solution within 30 s. The
230	content of mPD/SP copolymers coated on the $Fe_3O_4@SiO_2$ was found to be 29.69
231	wt.% for $Fe_3O_4@SiO_2-mPD/SP(95:5)$ and 33.84 wt.% for
232	Fe_3O_4 ($@SiO_2$ -mPD/SP(50:50), which were consistent with those from TGA data.
233	< <i>Fig 4 about here</i> >

234 <*Fig 5 about here>*

3.2 Optimization of the mPD/SP ratio for the Fe₃O₄@SiO₂-mPD/SP as Pb(II) and Cr(VI) sorbents

Fig. 6a shows the adsorption capacity of Pb(II) on Fe₃O₄@SiO₂-mPD/SP 237 238 nanocomposites modified with different mPD/SP feed ratios. The adsorption capacity 239 observed to strongly depend the mPD/SP was on feed ratio. The with SP 5 240 Fe₃O₄@SiO₂-mPD/SP nanocomposites content of mol% (Fe₃O₄@SiO₂-mPD/SP(95:5)) demonstrated the maximum adsorption capacity of 241 82.95 mg g^{-1} , which was 16.78% higher than those of nanocomposites modified with 242 243 pure mPD polymer. This might be attributed to the introduction of an optimal amount of active sulfonic groups on the copolymer chains coated on the Fe₃O₄@SiO₂ 244 245 nanoparticles, which also led to loose conglomeration. However, the adsorption 246 capacity was observed to decrease with the increasing SP content from 5 to 100 mol%, 247 owing to a declined ion complexation. That is to say, the number of amino and imino groups per mass copolymer would decrease as the SP content increased, hence 248

RSC Advances Accepted Manuscript

Page 12 0

reducing the probability of complexation between the copolymer chains and $Pb(II)^{29}$. Additionally, the increased solubility of the copolymer due to the hydrophilicity of the sulfonic group could be another reason why the Pb(II) adsorbability declined with increasing SP content³⁷.

253

<Fig 6 about here>

254 Fig. 6b, the Cr(VI) adsorption capacity shown in onto the As 255 Fe₃O₄@SiO₂-mPD/SP nanocomposites rose first and then decreased with the increasing SP content. Particularly, the Fe₃O₄@SiO₂-mPD/SP(50:50) nanocomposites 256 were observed to possess the maximum adsorption capacity up to 118.53 mg g^{-1} , 257 258 showing an enhancement of 59.46% and 67.08% as compared to pure mPD and SP. 259 respectively. The enhancement of adsorbability might be attributed to the optimal 260 combination of free amino, imino, and sulfonic groups on the copolymer chains at 50 261 mol% SP content, which was beneficial to the efficient interaction of Cr(VI) and the $=N-/=N^{+}H/-NH_{2}/-SO_{3}H$ groups²⁹. Although the adsorption of Cr(VI) ions was 262 263 similar to that of Pb(II), it should be noted that the Cr(VI) adsorbability decreased 264 with increasing SP content from 50 to 100 mol%. This is because Cr(VI) exists as 265 negatively charged $HCrO_4$ in aqueous solution, which would generate electrostatic 266 repulsion force with $-SO_3$, leading to a decrease in adsorbability with an increasing 267 SP content.

268 As shown in Fig. 6. the Pb(II) adsorption capacity onto the Fe₃O₄@SiO₂-mPD/SP(100:0) and Fe₃O₄@SiO₂-mPD/SP(0:100) were 71.03 and 269 52.64 mg g⁻¹, respectively. If the polymers coated on Fe₃O₄@SiO₂ were the mixture of 270

271 mPD homopolymers and SP homopolymers, the Pb(II) adsorption capacity onto $Fe_3O_4@SiO_2-mPD/SP(95:5)$ should be about 70.11 mg g⁻¹ (71.03×95%+52.64×5%= 272 273 70.11). Whereas, the actual Pb(II) adsorption capacity onto $Fe_3O_4@SiO_2-mPD/SP$ (95:5) was 82.95 mg g⁻¹. And if the polymers were mixture, the Cr(VI) adsorption 274 capacity onto $Fe_3O_4(a)SiO_2-mPD/SP(50:50)$ should be about 72.64 mg g⁻¹ 275 276 $(74.33 \times 50\% + 70.95 \times 50\% = 72.64)$. Whereas, the actual Cr(VI) adsorption capacity onto Fe₃O₄@SiO₂-mPD/SP(50:50) was 118.53 mg g⁻¹. It indicated that the polymers 277 278 on the $Fe_3O_4@SiO_2$ were the true copolymers with a mPD-SP unit, rather than a simple mixture of mPD and SP homopolymers, which was consistent with the result 279 280 of FTIR characterization.

3.3 Selective adsorption of metal ions

282 In order to investigate the selective adsorption of Fe₃O₄@SiO₂-mPD/SP 283 nanocomposites, competitive adsorption of Pb(II), Cu(II) and Ni(II) on 284 $Fe_3O_4(a)SiO_2-mPD/SP(95:5)$ and Cr(VI), Cu(II) and Ni(II) on Fe_3O_4 (a)SiO₂-mPD/SP(50:50) was performed, respectively. Since CrO_4^{2-} specie 285 always existed in the Cr(VI) solution and would precipitate with Pb(II) to form 286 PbCrO₄ due to the very small solubility product constant of PbCrO₄ (K_{sp} =2.8×10⁻¹³), 287 288 the selective adsorption between Pb(II) and Cr(VI) was not performed. Fig. 7a shows 289 the result of removal of Pb(II), Cu(II) and Ni(II) by Fe₃O₄@SiO₂-mPD/SP(95:5) with 290 the same initial single ion concentration. The Pb(II) adsorption capacity onto the Fe₃O₄@SiO₂-mPD/SP(95:5) was 74.07 mg g⁻¹, while the adsorption capacity of Cu(II) 291 and Ni(II) were only 7.44 and 4.18 mg g⁻¹, which was 9.96 times and 17.72 times 292

RSC Advances Accepted Manuscript

vas revealed selectivity e adsorption

293 higher than the adsorption capacity of Cu(II) and Ni(II), respectively. It was revealed 294 that the $Fe_3O_4(a)SiO_2$ -mPD/SP(95:5) possessed excellent adsorbing selectivity towards Pb(II) in the presence of Cu(II) and Ni(II). The result of selective adsorption 295 296 of Cr(VI) onto Fe₃O₄@SiO₂-mPD/SP(50:50) was presented in Fig. 7b. The Cr(VI) adsorption capacity onto the Fe₃O₄@SiO₂-mPD/SP(50:50) was 113.11 mg g⁻¹, while 297 the adsorption capacity of Cu(II) and Ni(II) were only 13.60 and 8.56 mg g⁻¹, which 298 299 was 8.32 times and 13.21 times higher than the adsorption capacity of Cu(II) and 300 respectively. It was observed that the adsorption capacity of Ni(II), Fe_3O_4 (a)SiO₂-mPD/SP(50:50) for Cr(VI) ions was much higher than that for Cu(II) 301 302 and Ni(II) ions. In short, the Fe₃O₄@SiO₂-mPD/SP nanocomposites could be 303 employed to efficiently and selectively remove hazardous Pb(II) and Cr(VI) ions from 304 their mixtures with Cu(II) and Ni(II) ions. <Fig 7 about here> 305

306 3.4 Adsorption kinetics

Fig. 8a presents the effect of contact time on Pb(II) uptake onto the 307 308 Fe_3O_4 (@SiO_2-mPD/SP(95:5) nanocomposites. It was observed that adsorption rate 309 was significantly high and rapidly reached an equilibrium after 5 min, which indicated 310 that the Fe₃O₄@SiO₂-mPD/SP(95:5) exhibited faster Pb(II) adsorption than the other magnetic adsorbents³⁸⁻⁴². The rapid adsorption could be attributed to the unique 311 312 synergistic complexation between Pb(II) ions and amino/imino/sulfonic groups on the copolymers coated on $Fe_3O_4(a)SiO_2^{29}$. In order to evaluate the mechanism of 313 adsorption, pseudo-first-order and pseudo-second-order kinetics models^{43,44} were used 314 to describe the adsorption data. The pseudo-second-order kinetics equation of the 315

316 Pb(II) adsorption kinetics onto $Fe_3O_4(a)SiO_2$ -mPD/SP(95:5) was presented in Fig. 8a 317 (inset) and Table 1, where q_e , and q_t were the adsorption capacities of Pb(II) ions adsorbed (mg g⁻¹) at equilibrium and at time t (min), respectively; k_1 and k_2 were the 318 319 corresponding adsorption rate constants. On the basis of the high correlation coefficient ($R^2=1$), the pseudo-second-order fitted perfectly with the experimental data, 320 321 suggesting that the rate-limiting step of adsorption was chemical adsorption between sorbent and adsorbate without involvement of a mass transfer in solution^{45,46}. The 322 experimental q_e value (83.23 mg g⁻¹) showed a good agreement with the calculated q_e 323 value $(83.19 \text{ mg g}^{-1})$ derived from the pseudo-second-order kinetic. 324

- 325
- 326

<*Fig 8 about here*>

<Table 1 about here>

327 Fig. 8b presents the kinetics of Cr(VI) adsorption on the 328 Fe_3O_4 (*a*)SiO₂-mPD/SP(50:50). The results illustrated that the Cr(VI) adsorption was 329 very fast during the initial 30 min and then gradually reached an equilibrium after 6 h. 330 The adsorption process consisted of two steps: the primary rapid step and the 331 secondary slow step. The primary rapid step of Cr(VI) sorption might be owing to the 332 reduction reaction and physical adsorption between Cr(VI) and functional groups. 333 While the secondary slow step might be controlled by the diffusion of the big $HCrO_4^-$ 334 ions into inner functional groups within the copolymers as well as the electrostatic 335 repulsion between $HCrO_4^-$ and $-SO_3^-$. To investigate the adsorption process, the 336 pseudo-first-order and pseudo-second-order models were applied to the kinetics data. 337 As shown in Fig. 8b and Table 1, the adsorption kinetics was better described by the pseudo-second-order model with a much higher correlation coefficient ($R^2=0.9997$). 338 Since the pseudo-second-order was based on the assumption that the chemical 339 adsorption between sorbent and adsorbate was the rate-controlling step⁴⁷, the Cr(VI) 340

341 adsorption mechanism on the Fe₃O₄(a)SiO₂-mPD/SP(50:50) was considered to mainly 342 involve reduction reaction and subsequent complexation adsorption between Cr(III) and functional groups. The theoretical q_e value (119.76 mg g⁻¹) of pseudo 343 second-order kinetics also agreed very well with the experimental q_e value (119.06 344 mg g^{-1}). 345

346 3.5 Adsorption isotherms

347 The adsorption isotherms of Pb(II) ions onto Fe₃O₄(*a*)SiO₂-mPD/SP(95:5) and 348 Cr(VI) ions on Fe₃O₄(*a*)SiO₂-mPD/SP(50:50) were shown in Fig. 9a and 9b. The 349 Langumir and Freundlich isotherm models were employed to describe the adsorption 350 isotherms. The parameters of the isotherm models obtained from the corresponding fittings were listed in Table 2, where q_m represented the adsorption capacity, the 351 352 Langmuir constant $(k_{\rm L})$ represented the affinity between the adsorbent and adsorbate, 353 the Freundlich constant $(k_{\rm F})$ indicated the adsorption capacity, and n was the 354 adsorption equilibrium constant related to adsorption intensity. Apparently, adsorption 355 behaviors of Pb(II) ions by Fe₃O₄@SiO₂-mPD/SP(95:5) and Cr(VI) ions by 356 Fe₃O₄@SiO₂-mPD/SP(50:50) were both better described by Freundlich model, which obtained a higher correlation coefficient than Langumir isotherms. The values of $k_{\rm F}$ 357 $(48.37, 59.56 \text{ mg}^{(1-1/n)} \text{ L}^{1/n} \text{ g}^{-1})$ and n (8.539, 5.968) indicated the easy separation of 358 Pb(II) and Cr(VI) from liquid phase and favourable adsorption process $(1 \le n \le 10)^{48}$. 359

360

- <Fig 9 about here>
- *<Table 2 about here>* 361

362 **3.6 Adsorption mechanism**

363 The solution pH values were observed to drop from 4.35 to 4.13 after Pb(II) 364 adsorption on $Fe_3O_4(a)SiO_2$ -mPD/SP(95:5), which signified that the deprotonation

365 reaction happens on the amino/imino and sulfonic groups on the polymer chains, 366 leading to the release of H^+ into the aqueous solution. That is to say, Pb(II) ions would be adsorbed by the protonated amino, imino, and sulfonic groups on $Fe_3O_4@SiO_2$ via 367 ion-exchange, resulting in the release of H^+ into the aqueous solution. Although the 368 solution pH values increased from 4.65 to 5.17 after Cr(VI) adsorption on 369 $Fe_3O_4@SiO_2-mPD/SP(50:50)$, the H⁺ on protonated $-NH_2$, $-NH_-$, and $-SO_3^-$ groups 370 371 could also be exchanged with the Cr(III) cation ions produced by the redox reaction^{29,49}. However, ion-exchange adsorption was not the main adsorption 372 373 mechanism due to the limited amount of available H^+ on the copolymers.

374 The FTIR spectra of the $Fe_3O_4(a)SiO_2-mPD/SP(95:5)$ and $Fe_3O_4(a)SiO_2-mPD/SP(50:50)$ before (c, d) and after (e, f) adsorption of Pb(II) and 375 Cr(VI) were presented in Fig. 3. The intensity of peaks at 1220 and 1124 cm⁻¹ were 376 377 observed to become weaker after the adsorption of Pb(II) and Cr(VI) ions, which were 378 attributed to C-N stretching on the mPD and SP benzenoid rings, respectively. It indicated that the $-N=,-NH_2$ and -NH- groups in the copolymers could chelate Pb(II) 379 380 and Cr(III) ions to form stable chelating structures, where the Cr(III) was produced by 381 the reduction reaction between the $-NH_2/-NH_2$ groups and Cr(VI) ions. Noted that a strong new peak at 1383 cm⁻¹ was observed in the FTIR spectrum of 382 Fe₃O₄@SiO₂-mPD/SP(95:5) after Pb(II) adsorption (Fig. 3e), which was the 383 characteristic peak for the stretching vibration of NO_2 in the NO_3^- ions^{50,51}. Because 384 385 NO_3^- ions was beneficial to balance the electrical charges of the adsorbed Pb(II) ions 386 on the surface of Fe_3O_4 (2)SiO₂-mPD/SP(95:5). Additionally, the introduced sulfonic 387 groups in polymers could not only chelate heavy ions, but also form a ring with adjacent imino groups^{28, 29}. Since the presence of stable chelating structures and a 388 large amount of amino/imino/sulfonic groups in the copolymers, the complexation 389

adsorption was the main adsorption mechanism.

391 10a Fig. shows the typical wide XPS spectra of scan 392 Fe₃O₄@SiO₂-mPD/SP(50:50) before and after Cr(VI) adsorption. After Cr(VI) 393 adsorption, new peaks around 580 eV emerged, which was designated to the 394 photoelectron peaks of chromium, indicating the successful uptake of chromium on the Fe₃O₄@SiO₂-mPD/SP(50:50) surface⁵². Detailed XPS survey on the region of 395 396 Cr2p was presented in Fig. 10b. Since the photoelectron peaks for Cr 2p 3/2 and 2p 397 1/2 centered at 577.1 and 586.8 eV, it was confirmed that Cr(III) ions was the predominant chromium species on the surface⁵³⁻⁵⁵. Because the amino and imino 398 399 groups with strong reducibility could convert Cr(VI) into Cr(III) via a reduction 400 reaction. Fig. 11a shows the variation of the total Cr and Cr(VI) residual concentration 401 in the solutions with adsorption time. It can be observed that Cr(III) indeed formed 402 upon adding the Fe₃O₄(a)SiO₂-mPD/SP(50:50) nanocomposites into the Cr(VI) 403 solution, which indicated the occurrence of a redox reaction between the amino/imino 404 groups as reductant and Cr(VI) ions as oxidant. That is to say, some of Cr(VI) were 405 reduced to Cr(III) ions. FTIR spectra of Fe₃O₄@SiO₂-mPD/SP(50:50) before and after 406 Cr(VI) adsorption are given in Fig. 3. After Cr(VI) adsorption, the intensity ratio of 1622 cm⁻¹ over 1514 cm⁻¹ became higher, which were associated with the stretching 407 408 of quinoid and benzenoid rings, respectively. Thus, it indicated that a part conversion 409 from benzenoid to quinoid structure because of a redox sorption of Cr(VI) on the 410 nanoparticles. The variation of residual concentration of total Cr and Cr(VI) with 411 adsorption time on Fe_3O_4 and Fe_3O_4 (2)SiO₂ was also investigated. As shown in Fig. 412 11b, although the Cr(VI) could be reduced to Cr(III) by Fe(II), only a small amount of 413 iron ions were leached out to the solution after Fe₃O₄ were coated with a SiO₂ layer 414 and a polymer layer, which could be ignored.

415	<fig 10="" about="" here=""></fig>
416	< <i>Fig 11 about here</i> >
417	At an initial solution of pH 4.65, the major Cr(VI) species (HCrO ₄ ⁻ and Cr ₂ O ₇ ²⁻
418	anions) could be adsorbed onto the copolymer through a strong electrostatic attraction
419	between chromium anions and protonated amino/imino groups ($-NH_3^+-/-NH_2^+-$).
420	After adsorption, sorbents were washed with deionized water and then separated by
421	centrifugation for a few minutes. Consequently, the Pb(II) and Cr(VI) ions could be
422	detected in the supernatants, which indicated that physical adsorption of Pb(II) and
423	Cr(VI) on Fe ₃ O ₄ @SiO ₂ -mPD/SP existed but was not very prominent.
424	In summary, the probable adsorption mechanisms involved in this process
425	included: ion-exchange, complexation adsorption, reduction reaction, electrostatic
426	attraction and physical adsorption, as shown in Fig. 12.
427	< <i>Fig 12 about here></i>

428 **4. Conclusions**

429 Novel Fe₃O₄@SiO₂-mPD/SP nanocomposites with high saturation magnetization 430 and thermal stability were successfully synthesized and employed for the selective 431 removal of Pb(II) and Cr(VI) ions from aqueous solutions. The adsorption of Pb(II) 432 and Cr(VI) ions by Fe₃O₄@SiO₂-mPD/SP nanocomposites was found to be highly 433 dependent on mPD/SP feed ratio. Fe₃O₄@SiO₂-mPD/SP(95:5) was the most efficient 434 nanocomposites for Pb(II) adsorption with a fast adsorption equilibrium time (5 min), 435 while $Fe_3O_4(@SiO_2-mPD/SP(50:50))$ showed the maximum adsorption capacity for Cr(VI) ions. The Fe₃O₄(a/SiO₂-mPD/SP(95:5) and Fe₃O₄(a/SiO₂-mPD/SP(50:50) 436 nanocomposites could be employed to efficiently and selectively remove Pb(II) and 437

438	Cr(VI) from their mixtures with Cu(II) and Ni(II) ions, respectively. Both of the
439	adsorption data fitted well to Freundlich isotherm model, and also agreed well with
440	pseudo-second-order kinetics model. The maximum adsorption capacities of Pb(II)
441	onto $Fe_3O_4@SiO_2-mPD/SP(95:5)$ and $Cr(VI)$ on $Fe_3O_4@SiO_2-mPD/SP(50:50)$ were
442	calculated to be 83.23 and 119.06 mg g ⁻¹ , respectively. The adsorption mechanism of
443	Pb(II) and Cr(VI) on Fe ₃ O ₄ @SiO ₂ -mPD/SP nanocomposites included: complexation
444	adsorption, reduction reaction, ion-exchange, electrostatic attraction and physical
445	adsorption. The complexation adsorption was considered to be the primary adsorption
446	mechanism for Pb(II) removal, while the complexation adsorption and reduction
447	reaction were the main adsorption mechanisms for Cr(VI).

448 Acknowledgments

The authors acknowledge the financial support of the National Natural Science
Foundation (No. 21477108, No. 21277119) and the Science and Technology Project
of Zhejiang Province, China (No. 2012C23061).

452 **References**

- 453 1 F. Miyaji, S. Masuda, and Y. Suyama, J. Ceram. Soc. Jpn., 2010, 118, 1062-1066.
- 454 2 A. Demirbas, J. Hazard. Mater., 2008, 157, 220-229.
- 455 3 A. Chojnacki, K. Chojnacka, J. Hoffmann, and H. Gorecki, *Miner. Eng.*, 2004, 17,
 456 933-937.
- 457 4 S. Babel, and T. A. Kurniawan, J. Hazard. Mater., 2003, 97, 219-243.

- 458 5 P. A. Brown, S. A. Gill, and S. J. Allen, *Water Res.*, 2000, **34**, 3907-3916.
- 459 6 R. Wang, S. H. Guan, A. N. Sato, X. Wang, Z. Wang, R. Yang, B. S. Hsiao and B.
- 460 Chu, J. Membrane Sci., 2013, **446**, 376-382.
- 461 7 R. Yang, K. B. Aubrecht, H. Y. Ma, R. Wang, R. B. Grubbs, B. S. Hsiao and B. Chu,
- 462 *Polymer*, 2014, **55**, 1167-1176.
- 463 8 P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C.
- 464 Huang, G. X. Xie, and Z. F. Liu, *Sci. Total Environ.*, 2012, **424**, 1-10.
- 465 9 N. N. Nassar, J. Hazard. Mater., 2010, 184, 538-546.
- 466 10 J. Hu, G. H. Chen, and I. Lo, *Water Res.*, 2005, **39**, 4528-4536.
- 467 11 S. Tang, and I. Lo, *Water Res.*, 2013, **47**, 2613-2632.
- 468 12 Y. F. Shen, J. Tang, Z. H. Nie, Y. D. Wang, Y. Ren, and L. Zuo, Bioresour. Technol.,
- 469 2009, **100**, 4139-4146.
- 470 13 J. M. Zhang, S. R. Zhai, S. Li, Z. Y. Xiao, Y. Song, Q. D. An, and G. Tian, Chem.
- 471 *Eng. J.*, 2013, **215-216**, 461-471.
- 472 14 J. H. Wang, S. R. Zheng, Y. Shao, J. L. Liu, Z. Y. Xu, and D. Q. Zhu, J. Colloid
- 473 *Interface Sci.*, 2010, **349**, 293-299.
- 474 15 Y. Q. Tan, M. Chen, and Y. M. Hao, *Chem. Eng. J.*, 2012, **191**, 104-111.
- 475 16 S. H. Huang, and D. H. Chen, J. Hazard. Mater., 2009, 163, 174-179.
- 476 17 F. Zhang, J. Lan, Z. S. Zhao, Y. Yang, R. Q. Tan, and W. J. Song, J. Colloid
- 477 *Interface Sci.*, 2012, **387**, 205-212.
- 478 18 S. Singh, K. C. Barick, and D. Bahadur, J. Hazard. Mater., 2011, 192, 1539-1547.
- 479 19 O. Hakami, Y. Zhang, and C. J. Banks, *Water Res.*, 2012, 46, 3913-3922.

- 480 20 W. Yantasee, C. L. Warner, T. Sangvanich, R. S. Addleman, T. G. Carter, R. J.
- 481 Wiacek, G. E. Fryxell, C. Timchalk, and M. G. Warner, *Environ. Sci. Technol.*,
 482 2007, 41, 5114-5119.
- 483 21 Z. G. Feng, S. Zhu, D. de Godoi, A. Samia, and D. Scherson, Anal. Chem., 2012,
- **84**, 3764-3770.
- 485 22 J. F. Liu, Z. S. Zhao, and G. B. Jiang, *Environ. Sci. Technol.*, 2008, **42**, 6949-6954.
- 486 23 Y. J. Jin, F. Liu, M. P. Tong, and Y. L. Hou, J. Hazard. Mater., 2012, 227, 461-468.
- 487 24 Z. Q. Wang, D. Y. Wu, G. H. Wu, N. N. Yang, and A. G. Wu, J. Hazard. Mater.,
- 488 2013, **244-245**, 621-627.
- 489 25 Q. F. Lu, M. R. Huang, and X. G. Li, Chem. Eur. J., 2007, 13, 6009-6018.
- 490 26 I. B. Kim, B. Erdogan, J. N. Wilson, and U. Bunz, *Chem. Eur. J.*, 2004, 10,
 491 6247-6254.
- 492 27 X. G. Li, M. R. Huang, W. Duan, and Y. L. Yang, *Chem. Rev.*, 2002, 102,
 493 2925-3030.
- 494 28 X. G. Li, H. Feng, and M. R. Huang, Chem. Eur. J., 2009, 15, 4573-4581.
- 495 29 M. R. Huang, H. J. Lu, and X. G. Li, J. Mater. Chem., 2012, 22, 17685-17699.
- 496 30 Y. S. Kang, S. Risbud, J. F. Rabolt, and P. Stroeve, *Chem. Mater.*, 1996, **8**, 2209.
- 497 31 Y. Cheng, R. Q. Tan, W. Y. Wang, Y. Q. Guo, P. Cui, and W. J. Song, *J. Mater. Sci.*,
 498 2010, 45, 5347-5352.
- 499 32 T. Z. Yang, C. M. Shen, Z. Li, H. R. Zhang, C. W. Xiao, S. T. Chen, Z. C. Xu, D.
- 500 X. Shi, J. Q. Li, and H. J. Gao, J. Phys. Chem. B, 2005, 109, 23233-23236.
- 501 33 R. Y. Hong, T. T. Pan, and H. Z. Li, J. Magn. Mater., 2006, 303, 60-68.

- 502 34 J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein, and A. G. Macdiarmid, J. Am.
- 503 *Chem. Soc.*, 1991, **113**, 2665-2671.
- 504 35 X. G. Li, R. Liu, and M. R. Huang, Chem. Mater., 2005, 17, 5411-5419.
- 36 M. T. Nguyen, P. Kasai, J. L. Miller, and A. F. Diaz, *Macromolecules*, 1994, 27,
 3625-3631.
- 507 37 Y. T. Xu, L. Z. Dai, J. F. Chen, J. Y. Gal, and H. H. Wu, *Eur. Polym. J.*, 2007, 43,
 508 2072-2079.
- 509 38 F. Ge, M. M. Li, H. Ye, and B. X. Zhao, J Hazard. Mater., 2012, 211, 366-372.
- 510 39 B. Guo, F. Deng, Y. Zhao, X. Luo, S. Luo, and C. Auc, *Appl. Surf. Sci.*, 2014, 292,
 511 438-446.
- 512 40 P. Xu, G. M. Zeng, D. L. Huang, C. Lai, M. H. Zhao, Z. Wei, N. J. Li, C. Huang,
- 513 and G. X. Xie, *Chem. Eng. J.*, 2012, **203**, 423-431.
- 514 41 L. L. Fan, C. N. Luo, M. Sun, X. J. Li, and H. M. Qiu, Colloid. Surface. B, 2013,
- **103**, 523-529.
- 42 A. Idris, N. Ismail, N. Hassan, E. Misran, and A. F. Ngomsik, J. Ind. Eng. Chem.,
- 517 2012, **18**, 1582-1589.
- 518 43 Y. S. Ho, J. Hazard. Mater., 2006, **136**, 681-689.
- 519 44 Y. S. Ho, and G. McKay, *Water Res.*, 1999, **33**, 578-584.
- 45 M. Yurdakoc, Y. Seki, S. Karahan, and K. Yurdakoc, J. Colloid Interface Sci., 2005,
- **286**, 440-446.
- 522 46 F. C. Wu, R. L. Tseng, and R. S. Juang, *Water Res.*, 2001, **35**, 613-618.
- 523 47 Z. Aksu, Sep. Purif. Technol., 2001, 21, 285-294.

- 524 48 P. Figueira, C. B. Lopes, A. L. Daniel-da-Silva, E. Pereira, A. C. Duarte, and T.
- 525 Trindade, *Water Res.*, 2011, **45**, 5773-5784.
- 526 49 N. Akhtar, M. Iqbal, S. I. Zafar, and J. Iqbal, J. environ. sci.-China, 2008, 20,
- 527 **231-239**.
- 528 50 M. Takafuji, S. Ide, H. Ihara, and Z. H. Xu, *Chem. Mater.*, 2004, 16, 1977-1983.
- 529 51 C. K. Liu, R. B. Bai, and Q. S. Ly, *Water Res.*, 2008, 42, 1511-1522.
- 530 52 A. R. Pratt, and N. S. McIntyre, *Surf. Interface Anal.*, 1996, 24, 529-530.
- 531 53 N. Fiol, C. Escudero, and I. Villaescusa, *Bioresource Technol.*, 2008, 99,
 5030-5036.
- 533 54 X. Q. Li, J. S. Cao, and W. X. Zhang, Ind. Eng. Chem. Res., 2008, 47, 2131-2139.
- 534 55 Y. C. Li, Z. H. Jin, T. L. Li, and Z. M. Xiu, Sci. Total Environ., 2012, 421, 260-266.

536	Captions
537	Table 1 Kinetics model equations for Pb(II) and Cr(VI) adsorption on
538	Fe ₃ O ₄ @SiO ₂ -mPD/SP(95:5) and Fe ₃ O ₄ @SiO ₂ -mPD/SP(50:50).
539	Table 2 Parameters of adsorption isotherms of Pb(II) and Cr(VI) adsorption on
540	Fe ₃ O ₄ @SiO ₂ -mPD/SP(95:5) and Fe ₃ O ₄ @SiO ₂ -mPD/SP(50:50).
541	Fig. 1 XRD patterns of (a) Fe ₃ O ₄ , (b) Fe ₃ O ₄ @SiO ₂ , (c) Fe ₃ O ₄ @SiO ₂ -mPD/SP(95:5)
542	and (d) Fe ₃ O ₄ @SiO ₂ -mPD/SP(50:50).
543	Fig. 2 TEM images of (a) Fe ₃ O ₄ , (b) Fe ₃ O ₄ @SiO ₂ , (c) Fe ₃ O ₄ @SiO ₂ -mPD/SP(95:5)
544	and (d) $Fe_3O_4@SiO_2-mPD/SP(50:50)$.
545	Fig. 3 FTIR spectra of (a) Fe ₃ O ₄ , (b) Fe ₃ O ₄ @SiO ₂ , (c) Fe ₃ O ₄ @SiO ₂ -mPD/SP(95:5),
546	(d) $Fe_3O_4@SiO_2-mPD/SP(50:50)$, (e) $Fe_3O_4@SiO_2-mPD/SP(95:5)$ after
547	adsorption of Pb(II), and (f) Fe ₃ O ₄ @SiO ₂ -mPD/SP(50:50) after adsorption of
548	Cr(VI).
549	Fig. 4 TGA curves of $Fe_3O_4@SiO_2-mPD/SP(95:5)$ and $Fe_3O_4@SiO_2-mPD/SP(50:50)$.
550	Fig. 5 Magnetization curves of Fe ₃ O ₄ , Fe ₃ O ₄ @SiO ₂ , Fe ₃ O ₄ @SiO ₂ -mPD/SP(95:5) and
551	$Fe_3O_4@SiO_2-mPD/SP(50:50).$
552	Fig. 6 (a) Pb(II) adsorptivity at an initial Pb(II) concentration of 100 mg L ⁻¹ , (b) Cr(VI)
553	adsorptivity at an initial Cr(VI) concentration of 150 mg L^{-1} with the same 1 g
554	L ⁻¹ Fe ₃ O ₄ @SiO ₂ -mPD/SP nanocomposites at 30°C for 24h.
555	Fig. 7 Selective adsorption of Pb(II) and Cr(VI) onto Fe ₃ O ₄ @SiO ₂ -mPD/SP
556	nanocomposites: (a) adsorption of Cr(VI), Cu(II) and Ni(II) by
557	Fe ₃ O ₄ @SiO ₂ -mPD/SP (50:50) at an initial single ion concentration of 100 mg
558	L ⁻¹ , (b) adsorption of Cr(VI), Cu(II) and Ni(II) onto Fe ₃ O ₄ @SiO ₂ -mPD/SP
559	(50:50) at an initial single ion concentration of 150 mg L^{-1} with the same 1 g
560	L^{-1} Fe ₃ O ₄ @SiO ₂ -mPD/SP nanocomposites at 30°C.

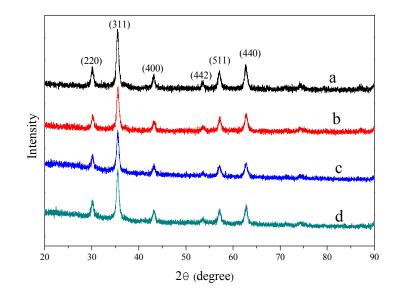
Inuscript
ted Ma
ces Acc
RSC Advan

561	Fig. 8 Effect of contact time on Pb(II) adsorption onto Fe ₃ O ₄ @SiO ₂ -mPD/SP(95:5)
562	(a), and Cr(VI) adsorption on Fe ₃ O ₄ @SiO ₂ -mPD/SP(50:50) (b). Pb(II) initial
563	concentration = 100 mg L^{-1} , Cr(VI) initial concentration = 150 mg L^{-1} ,
564	$Fe_3O_4@SiO_2-mPD/SP$ nanocomposites = 1 g L ⁻¹ , 30°C.
565	Fig.9 Equilibrium isotherm for the Pb(II) adsorption onto Fe ₃ O ₄ @SiO ₂ -mPD/SP(95:5)
566	(a), and Cr(VI) adsorption on $Fe_3O_4@SiO_2-mPD/SP(50:50)$ (b) with the same
567	1 g L ⁻¹ Fe ₃ O ₄ @SiO ₂ -mPD/SP nanocomposites at 30°C. The inset illustrates
568	the linear dependence of logq _e on logc _e .
569	Fig. 10 XPS wide survey for Fe ₃ O ₄ @SiO ₂ -mPD/SP(50:50) before and after Cr(VI)
570	adsorption (a). High-resolution XPS survey of Cr2p (b).
571	Fig. 11 (a) The variation of residual concentration of total Cr and Cr(VI) with
572	adsorption time onto $Fe_3O_4@SiO_2-mPD/SP(50:50)$. (b) The variation of
573	residual concentration of total Cr and Cr(VI) with adsorption time onto Fe_3O_4
574	and Fe ₃ O ₄ @SiO ₂ .
575	Fig. 12 The possible Pb(II) and Cr(VI) adsorption mechanism on
576	$Fe_3O_4@SiO_2-mPD/SP$ nanocomposites.

578 Table 1 Kinetics model equations for Pb(II) and Cr(VI) adsorption on

Kinetics models	Equation	Correlation	Rate constant(k)	q _{e,cal}	q _{e,exp}
		coefficient			
Pb(II) adsorption of	n Fe ₃ O ₄ @SiO ₂ -mPD/SP(95:5)				
Pseudo-2nd-order	$t/q_t = 0.01201t + 2.32 \times 10^{-4}$	1	k ₂ =0.6217	83.26	83.23
Cr(VI) adsorption of	on Fe ₃ O ₄ @SiO ₂ -mPD/SP(50:50)				
Pseudo-1st-order	$\ln(q_e - q_t) = 3.81072 - 0.00115t$	0.8092	$k_1 = 1.15 \times 10^{-3}$	/	/
Pseudo-2nd-order	$t/q_t = 0.00835t + 0.03945$	0.9997	$k_2=1.77\times10^{-3}$	119.76	119.06
$a_{q_{e,cal}} = (mg g^{-1}), k$	$k_1 = (\min^{-1})$, and $k_2 = (g mg^{-1} min^{-1})$.				

579 Fe₃O₄@SiO₂-mPD/SP(95:5) and Fe₃O₄@SiO₂-mPD/SP(50:50).

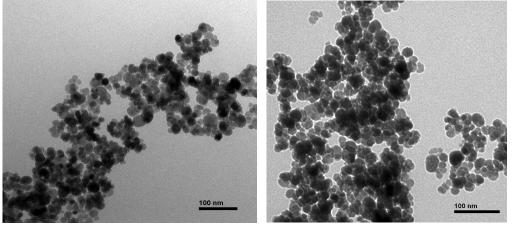

580

582 Table 2 Parameters of adsorption isotherms of Pb(II) and Cr(VI) adsorption onto

Metal ions	Langmuir			Freundlich		
	$K_L(L mg^{-1})$	$q_m (mg g^{-1})$	R^2	$K_F(mg^{1-(1/n)}L^{1/n}g^{-1})$	n	R^2
Pb(II)	0.2418	86.43	0.8891	48.37	8.539	0.9980
Cr(VI)	0.04926	158.73	0.9504	59.56	5.968	0.9976

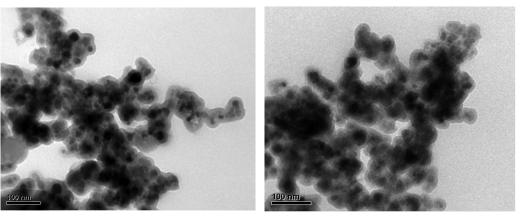
583 $Fe_3O_4@SiO_2-mPD/SP(95:5)$ and $Fe_3O_4@SiO_2-mPD/SP(50:50)$.

584



587

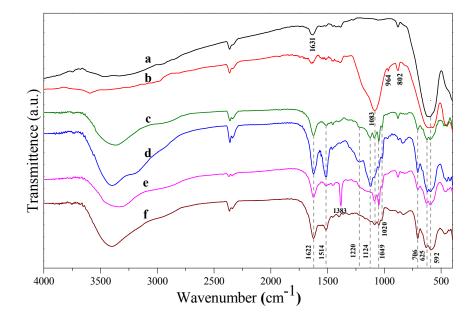
588 **Fig. 1** XRD patterns of (a) Fe₃O₄, (b) Fe₃O₄@SiO₂, (c) Fe₃O₄@SiO₂-mPD/SP(95:5)

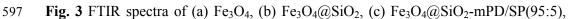

589 and (d) Fe₃O₄@SiO₂-mPD/SP(50:50).

590

(a)

(b)

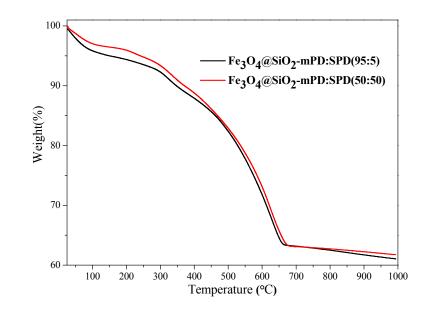



(c)

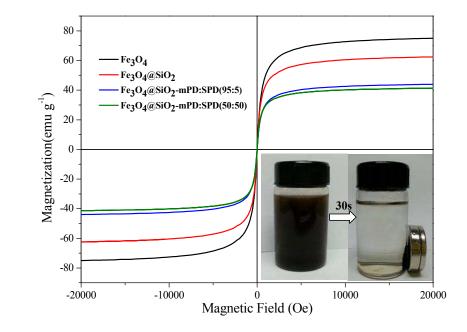
(d)

592 **Fig. 2** TEM images of (a) Fe₃O₄, (b) Fe₃O₄@SiO₂, (c) Fe₃O₄@SiO₂-mPD/SP(95:5)

593 and (d) Fe₃O₄@SiO₂-mPD/SP(50:50).

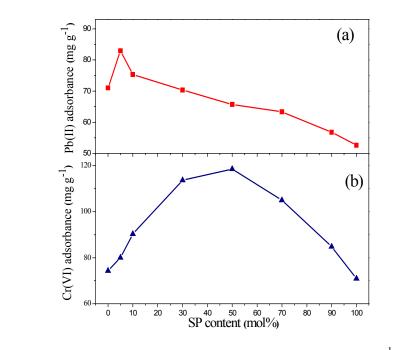


598 (d) Fe₃O₄@SiO₂-mPD/SP(50:50), (e) Fe₃O₄@SiO₂-mPD/SP(95:5) after adsorption of

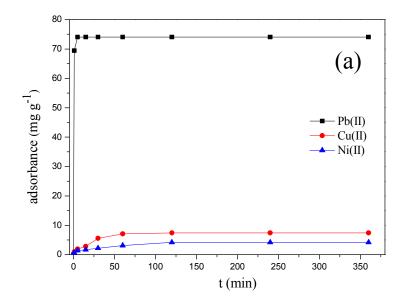

599 Pb(II), and (f) Fe₃O₄@SiO₂-mPD/SP(50:50) after adsorption of Cr(VI).

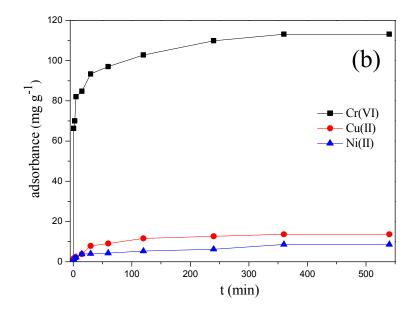
600

602



606


607 Fig. 5 Magnetization curves of Fe₃O₄, Fe₃O₄@SiO₂, Fe₃O₄@SiO₂-mPD/SP(95:5) and


608 Fe₃O₄@SiO₂-mPD/SP(50:50).

611

Fig. 6 (a) Pb(II) adsorptivity at an initial Pb(II) concentration of 100 mg L⁻¹, (b) Cr(VI) adsorptivity at an initial Cr(VI) concentration of 150 mg L⁻¹ with the same 1 g L⁻¹ Fe₃O₄@SiO₂-mPD/SP nanocomposites at 30°C for 24h.

616 Fig. 7 Selective adsorption of Pb(II) and Cr(VI) onto Fe₃O₄@SiO₂-mPD/SP 617 nanocomposites: (a) adsorption of Pb(II), Cu(II) and Ni(II) by $Fe_3O_4(a)SiO_2$ -mPD/SP(95:5) at an initial single ion concentration of 100 mg L⁻¹, (b) 618 619 adsorption of Cr(VI), Cu(II) and Ni(II) onto Fe₃O₄@SiO₂-mPD/SP(50:50) at an initial single ion concentration of 150 mg L⁻¹, with the same 1 g L⁻¹ Fe₃O₄@SiO₂-mPD/SP 620 621 nanocomposites at 30°C.

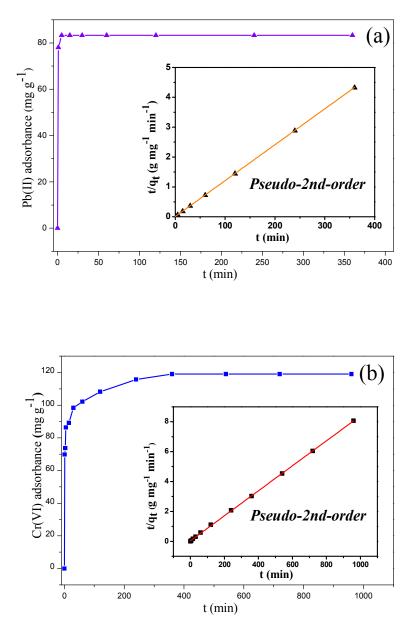


Fig. 8 Effect of contact time on Pb(II) adsorption onto $Fe_3O_4@SiO_2-mPD/SP(95:5)$ (a), and Cr(VI) adsorption on $Fe_3O_4@SiO_2-mPD/SP(50:50)$ (b). Pb(II) initial concentration = 100 mg L⁻¹, Cr(VI) initial concentration = 150 mg L⁻¹, Fe_3O_4@SiO_2-mPD/SP nanocomposites = 1 g L⁻¹, 30°C.

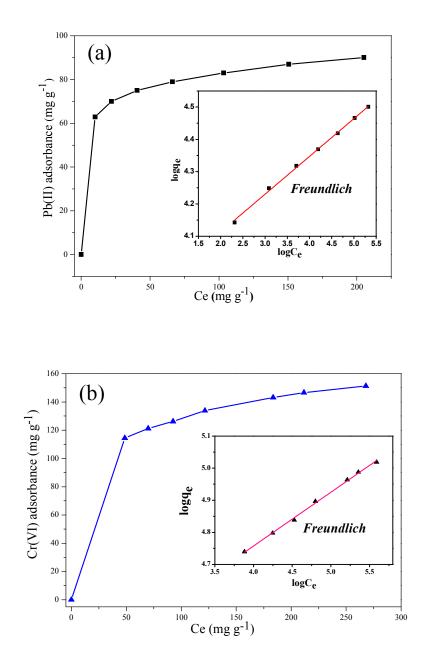
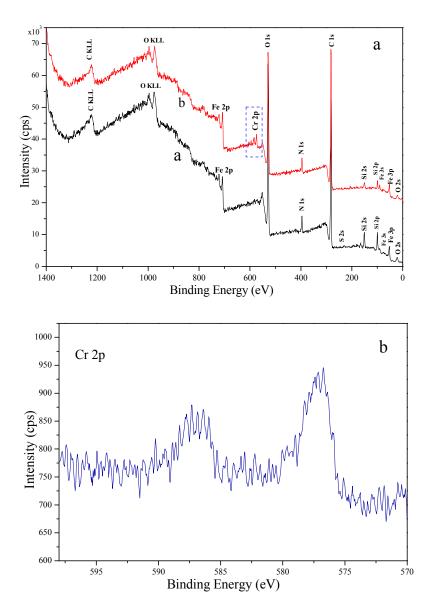



Fig. 9 Equilibrium isotherm for the Pb(II) adsorption onto $Fe_3O_4@SiO_2-mPD/SP(95:5)$ (a), and Cr(VI) adsorption on $Fe_3O_4@SiO_2-mPD/SP(50:50)$ (b) with the same 1 g L⁻¹ Fe₃O₄@SiO₂-mPD/SP nanocomposites at 30°C. The inset illustrates the linear dependence of logge on logce.

633 Fig. 10 XPS wide survey for Fe₃O₄@SiO₂-mPD/SP(50:50) before and after Cr(VI)

adsorption (a). High-resolution XPS survey of Cr2p (b).

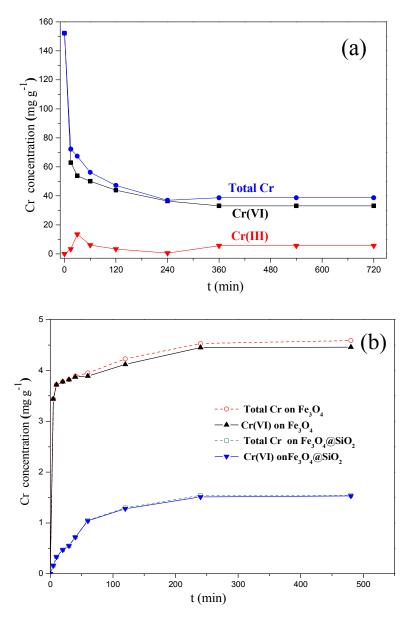


Fig. 11 (a) The variation of residual concentration of total Cr and Cr(VI) with adsorption time onto $Fe_3O_4@SiO_2-mPD/SP(50:50)$. (b) The variation of residual concentration of total Cr and Cr(VI) with adsorption time onto Fe_3O_4 and $Fe_3O_4@SiO_2$.

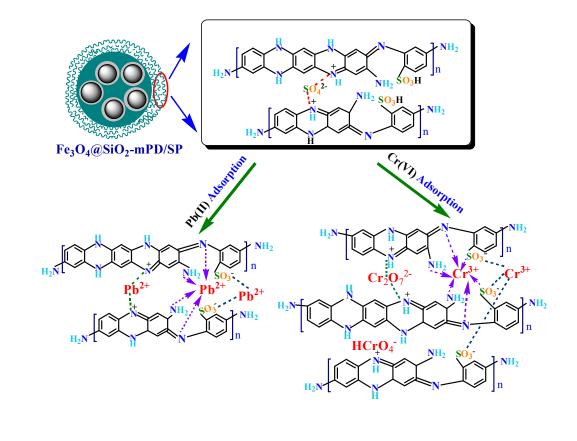


Fig. 12 The possible Pb(II) and Cr(VI) adsorption mechanism on
Fe₃O₄@SiO₂-mPD/SP nanocomposites.