RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Organocatalytic Domino Michael/Cyclization Reaction: Efficient Synthesis of Multi-functionalized Tetracyclic Spirooxindoles with Multiple Stereocenters

Zu-Kang Fu, Jin-Yun Pan, Dong-Cheng Xu, Jian-Wu Xie

A series of chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c]pyrrole-1,3'-indoline] derivatives with four vicinal chiral carbon centers including two quaternary stereocenters were successfully prepared via domino reaction of various 3-nitro-2H-chromene derivatives to 3-isothiocyanato oxindole with moderate to good enantioselectivities, employing readily available bifunctional thiourea **1d** as the organocatalyst.

ARTICLE TYPE

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Organocatalytic Domino Michael/Cyclization Reaction: Efficient Synthesis of Multi-functionalized Tetracyclic Spirooxindoles with Multiple Stereocenters

Zu-Kang Fu,^{† a} Jin-Yun Pan,^{† a} Dong-Cheng Xu,^a Jian-Wu Xie*,^a

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

The asymmetric domino reaction of various 3-nitro-2*H*-chromene derivatives **2** to 3-isothiocyanato oxindole **3** with moderate to good enantioselectivities, employing readily available bifunctional thiourea **1d** as the organocatalyst, was described. A series of chiral multi-functionalized tetracyclic ¹⁰ spiro[chromeno[3,4-*c*] pyrrole-1,3'-indoline] derivatives with four vicinal chiral carbon centers including two quaternary stereocenters were successfully prepared. Notably, the products **5** could be cleanly

converted to the compounds 4 in ethanol under mild conditions.

Introduction

Spirocyclic compounds are recognized as important ¹⁵ precursors for the easy access of a variety of cyclic products by rearrangement reaction due to their steric strain associated with the quaternary carbon.¹ Development of novel synthetic methods for the construction of new spirocyclic compounds represents a major challenge in synthetic organic and

- ²⁰ medicinal chemistry.² Recently, the highly functionalized spirocyclic oxindoles have drawn tremendous interest of researchers³ in the area of synthetic organic chemistry as well as medicinal chemistry worldwide because they occur in many natural products and have been reported to have various types
- ²⁵ of bioactivity.⁴ Due to their significant and varied biological activities design and development of novel methods for the construction of functionalized spirooxindoles have drawn remarkable interest from the synthetic, organic as well as medicinal chemists.⁵ Recently, 3-isothiocyanato oxindoles
- ³⁰ emerged as the most attractive reactants in organocatalytic cascade Aldol/cyclization reactions,⁶ Michael/cyclization reactions,⁷ Manich/cyclization reactions⁸ and [3+2] cyclization⁹ for the synthesis of the highly functionalized spirocyclic oxindoles. From the literature we realized that
- ³⁵ benzopyran scaffolds exhibit a wide range of biological activities such as anti-cancer, diuretic, anticoagulant, and antianaphylactic activity.^[10-12]. Recently, chiral multifunctionalized tetracyclic benzopyran derivatives have been prepared from 3-nitro-2*H*-chromenes in our group (Eq. 1,
- ⁴⁰ Scheme 1).¹³ To the best of our knowledge there is no method reported for the asymmetric synthesis of chiral multifunctionalized tetracyclic spiro[chromeno[3,4- c]pyrrole-1,3'indoline] derivatives from the cascade reaction of 3isothiocyanato oxindoles and 3-nitro-2*H*-chromenes. In ⁴⁵ continuation of our efforts towards the development of

functionalized heterocycles using domino reactions, we envisioned that chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c]pyrrole-1,3'-indoline] derivatives with four vicinal chiral carbon centers including two quaternary so stereocenters could be synthesized by domino reaction of 3isothiocyanato oxindoles and 3-nitro-2*H*-chromenes in the presence of organocatalyst (Eq. 2, Scheme 1).

55 Scheme 1. General strategy for the synthesis of tetracyclic spirooxindoles

Results and discussion

Organocatalytic asymmetric reactions have been used as a powerful tool for the synthesis of enantiopure molecules with ⁶⁰ multiple stereocenters by employing either a single catalyst or a combination of catalysts under mild, environmentally benign conditions over the past decades.¹⁴ To evaluate this hypothesis, 3-nitro-2*H*-chromene **2a** and 3-isothiocyanato oxindole **3a** were first applied. A few representative results are shown in Table 1. ⁶⁵ To our surprise, the domino reaction was completed *within one minute* when the reaction was carried out in the presence of the organocatalysts in DCM at -50 °C, while the diastereoselectivity was poor. To our delight, the chiral multi-functionalized tetracyclic spiro[chromeno[3,4-*c*]pyrrole-1,3'-indoline]

derivatives **4aa** and **5aa** were easily isolated by column chromatography. Both cinchona alkaloids and bifunctional thioureas have appeared to be efficient organocatalysts in asymmetric transformations since the basic tertiary nitrogen of *s* cinchona alkaloids could activate nucleophiles by deprotonation,

- whereas the secondary hydroxyl group or thiourea moiety would serve as hydrogen-bonding donor in the activation of electrophiles such as α,β -unsaturated carbonyl compounds or nitroalkenes. As such, quinine **1a** and cinchonine **1b** were firstly
- ¹⁰ screened, high yields were obtained while the ees were poor to moderate (Table 1, entries 1-2). Similar results were obtained when the domino reaction was catalyzed by 1c (Table 1, entry 3). Subsequently, the bifunctional thioureas 1d-1h which have appeared to be efficient organocatalysts for asymmetric
- ¹⁵ additions,¹⁵ exhibited a higher catalytic activity when the domino reaction was carried out at -50 °C *within one minute* (Table 1, entries 4-8). To our surprise, organocatalyst 1d, derived from quinine, was proved to be superior to 1e in this domino reaction, and products were obtained with up to 78% ee (Table 1, entry 4).
- ²⁰ High yields were obtained when the domino reaction was catalyzed by other thiourea-tertiary amines **1f-1h** while the enantioselectivities were somewhat low. The effect of catalyst loading on reaction efficiency has been evaluated (Table 1, entries 9-11). While 10 mol % of thiourea-tertiary amine **1d** was
- ²⁵ routinely employed in this investigation, it appears that catalyst loadings as low as 5 mol % provide better enantioselectivity (Table 1, entry 10).

Scheme 2. Organocatalysts 1a-1h

30 Table 1. Catalyst Screening.^{a)}.

2a	NO₂ Ph + [NCS NCS CH ₃ 3a	10 mo/% cat. 50°C, DCM, 1mim. 4aa	$\begin{array}{c} & & & & \\ & & & \\$
Entry	Cat.	Time	Yield% ^{b)} /Ee ^{c)} (4aa)	Yield% ^{b)} /Ee ^{c)} (5aa)
1	1a	1min.	48/61	39/-32
2	1b	1min.	45/30	36/05
3	1c	1min.	57/37	37/04
4	1d	1min.	49/-78	43/72
5	1e	1min.	47/75	39/60
6	1f	1min.	52/70	40/50
7	1g	1min.	53/-36	36/13

8	1h	1min.	47/60	41/10
9 ^{d)}	1d	1min.	40/76	31/69
10 ^{e)}	1d	1min.	49/80	43/70
11 ^{f)}	1d	1min.	51/78	43/72

^{a)}Reaction conditions: 0.24 mmol of **2a**, 0.10 mmol of **3a**, 10 mol% of cat in 1 mL DCM at -50 °C for 1 min..^{b)} Isolated yield; ^{c)} Determined by chiral HPLC analysis.^{d)} 1 mol% of **1d** was added.^{e)} 5 mol% **1d** of was added.^{f)} 15mol% of **1d** was added.

Subsequently, we investigated the effects of solvent on the reactivity, and most commonly used solvents are compatible with our asymmetric conditions and afforded high yields (total yields: 35 80-95%) with varied enantioselectivities (Table 2, entries 1-9). The reaction in a polar solvent such as THF, ethanol and ether, afforded the desired products with somewhat lower enantioselectivities (entries 3-5). After solvents were screened, chloroform turned out to be optimal to give the products in higher 40 enantioselectivities, we decreased the reaction concentration from 1.0 to 0.5 M. As a result, a better enantiomeric excess was achieved (entry 7) within one minute. The ee was decreased when the temperature was elevated, as well 45 as when the concentration was reduced to 0.25 M (entries 8-9).

⁴⁵ as when the concentration was reduced to 0.25 M (entries 8-9). Based on the above screening, the optimal reaction conditions: 0.24 equiv of 2 and 1.0 equiv of 3a in chloroform with 5 mol% of catalyst 1d at -50 °C were established.

Table 2. Optimization of reaction conditions.^{a)}.

C 2a	Ph + NO_2 Ph + NO_2 NO	NCS →=0_ <u>10 mo/% 1d</u> -50°C, DCM, 1mim. CH ₃	$\begin{array}{c} & & \\$	N N N N NO2 O H B Saa
Entry	Solvent	Yield ^b /Ee ^{c)} (4aa)	Yield ^{b)} /Ee ^{c)} (5	aa)
1	DCM	49/80	43/70	
2	toluene	48/65	42/48	
3	THF	48/50	44/20	
4	Ether	43/65	37/61	
5	Ethanol	45/70	39/60	
6	CHCl ₃	52/79	43/74	
7 ^{d)}	CHCl ₃	49/81	44/77	
8 ^{e)}	CHCl ₃	50/80	45/70	
9 ^{f)}	CHCl ₃	46/82	42/70	

^{a)} Reaction conditions: 0.24 mmol of **2a**, 0.10 mmol of **3a**, 5 mol% of **1d** in 1 mL Solvent at -50 °C. ^{b)} Isolated yield. ^{c)} Determined by chiral HPLC analysis. ^{d)} 0.24 mmol of **2a**, 0.10 mmol of **3a**, in 2 mL CHCl₃. ^{e)} 4 mL CHCl₃. ^{f)} -60 °C.

To test the substrate scope of domino reaction, the reaction of various 3-nitro-2H-chromene derivatives 2 with 3-isothiocyanato oxindole 3 was studied under the optimized conditions using 5 mol% of bifunctional thiourea 1d as the catalyst. The results are summarized in Table 3. As shown in Table 3, the domino 55 reaction of various 3-nitro-2H-chromene derivatives 2 with 3isothiocyanato oxindole 3 all gave high yields and good enantioselectivities of the desired products. Good enantioselectivities were obtained in the domino reaction of α, α dicyanoolefins with electron-withdrawing substituent on Ar ring 60 of 3-nitro-2H-chromene derivatives (Table 3, entries 2, 3, 5, 6).

In addition, an electron-donating substituent on Ar ring of 3-nitro-2*H*-chromene derivatives tended to increase the reactivity and enantioselectivity (Table 3, entries 7-8). 3-Nitro-2*H*-chromene derivative **2d** with electron withdrawing substituents on the ortho ⁵ position afford multi-functionalized tetracyclic spiro[chromeno[3,4-*c*]pyrrole-1,3'-indoline] derivative with

- slightly inferior enantioselectivity (Table 3, entry 4). However, it should be noted that 3-nitro-2*H*-chromene with a furanyl show no reactivity in this system, and it remains to be explored. ¹⁰ Gratifyingly, the reaction of 3-nitro-2*H*-chromene derivatives **3**
- 20 **Table 3.** The substrate scope of domino reaction ^{a)}.

with electron withdrawing substituent or electron-donating group on the R¹ group afford the desired products with a slight effect on enantioselectivities (Table 3, entries 7-11), and the enantioselectivities were up to 84%. Further exploration of the 15 substrate scope was focused on 3-isothiocyanato oxindole **3** bearing various substituents. Replace the substituent methyl with ethyl, 3-isothiocyanato oxindole **3b** showed good reactivity; excellent yields were obtained with high enantioselectivities (Table 3, entries 14-18).

		R^{1} NO_{2} Ar $+$ 2	NCS N R ² 3	D <u>10 mo/% 1d</u> -50°C, DCM, 1n	► nim. R ¹ [$\begin{array}{c} R^2 \\ O \\ H_{a_b} \\$	NH S MO ₂ Ar
Entry	\mathbb{R}^1	Ar	2	R ²	3	Yield ^{b)} /e.e.% ^{c)} 4	Yield ^{b)} /e.e.% ^{c)} 5
1	Н	Ph	2a	Me	3a	49/81 4aa	44/77 5aa
2	Н	p-BrC ₆ H ₄	2b	Me	3a	43/82 4ab	52/80 5ab
3	Н	m-BrC ₆ H ₄	2c	Me	3a	56/81 4ac	42/80 5ac
4	Н	o-BrC ₆ H ₄	2d	Me	3a	43/67 4ad	45/70 5ad
5	Н	p-ClC ₆ H ₄	2e	Me	3a	49/80 4ae	47/71 5ae
6	Н	p-FC ₆ H ₄	2f	Me	3a	47/82 4af	46/80 5af
7	Н	p-CH ₃ C ₆ H ₄	2ј	Me	3a	49/83 4ag	40/85 5aj
8	Н	p-OCH ₃ C ₆ H ₄	2k	Me	3a	3 9/83 4 ah	60/81 5ak
9	5-Br	Ph	21	Me	3a	53/83 4ai	41/51 5al
10	5-Cl	Ph	2m	Me	3a	51/84 4aj	40/51 5am
11	5-Cl	p-CH ₃ C ₆ H ₄	2n	Me	3a	49/82 4ak	37/66 5an
12	5-CH ₃	Ph	20	Me	3a	40/74 4al	47/86 5ao
13	4-OCH ₃	Ph	2p	Me	3a	45/72 4am	38/76 5ap
14	Н	Ph	2a	Et	3b	54/82 4ba	42/80 5ba
15	Н	p-BrC ₆ H ₄	2b	Et	3b	46/83 4bb	50/84 5bb
16	Н	p-FC ₆ H ₄	2f	Et	3b	46/82 4bf	47/82 5bf
17	Н	p-CH ₃ C ₆ H ₄	2j	Et	3b	45/83 4bj	48/82 5bj
18	Н	p-OCH ₃ C ₆ H ₄	2k	Et	3b	44/84 4bk	43/82 5bk

^{a)} Otherwise noted, reactions performed with 0.2 mmol of $\mathbf{2}$, 0.1 mmol of $\mathbf{3}$, 20 mol-% of $\mathbf{1e}$ in 1 ml DCM at 10 °C under N₂ for 36 h. ^{b)} Isolated yield and yield based on $\mathbf{3}$. ^{c)} Determined by the chiral HPLC analysis.

35

Interestingly, the product **5ac** could be cleanly converted to the compound **4ac** in ethanol with quantitative yield under base conditions for six days, and better ee was obtained (**Scheme 3**).

Scheme 3 Selective transformation of domino reaction product.

25

To determine the absolute configuration of chiral multifunctionalized tetracyclic spiro[chromeno[3,4-c] pyrrole-1,3'indoline] derivatives, single crystal suitable for X-ray ³⁰ crystallographic analysis was fortunately obtained from enantiopure **4ca** and **5ac** that bear a bromine atom. As shown in Fig. 1, it composes of (*C1R*, *C2S*, *C3S*, *C4S* for **4ca**; *C1S*, *C2S*, *C3S*, *C4S* for **5ca**) configuration.

Fig. 2 Proposed transition states.

According to the above experimental results and previously reported dual activation model,^{13b} both the substrates involved in the transition state are activated by bifunctional thiourea **1d** as proposed in **Fig. 2**. The Michael acceptor is assumed to be *s* activated and oriented by the hydrogen bonds of the bifunctional

- thiourea, while the tertiary amine of the catalyst would provide suitable basicity to enhance the nucleophilicity of the 3-isothiocyanato oxindole. The well-defined orientation facilitates the Re attack on the activated 3-nitro-2*H*-chromene derivative,
- ¹⁰ which favors the formation of the *C2S* stereocenter. Subsequent intramolecular cyclization through the attack the isothiocyanato group afforded the major *C3S* configured product.

Conclusions

In conclusion, we have successfully demonstrated the domino

- ¹⁵ reaction of various 3-nitro-2*H*-chromene derivatives 2 to 3isothiocyanato oxindole 3 with moderate to good enantioselectivities, employing readily available bifunctional thiourea 1d as the organocatalyst, which shows to be more effective catalyst than the ditrifluoromethylated one. After simple
- ²⁰ synthetic transformations, chiral multi-functionalized tetracyclic spiro[chromeno[3,4-*c*]pyrrole-1,3'-indoline] derivatives with four vicinal chiral carbon centers including two quaternary stereocenters were successfully prepared. Notably, the products **5** could be cleanly converted to the compounds **4** in DCM under ²⁵ mild conditions. Further application of this reaction to other
- substrates and to the preparation of biologically relevant compound are currently underway.

Experimental Section

General Methods

- ³⁰ Column chromatography was performed using silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. ¹H NMR and ¹³C NMR spectra were recorded on Bruker DRX 400 spectrometer at room temperature in CDCl₃ as solvent. Chemical shifts for protons are reported using residual CHCl₃ as internal
- ³⁵ reference (=7.26 ppm). Carbon spectra were referenced to the shift of the ¹³C signal of CDCl₃ (=77.0 ppm). Coupling constants (*J*) are given in Hz. IR spectra were recorded using a Perkin-Elmer 1600 Series FTIR. ESI-HRMS spectrometer was measured with a Finnigan LCQ^{DECA} ion trap mass spectrometer. Optical
- ⁴⁰ rotations were measured at 589 nm at 25 °C in a 1 dm cell and specific rotations are given in 10⁻¹ deg cm² g⁻¹. Enantiomeric excess were determined by HPLC analysis using Daicel Chiralpak AD column (4.6 mm* 250 mm, 5μm) Commercial grade solvents were dried and purified by standard procedures as ⁴⁵ specified in Purification of Laboratory Chemicals. 4th Ed
- (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997).

General procedure for the synthesis of chiral multifunctionalized tetracyclic spiro[chromeno[3,4- c]pyrrole- ,3'-50 indoline] derivatives:

A mixture of **2a** (25.3 mg, 0.10 mmol), **3a** (20.4 mg, 0.10 mmol) and 5 mol% of **1d** was stirred in CHCl₃ (1 mL) at -50 $^{\circ}$ C for 1 minute, then flash chromatography on silica gel (20% ethyl

acetate/petroleum ether) gave product **4aa** and **5aa** as yellow ⁵⁵ solid.

4aa Yellow solid, mp 204.8–206.1°C; 22.4 mg, yield 49 %; ¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 7.60 (d, J = 7.4 Hz, 1H), 7.57 – 7.49 (m, 3H), 7.41 – 7.34 (m, 3H), 7.30 – 7.24 (m, 1H), 7.16 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1Hz, 1H), 7.84 (d, J = 7.8 Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1H

- ⁶⁰ Hz, 1H), 6.74 (t, J = 7.5 Hz, 1H), 6.44 (s, 1H), 6.28 (d, J = 7.8 Hz, 1H), 5.05 (s, 1H), 2.99 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.9, 172.7, 154.4, 143.5, 133.6, 131.9, 129.7, 129.6, 128.9, 127.0, 126.9, 126.3, 124.7, 124.5, 122.2, 118.1, 115.8, 109.4, 97.2, 79.7, 71.6, 53.0, 26.7.ESI-HRMS: calcd. for
- ⁶⁵ C₂₅H₁₉N₃O₄S+Na 480.0988, found 480.0983; $[α]^{20}{}_D = -155.3$ (*c* 0.47, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL/min), -81% ee, t_{minor} = 6.61 min, t_{major} = 15.71 min.
- **5aa** Yellow solid, mp 188.4–190.2 °C; 20.1 mg, yield 44 %; ¹H ⁷⁰ NMR (600 MHz, CDCl₃) δ 8.75 (s, 1H), 7.26 – 7.23 (m, 2H), 7.18 – 7.15 (m, 4H), 7.02 – 6.97 (m, 1H), 6.84 (d, *J*= 7.8 Hz, 1H), 6.78 – 6.70 (m, 2H), 6.64 – 6.59 (m, 1H), 6.39 (dd, *J*= 18.5, 6.7 Hz, 3H), 5.46 (s, 1H), 3.30 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 195.1, 174.8, 152.4, 143.6, 133.5, 131.1, 129.6, 129.4, 129.3, 75 128.9, 128.1, 126.4, 123.7, 123.2, 122.6, 120.5, 118.8, 108.9,
- ¹⁵ 128.9, 128.1, 128.4, 125.7, 125.2, 122.0, 120.3, 118.8, 108.9, 98.4, 81.6, 72.8, 47.3, 27.3.ESI-HRMS: calcd. for $C_{25}H_{19}N_3O_4S+Na$ 480.0988, found 480.0989; $[\alpha]^{20}_{D} = -103.8$ (*c* 0.35, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL/min), 80 77% ee, $t_{major} = 5.87$ min, $t_{minor} = 10.61$ min.
- **4ab** Yellow solid, mp 208.2–209.6°C; 23.0 mg, yield 43 %;¹H NMR (600 MHz, CDCl₃) δ 8.72 (s, 1H), 7.61 (d, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.6 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.16 (dd, *J* = 11.4, 4.2 Hz, 1H),
- ss 6.99 (d, J = 8.2 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.75 (t, J = 7.5 Hz, 1H), 6.42 (s, 1H), 6.27 (d, J = 7.7 Hz, 1H), 5.07 (s, 1H), 2.99 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 192.8, 172.7, 165.6, 154.3, 143.5, 132.8, 132.1, 131.5, 130.1, 129.8, 126.8, 126.4, 124.8, 124.5, 123.1, 122.5, 118.1, 115.6, 109.5, 97.3, 79.2, 71.7,
- ⁹⁰ 53.0, 26.8. ESI-HRMS: calcd. for $C_{25}H_{18}BrN_3O_4S+Na$ 560.0079, found 560.0074; $[\alpha]^{20}_{D} = -125.6$ (*c* 0.39, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), -82% ee, $t_{minor} =$ 5.28 min, $t_{major} = 11.24$ min.
- ⁹⁵ **5ab** Yellow solid, mp 198.5–200°C; 27.8 mg, yield 52 %;¹H NMR (600 MHz, DMSO) δ 11.68 (s, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.28 (dd, J = 7.5, 4.8 Hz, 3H), 7.09 (d, J = 7.8 Hz, 1H), 7.05 7.02 (m, 1H), 6.80 (d, J = 8.1 Hz, 1H), 6.75 (t, J = 7.5 Hz, 1H), 6.66 (dd, J = 11.5, 4.3 Hz, 1H), 6.60 (d, J = 7.4 Hz, 2H), 6.08 (s,
- ¹⁰⁰ 1H), 5.42 (s, 1H), 3.29 (s, 3H). ¹³C NMR (150 MHz, DMSO) δ 193.0, 174.3, 152.2, 144.2, 133.4, 131.8, 131.1, 131.0, 129.9, 129.8, 126.1, 124.4, 123.2, 123.0, 120.1, 118.1, 109.7, 99.2, 80.0, 73.2, 55.3, 47.7, 27.4. $[\alpha]^{20}_{D} = -87.7$ (*c* 0.22, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD ¹⁰⁵ column (35% 2-propanol/hexane, 1.0 mL/min), 80% ee, t_{major} =

5.09 min, $t_{minor} = 9.81$ min. **4ac** Yellow solid, mp 154.4–155.3°C; 29.9 mg, yield 56 %;¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.73 (s, 1H), 7.62 (d, J =7.4 Hz, 1H), 7.55 – 7.45 (m, 3H), 7.31 – 7.13 (m, 3H), 7.00 (d, J110 = 8.3 Hz, 1H), 6.95 (d, J = 7.8 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 6.42 (s, 1H), 6.28 (d, J = 7.7 Hz, 1H), 5.09 (s, 1H), 3.01 (s, 3H).

Page 6 of 11

¹³C NMR (100 MHz, CDCl₃) δ 192.7, 172.7, 154.2, 143.5, 135.9, 132.7, 132.1, 131.9, 129.8, 128.5, 128.3, 126.8, 126.4, 124.8, 124.5, 122.5, 121.0, 118.1, 115.6, 109.5, 97.3, 78.8, 71.7, 53.0, 26.8. ESI-HRMS: calcd. for $C_{25}H_{18}BrN_3O_4S$ +Na 560.0079, found 560.00679, found 560.00679, found

- $_{5}$ 560.0058; $[\alpha]^{20}_{D} = -251.9$ (*c* 0.35, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL/min), -81% ee, t_{minor}= 6.34 min, t_{major}= 7.56 min.
- **5ac** Yellow solid, mp 216.2–218.1°C; 22.5 mg, yield 42 %;¹H ¹⁰ NMR (400 MHz, DMSO) δ 11.68 (s, 1H), 7.56–7.53 (m, 2H), 7.28 (ddd, *J* = 18.8, 14.2, 7.8 Hz, 3H), 7.07 (dd, *J* = 18.6, 7.6 Hz, 2H), 6.84 (d, *J* = 8.1 Hz, 1H), 6.76 (t, *J* = 7.5 Hz, 1H), 6.68 (t, *J* = 7.0 Hz, 2H), 6.62 (d, *J* = 7.3 Hz, 1H), 6.04 (s, 1H), 5.40 (s, 1H), 3.29 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 192.8, 174.3, 152.2,
- ¹⁵ 147.4, 144.2, 136.5, 132.5, 131.0, 130.0, 129.8, 128.6, 126.2, 124.4, 123.2, 123.1, 121.1, 119.8, 118.0, 109.7, 99.1, 79.7, 73.1, 55.3, 47.8, 27.4. $[\alpha]^{20}{}_{D} = -37.9$ (*c* 0.29, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL/min), 80% ee, t_{major} = ²⁰ 5.40 min, t_{minor} = 7.25 min.

4ad Yellow solid, mp 196.3–198.1°C; 23.0 mg, yield 43 %; ¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 7.59 (d, *J*= 7.6 Hz, 2H), 7.54 – 7.51 (m, 2H), 7.38 (t, *J*= 7.4 Hz, 1H), 7.27 (d, *J*= 7.6 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.18 (t, *J*= 7.7 Hz, 1H), 6.99 – 6.96 (m,

- ²⁵ 2H), 6.95 (s, 1H), 6.78 (t, J= 7.5 Hz, 1H), 6.36 (d, J= 7.7 Hz, 1H), 4.93 (s, 1H), 3.04 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.0, 172.1, 153.9, 143.7, 134.0, 132.3, 132.0, 130.6, 129.7, 126.9, 126.7, 126.1, 124.6, 122.4, 118.3, 116.5, 109.3, 96.3, 77.9, 71.5, 26.7. ESI-HRMS: calcd. for C₂₅H₁₈BrN₃O₄S+Na 560.0079, found
- ³⁰ 560.0047; $[\alpha]_{D}^{20} = -122.0$ (*c* 0.19, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL/min), -67% ee, t_{minor} = 8.58 min, t_{major} =10.10 min.

5ad Yellow solid, mp 118.6-119.7°C; 24.1 mg, yield 45 %; ¹H

- ³⁵ NMR (600 MHz, DMSO) δ 11.75 (s, 1H), 7.67 (dd, *J*= 8.0, 1.0 Hz, 1H), 7.24 (td, *J*= 7.8, 1.0 Hz, 1H), 7.19 (td, *J*= 7.8, 1.5 Hz, 1H), 7.07 (dd, *J*= 18.2, 7.9 Hz, 2H), 7.00 6.92 (m, 2H), 6.91 (s, 1H), 6.67 (t, *J*= 7.2 Hz, 2H), 6.63 (d, *J*= 6.6 Hz, 1H), 6.57 (dd, *J*= 11.6, 4.2 Hz, 1H), 6.32 (d, *J*= 7.5 Hz, 1H), 5.69 (s, 1H), 3.26 (s, 2H), 130 Hz (450 Hz) (450 Hz)
- ⁴⁰ 3H). ¹³C NMR (150 MHz, DMSO) δ 193.8, 174.1, 151.5, 143.9, 133.8, 133.2, 131.5, 130.9, 130.1, 129.7, 129.3, 127.4, 126.0, 125.4, 124.8, 123.4, 122.8, 118.2, 109.5, 100.0, 79.8, 73.8, 55.4, 49.0, 46.3, 27.3. $[\alpha]^{20}{}_{D} = -48.0$ (*c* 0.25, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD educes (250) (2 proceeded) and (200) (2 proceeded) (2 p

⁴⁵ column (35% 2-propanol/hexane, 1.0 mL/min), 70% ee, $t_{major} = 14.60 \text{ min}, t_{minor} = 22.57 \text{ min}.$ **4ae** Yellow solid, mp 174.3–175.8°C; 20.1 mg, yield 49 %; ¹H NMR (600 MHz, CDCl₃) δ 8.61 (d, J = 18.1 Hz, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.56 – 7.44 (m, 3H), 7.37 – 7.27 (m, 3H), 7.17 (t, J = 7.4 Hz, 1H), 7.56 – 7.44 (m, 3H), 7.37 – 7.27 (m, 3H), 7.17 (t, J = 7.4 Hz, 1H), 7.56 – 7.44 (m, 3H), 7.37 – 7.27 (m, 3H), 7.17 (t, $J = 7.4 \text{ Hz}, 1\text{Hz}, 1\text{H$

- ⁵⁰ 7.8 Hz, 1H), 6.99 (d, J = 8.1 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 6.43 (d, J = 12.7 Hz, 1H), 6.28 (d, J = 7.7 Hz, 1H), 5.08 (s, 1H), 3.01 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.8, 172.7, 154.4, 143.5, 134.8, 132.2, 132.1, 131.2, 129.8, 127.2, 126.8, 126.4, 124.8, 124.5, 122.5, 118.2, 115.6, 120.5, 072, 072, 170.1, 171.7, 152.0, 26.7, 150.100 M
- ⁵⁵ 109.5, 97.3, 97.3, 79.1, 71.7, 53.0, 26.7. ESI-HRMS: calcd. for $C_{25}H_{18}ClN_3O_4S+Na$ 514.0059, found 514.0589; $[\alpha]^{20}_{D} = -100.0$ (*c* 0.14, CHCl₃); The enantiomeric ratio was determined by

HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), -80% ee, $t_{minor} = 5.17 \text{ min}$, $t_{major} = 10.49 \text{ min}$.

- ⁶⁰ **5ae** Yellow solid, mp 119.5–121.2 °C; 23.1 mg, yield 47 %; ¹H NMR (600 MHz, DMSO) δ 11.63 (s, 1H), 7.29 (s, 4H), 7.23 (td, *J*= 7.7, 1.0 Hz, 1H), 7.04 (d, *J*= 7.8 Hz, 1H), 7.00 6.96 (m, 1H), 6.75 (d, *J*= 7.5 Hz, 1H), 6.70 (td, *J*= 7.6, 0.6 Hz, 1H), 6.63 6.58 (m, 1H), 6.54 (d, *J*= 7.7 Hz, 2H), 6.04 (s, 1H), 5.37 (s, 1H), 3.23
- ⁶⁵ (s, 3H). ¹³C NMR (150 MHz, DMSO) δ 193.0, 174.3, 152.2, 144.2, 134.3, 133.0, 131.5, 131.0, 129.9, 129.7, 128.1, 126.1, 124.4, 123.1, 123.0, 120.2, 118.1, 109.7, 99.2, 79.9, 73.2, 47.6, 27.4. [α]²⁰_D = -164.3 (*c* 0.14, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-70 propanol/hexane, 1.0 mL/min), 71% ee, $t_{major} = 4.97$ min, $t_{minor} =$ 8.80 min.

4af Yellow solid, mp 177.3–178.9 °C; 21.8 mg, yield 47 %; ¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.55 – 7.52 (m, 3H), 7.30 (t, J = 7.6 Hz, 1H), 7.17 (t, J = 7.7 Hz,

⁷⁵ 1H), 7.04 (t, J = 8.6 Hz, 2H), 7.00 (d, J = 8.3 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.82 – 6.70 (m, 1H), 6.43 (d, J = 11.1 Hz, 1H), 6.28 (d, J = 7.7 Hz, 1H), 5.06 (s, 1H), 3.01 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 193.0, 172.7, 163.9, 162.3, 154.4, 143.5, 132.1, 131.6, 131.6, 129.8, 129.5, 126.9, 126.3, 124.8, 124.5, ⁸⁰ 122.4, 118.2, 115.6, 114.1, 113.9, 109.5, 97.2, 79.2, 71.7, 53.1, 26.7. ESI-HRMS: calcd. for C₂₅H₁₈FN₃O₄S+Na 498.0894, found 498.0871; $[\alpha]^{20}_{D} = -223.9$ (*c* 0.22, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL/min), -82% ee, t_{minor} = 6.33 min, t_{major} = ⁸⁵ 15.26 min.

5af Yellow solid, mp 184.3–185.6 °C; 21.8 mg, yield 46 %; ¹H NMR (600 MHz, CDCl₃) δ 8.77 (s, 1H), 7.26 (dd, *J*= 9.4, 6.0 Hz, 1H), 7.17 (dd, *J*= 8.7, 5.2 Hz, 2H), 7.01 (dd, *J*= 11.2, 4.2 Hz, 1H), 6.89 – 6.83 (m, 3H), 6.79 – 6.72 (m, 2H), 6.64 (t, *J*= 7.5 Hz, 1H),

⁹⁰ 6.42 (d, J= 7.5 Hz, 1H), 6.38 (d, J= 7.6 Hz, 1H), 6.30 (s, 1H), 5.42 (s, 1H), 3.30 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 194.8, 174.7, 164.0, 162.3, 152.3, 143.6, 131.2, 130.9, 130.8, 129.7, 129.5, 129.3, 126.4, 123.6, 123.3, 122.8, 120.1, 118.8, 115.2, 115.1, 109.0, 98.3, 80.8, 72.7, 47.4, 31.6. $[\alpha]^{20}{}_{D} = -57.3$ (c 0.23,

 $_{95}$ CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL/min), 80% ee, t_{major} = 5.95 min, t_{minor} = 11.33 min.

4ag Yellow solid, mp 144.7–145.9 °C; 23.1 mg, yield 49 %; ¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 7.60 (d, *J* = 7.4 Hz, 1H), ¹⁰⁰ 7.51 (t, *J* = 7.8 Hz, 1H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.27 (t, *J* = 7.6

- Hz, 1H), 7.15 (dd, J = 14.4, 4.6 Hz, 3H), 6.98 6.97 (m, 1H), 6.93 (d, J = 7.9 Hz, 1H), 6.73 (td, J = 7.7, 1.0 Hz, 1H), 6.39 (s, 1H), 6.28 (d, J = 7.7 Hz, 1H), 5.03 (s, 1H), 2.99 (s, 3H), 2.37 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 193.1, 172.8, 154.5, 143.6, 105 138.8, 131.9, 130.7, 129.7, 129.6, 127.9, 127.1, 126.3, 124.7, 124.5, 122.2, 118.2, 115.9, 109.4, 97.2, 79.8, 71.6, 53.0, 26.7, 21.5. ESI-HRMS: calcd. for C₂₆H₂₁N₃O₄S+Na 494.1145, found 494.1117; $[\alpha]^{20}_{D} = -119.1$ (*c* 0.23, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-100 propagol/hexage, 1.0 mL/min) -83% ee tagge 6.96 min tagge
- ¹¹⁰ propanol/hexane, 1.0 mL/min), -83% ee, $t_{minor} = 6.96 \text{ min}$, $t_{major} = 11.49 \text{ min}$.

5ag Yellow solid, mp 166.1–167.4 °C; 18.8 mg, yield 40 %; ¹H NMR (600 MHz, CDCl₃) δ 8.66 (s, 1H), 7.26 – 7.23 (m, 1H), 7.03 (dd, *J* = 8.3, 1.8 Hz, 2H), 6.99 (td, *J* = 8.2, 1.5 Hz, 1H), 6.96 ¹¹⁵ (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 7.8 Hz, 1H), 6.77 – 6.73 (m, 1H),

- s 122.5, 120.6, 118.8, 108.8, 98.4, 81.5, 72.6, 47.1, 27.2, 21.1. $[\alpha]^{20}{}_{D} = -316.2$ (*c* 0.12, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2propanol/hexane, 1.0 mL/min), 85% ee, t_{major} = 4.56 min, t_{minor} = 9.23 min.
- ¹⁰ **4ah** Yellow solid, mp 182.4–183.5 °C; 18.9 mg, yield 39 %; ¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.52 (td, J = 7.8, 1.0 Hz, 1H), 7.45 (d, J = 8.7 Hz, 2H), 7.28 (t, J = 7.6 Hz, 1H), 7.17 7.14 (m, 1H), 6.98 (d, J = 8.2 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 6.87 (d, J = 8.8 Hz, 2H), 6.75 6.72 (m, 1H),
- ¹⁵ 6.38 (s, 1H), 6.28 (d, J = 7.6 Hz, 1H), 5.02 (s, 1H), 3.82 (s, 3H), 2.99 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 193.2, 172.8, 160.0, 154.5, 143.6, 132.0, 131.0, 129.7, 127.0, 126.3, 125.8, 124.7, 124.5, 122.2, 118.2, 115.8, 112.5, 109.4, 97.1, 79.6, 71.6, 55.3, 53.1, 26.7. ESI-HRMS: calcd. for C₂₆H₂₁N₃O₅S+Na 510.1049,
- ²⁰ found 510.1055; $[\alpha]_{D}^{20} = -90.6$ (*c* 0.18, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), -83% ee, t_{minor} = 6.99 min, t_{major} = 16.59 min.

5ah Yellow solid, mp 166.3–167.5 °C; 29.2 mg, yield 60 %; ¹H

- ²⁵ NMR (600 MHz, CDCl₃) δ 8.70 (s, 1H), 7.26 7.23 (m, 1H), 7.06 (d, *J* = 8.7 Hz, 2H), 7.00 (t, *J* = 7.7 Hz, 1H), 6.84 (t, *J* = 7.7 Hz, 1H), 6.76 (d, *J* = 8.1 Hz, 1H), 6.72 (t, *J* = 7.6 Hz, 1H), 6.65 – 6.60 (m, 3H), 6.36 (d, *J* = 8.5 Hz, 3H), 5.46 (s, 1H), 3.69 (s, 3H), 3.28 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 195.3, 174.7, 160.1,
- ³⁰ 152.5, 143.6, 131.1, 130.3, 129.6, 129.5, 126.5, 125.6, 123.7, 123.2, 122.5, 120.7, 118.9, 113.5, 108.9, 98.5, 81.4, 72.7, 55.2, 47.1, 27.2. $[\alpha]^{20}_{D} = -187.5$ (*c* 0.11, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), 81% ee, t_{major} = 4.91 min, t_{minor} = ³⁵ 10.33 min.
- **4ai** Yellow solid, mp 208.4–209.5 °C; 28.4 mg, yield 53 %; ¹H NMR (600 MHz, CDCl₃) δ 8.42 (s, 1H), 7.61 (d, *J*= 7.3 Hz, 1H), 7.56 (t, *J*= 7.8 Hz, 1H), 7.50 (d, *J*= 7.1 Hz, 2H), 7.40 7.34 (m, 3H), 7.31 (t, *J*= 7.5 Hz, 1H), 7.27 (dd, *J*= 8.8, 2.3 Hz, 1H), 6.99
- 40 (d, J= 7.9 Hz, 1H), 6.89 (d, J= 8.8 Hz, 1H), 6.41 (d, J= 2.2 Hz, 1H), 6.39 (s, 1H), 4.98 (s, 1H), 3.04 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.4, 172.6, 153.6, 143.4, 133.2, 132.7, 132.3, 129.7, 129.2, 129.0, 127.1, 126.6, 125.0, 124.5, 120.0, 118.2, 114.3, 109.5, 96.5, 80.1, 71.5, 31.7, 26.8. ESI-HRMS: calcd. for
- ⁴⁵ C₂₅H₁₈BrN₃O₄S+Na 560.0079, found 560.0034; $[\alpha]^{20}_{D} = -171.4$ (*c* 0.16, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), -83% ee, t_{minor} = 5.16 min, t_{major} = 18.83 min.
- **5ai** Yellow solid, mp 189.1–190.7 °C; 21.9 mg, yield 41 %; ¹H
- ⁵⁰ NMR (600 MHz, CDCl₃) δ 8.83 (s, 1H), 7.33 7.30(m, 1H), 7.28 – 7.24 (m, 1H), 7.19 (t, *J*= 7.7 Hz, 2H), 7.16 – 7.12 (m, 2H), 7.11 – 7.09 (m, 1H), 6.89 (d, *J*= 7.8 Hz, 1H), 6.81 (t, *J*= 7.6 Hz, 1H), 6.65 (dd, *J*= 8.6, 4.3 Hz, 1H), 6.41 (dd, *J*= 9.6, 4.3 Hz, 2H), 6.37 (t, *J*= 6.5 Hz, 1H), 5.38 (s, 1H), 3.29 (s, 3H). ¹³C NMR (150 MHz,
- ⁵⁵ CDCl₃) δ 194.8, 174.6, 151.6, 143.5, 133.1, 132.5, 132.3, 131.6, 129.6, 128.8, 128.3, 126.3, 123.3, 123.1, 122.4, 120.5, 114.6, 109.2, 97.7, 81.5, 72.7, 46.8.[α]²⁰_D = -82.2 (*c* 0.24, CHCl₃); T he enantiomeric ratio was determined by HPLC on Chiralpak AD

column (35% 2-propanol/hexane, 1.0 mL/min), 51% ee, t_{major} = $_{60}$ 5.60 min, t_{minor} = 10.99 min.

4aj Yellow solid, mp 200.4–201.2 °C; 25.0 mg, yield 51 %; ¹H NMR (600 MHz, CDCl₃) δ 8.40 (s, 1H), 7.61 (d, *J*= 7.3 Hz, 1H), 7.56 (t, *J*= 7.8 Hz, 1H), 7.51 (d, *J*= 7.1 Hz, 2H), 7.42 – 7.34 (m, 3H), 7.31 (t, *J*= 7.6 Hz, 1H), 7.18 – 7.11 (m, 1H), 6.97 (dd, *J*= 7.1 Hz, 2H), 6.97 (dd, *J*= 7.1 Hz, 2H), 6.97 (dd, *J*= 7.1 Hz, 2H), 7.18 – 7.11 (m, 1H), 6.97 (dd, *J*= 7.1 Hz, 2H), 6.97 (dd, J= 7.1 Hz), 6.97 (dd, J=

- ⁶⁵ 21.8, 8.3 Hz, 2H), 6.40 (s, 1H), 6.26 (d, J= 2.3 Hz, 1H), 4.99 (s, 1H), 3.05 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.4, 172.6, 153.1, 143.4, 133.2, 132.3, 129.8, 129.7, 129.2, 128.0, 127.1, 127.1, 126.6, 126.0, 125.0, 124.5, 119.6, 117.6, 109.6, 100.0, 96.6, 80.1, 71.4, 52.7, 26.8. ESI-HRMS: calcd. for
- ⁷⁰ C₂₅H₁₈ClN₃O₄S+Na 514.0599, found 514.0552; $[\alpha]^{20}_{D} = -114.9$ (*c* 0.16, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), -84% ee, t_{minor} = 5.17 min, t_{major} = 18.67 min.
- **5aj** Yellow solid, mp 178.7–180.1 °C; 19.6 mg, yield 40 %; ¹H ⁷⁵ NMR (600 MHz, CDCl₃) δ 8.80 (s, 1H), 7.31 (t, *J*= 7.8 Hz, 1H), 7.26 (t, *J*= 7.3 Hz, 1H), 7.19 (t, *J*= 7.7 Hz, 2H), 7.14 (d, *J*= 7.5 Hz, 2H), 7.02 – 6.93 (m, 2H), 6.89 (d, *J*= 7.8 Hz, 1H), 6.80 (t, *J*= 7.6 Hz, 1H), 6.71– 6.49 (m, 1H), 6.43 – 6.37 (m, 2H), 6.29 (d, *J*= 2.3 Hz, 1H), 5.39 (s, 1H), 3.30 (s, 3H). ¹³C NMR (150 MHz, CDCl₃)
- ⁸⁰ δ 194.8, 174.6, 151.1, 143.5, 133.1, 131.6, 129.7, 129.6, 129.2, 128.8, 128.3, 127.4, 126.3, 123.3, 123.2, 122.0, 120.1, 109.2, 97.8, 81.6, 72.6, 46.9, 27.3. $[α]^{20}_{D} = -191.5$ (*c* 0.16, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), 51% ee, t_{major} = ⁸⁵ 5.68 min, t_{minor} = 10.67 min.

4ak Yellow solid, mp 192.3–193.7 °C; 24.7 mg, yield 49 %; ¹H NMR (600 MHz, CDCl₃) δ 8.42 (s, 1H), 7.61 (d, *J*= 7.3 Hz, 1H), 7.56 (t, *J*= 7.6 Hz, 1H), 7.38 (d, *J*= 7.8 Hz, 2H), 7.31 (t, *J*= 7.5 Hz, 1H), 7.20 – 7.11 (m, 3H), 6.99 (d, *J*= 7.8 Hz, 1H), 6.94 (d, *J*= 8.8

- ⁹⁰ Hz, 1H), 6.35 (s, 1H), 6.26 (d, J=2.1 Hz, 1H), 4.97 (s, 1H), 3.04 (s, 3H), 2.38 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.5, 172.6, 153.1, 143.5, 139.1, 132.3, 130.2, 129.8, 129.5, 128.0, 127.0, 125.9, 124.9, 124.5, 119.6, 117.7, 109.5, 96.5, 80.1, 71.4, 52.6, 26.8, 21.5, ESI-HRMS: calcd. for C₂₆H₂₀ClN₃O₄S+Na 528.0755,
- ⁹⁵ found 528.0717; $[\alpha]^{20}_{D} = -75.0$ (*c* 0.13, CHCl₃); T he enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), -82% ee, t_{minor} = 7.71 min, t_{major} = 17.79 min.

5ak Yellow solid, mp 174.3–175.1 °C; 18.7 mg, yield 37 %; ¹H ¹⁰⁰ NMR (600 MHz, CDCl₃) & 8.84 (s, 1H), 7.31 (t, *J*= 7.7 Hz, 1H), 7.02 (d, *J*= 8.3 Hz, 2H), 7.00 – 6.96 (m, 2H), 6.96 (d, *J*= 2.4 Hz, 1H), 6.90 (d, *J*= 7.8 Hz, 1H), 6.80 (t, *J*= 7.6 Hz, 1H), 6.70 (d, *J*= 8.7 Hz, 1H), 6.40 (s, 1H), 6.36 (d, *J*= 7.4 Hz, 1H), 6.30 (d, *J*= 2.3 Hz, 1H), 5.41 (s, 1H), 3.31 (s, 3H), 2.24 (s, 3H). ¹³C NMR (150

- ¹⁰⁵ MHz, CDCl₃) δ 195.0, 174.6, 151.1, 143.5, 139.6, 131.5, 130.1, 129.6, 129.3, 129.0, 128.7, 127.3, 126.3, 123.2, 122.3, 120.2, 109.2, 97.9, 81.6, 72.6, 46.8, 27.3, 21.2. $[\alpha]^{20}_{D} = -80.0$ (*c* 0.15, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), ¹¹⁰ 66% ee, t_{major} = 5.14 min, t_{minor} = 12.27 min.
- **4al** Yellow solid, mp 176.2–177.1 °C; 18.8 mg, yield 40 %; ¹H NMR (600 MHz, DMSO) δ 11.56 (s, 1H), 7.83 (d, *J*= 7.3 Hz, 1H), 7.60 (t, *J*= 7.8 Hz, 1H), 7.40 7.32 (m, 6H), 7.22 (d, *J*= 7.9 Hz, 1H), 7.04 6.99 (m, 1H), 6.87 (d, *J*= 8.3 Hz, 1H), 6.36 (s, 1H),
- ¹¹⁵ 6.03 (s, 1H), 5.05 (s, 1H), 2.99 (s, 3H), 1.99 (s, 3H). ¹³C NMR (150 MHz, DMSO) δ 192.1, 173.1, 151.8, 143.9, 134.4, 131.9,

131.6, 130.4, 129.8, 129.1, 127.9, 127.3, 126.7, 125.2, 124.6, 117.4, 116.9, 109.9, 97.4, 79.7, 72.1, 51.7, 26.9, 21.2. ESI-HRMS: calcd. for $C_{26}H_{21}N_3O_4S$ +Na 494.1145, found 494.1114; $[\alpha]^{20}_D = -$ 179.2 (*c* 0.24, CHCl₃); T he enantiomeric ratio was determined

- ⁵ by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), -74% ee, t_{minor} = 4.56 min, t_{major} = 17.89 min. **5al** Yellow solid, mp 190.1–191.6 °C; 22.1 mg, yield 47 %; ¹H NMR (600 MHz, CDCl₃) δ 8.74 (s, 1H), 7.29 – 7.22 (m, 2H),
- 7.19 7.12 (m, 4H), 6.85 (d, J= 7.8 Hz, 1H), 6.79 (dd, J= 8.3, 1.4 ¹⁰ Hz, 1H), 6.73 (t, J= 7.6 Hz, 1H), 6.64 (d, J= 8.2 Hz, 1H), 6.40 (s, 1H), 6.32 (d, J= 7.4 Hz, 1H), 6.07 (s, 1H), 5.39 (s, 1H), 3.29 (s, 3H), 1.92 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 195.5, 174.8, 150.2, 143.6, 133.7, 131.9, 131.1, 130.2, 130.1, 129.3, 128.9, 128.2, 126.6, 123.6, 122.9, 119.9, 118.4, 108.8, 98.3, 81.5, 72.8,
- ^{126.2}, ^{126.0}, ^{122.0}, ^{122.0}, ^{122.0}, ^{117.0}, ^{116.4}, ^{106.6}, ^{50.5}, ^{51.5}, ^{12.6}, ^{12.6}, ¹⁵ 47.0, ^{27.2}, ^{21.1}. $[\alpha]^{20}_{D} = -54.5$ (*c* 0.15, CHCl₃); T he enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), 86% ee, t_{major} = 4.53 min, t_{minor} = 12.58 min.
- **4am** Yellow solid, mp 148.3–149.6 °C; 21.9 mg, yield 45 %; ¹H ²⁰ NMR (600 MHz, CDCl₃) δ 8.52 (s, 1H), 7.63 (d, *J* = 7.4 Hz, 1H), 7.57 (d, *J* = 6.7 Hz, 2H), 7.53 (dd, *J* = 15.1, 7.4 Hz, 1H), 7.44 7.34 (m, 3H), 7.31 7.26 (m, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 6.53 (d, *J* = 2.4 Hz, 1H), 6.45 (d, *J* = 7.0 Hz, 1H), 6.35 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.18 (d, *J* = 8.7 Hz, 1H), 4.99 (s, 1H), 3.71 (s, 3H),
- ²⁵ 3.02 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 193.2, 172.9, 160.5, 155.5, 143.5, 133.6, 131.9, 129.8, 129.0, 127.0, 124.7, 124.5, 110.2, 109.4, 107.5, 102.1, 97.1, 79.8, 71.8, 55.3, 53.2, 26.7. ESI-HRMS: calcd. for C₂₆H₂₁N₃O₅S+Na 510.1049, found 510.1056; $[\alpha]^{20}{}_{D} = -101.5$ (*c* 0.22, CHCl₃); The enantiomeric ratio was
- ³⁰ determined by HPLC on Chiralpak AD column (35% 2propanol/hexane, 1.0 mL/min), -72% ee, $t_{minor} = 6.79 \text{ min}$, $t_{major} = 10.83 \text{ min}$.

5am Yellow solid, mp 138.3–139.7 °C; 18.5 mg, yield 38 %; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (s, 1H), 7.29 – 7.24 (m, 3H),

- ³⁵ 7.18 7.16 (m, 3H), 6.84 6.83 (m, 1H), 6.78 (td, J = 7.6, 0.7 Hz, 1H), 6.42 (d, J = 7.6 Hz, 1H), 6.37 – 6.34 (m, 1H), 6.31 (t, J = 2.4 Hz, 1H), 6.27 – 6.18 (m, 2H), 5.37 (s, 1H), 3.62 (s, 3H), 3.27 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 195.2, 174.8, 160.5, 153.6, 143.7, 133.5, 131.2, 130.3, 129.5, 128.9, 128.2, 126.8, 123.6,
- ⁴⁰ 123.2, 112.0, 109.7, 108.9, 103.3, 98.3, 81.6, 72.8, 55.4, 46.9, 27.2. $[\alpha]^{20}{}_{D} = -105.0 (c \ 0.13, CHCl_3)$; The enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL/min), 76% ee, $t_{major} = 5.04 \text{ min}, t_{minor} = 7.99 \text{ min}.$
- ⁴⁵ **4ba** Yellow solid, mp 162.1–163.6 °C; 25.4 mg, yield 54 %; ¹H NMR (600 MHz, CDCl₃) δ 8.45 (br, 1H), 7.54 (d, *J*= 7.3 Hz, 1H), 7.48 (d, *J*= 6.9 Hz, 2H), 7.44 (dd, *J*= 15.2, 7.5 Hz, 1H), 7.29 (ddd, *J*= 15.9, 7.7, 2.4 Hz, 3H), 7.20 (t, *J*= 7.6 Hz, 1H), 7.08 (t, *J*= 7.3 Hz, 1H), 6.92 (d, *J*= 8.1 Hz, 1H), 6.87 (d, *J*= 7.8 Hz, 1H), 6.66 (t,
- ⁵⁰ *J*= 7.5 Hz, 1H), 6.42 (s, 1H), 6.23 (d, *J*= 7.7 Hz, 1H), 4.97 (s, 1H), 3.54 (dt, *J*= 14.4, 7.4 Hz, 1H), 3.27-3.18 (m, 1H), 0.63-0.61 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 193.1, 172.8, 154.5, 143.4, 133.6, 132.0, 129.8, 129.8, 129.0, 127.0, 126.6, 124.8, 124.5, 122.2, 118.2, 115.6, 109.6, 96.9, 79.8, 71.4, 53.4, 42.5, 20.7, 11.4.
- ss ESI-HRMS: calcd. for C₂₆H₂₁N₃O₄S+Na 494.1145, found 494.1141; $[\alpha]^{20}_{D} = -86.5$ (*c* 0.17, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-

propanol/hexane, 1.0 mL/min), -82% ee, $t_{minor} = 5.63 \text{ min}, t_{major} = 11.55 \text{ min}.$

- ⁶⁰ **5ba** Yellow solid, mp 130.5–131.6 °C; 19.8 mg, yield 42 %; ¹H NMR (600 MHz, CDCl₃) δ 8.59 (s, 1H), 7.23 (t, *J*= 7.8 Hz, 2H), 7.20 7.14 (m, 4H), 7.00 (t, *J*= 7.2 Hz, 1H), 6.84 (d, *J*= 7.9 Hz, 1H), 6.76 (d, *J*= 8.2 Hz, 1H), 6.72 (t, *J*= 7.6 Hz, 1H), 6.62 (t, *J*= 7.4 Hz, 1H), 6.44 (d, *J*= 7.5 Hz, 1H), 6.39 (t, *J*= 7.0 Hz, 2H), 5.48
- ⁶⁵ (d, *J*= 3.9 Hz, 1H), 3.83 (dt, *J*= 14.4, 7.4 Hz, 1H), 3.70 3.64 (m, 1H), 1.06 (t, *J*= 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 195.2, 174.6, 152.5, 143.1, 133.6, 131.1, 129.6, 129.4, 129.2, 128.9, 128.2, 127.0, 126.6, 123.8, 123.0, 122.6, 120.6, 118.9, 109.2, 100.0, 98.5, 81.7, 79.8, 72.6, 47.5, 42.5. $[\alpha]^{20}_{D} = -71.4$ (*c*
- ⁷⁰ 0.14, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL/min), 80% ee, $t_{major} = 4.99$ min, $t_{minor} = 5.94$ min.

4bb Yellow solid, mp 164.4–165.1 °C; 25.2 mg, yield 46 %; ¹H NMR (600 MHz, CDCl₃) δ 8.56 (s, 1H), 7.63 (d, *J*= 7.3 Hz, 1H),

⁷⁵ 7.55 – 7.43 (m, 5H), 7.29 (t, *J*= 7.5 Hz, 1H), 7.17 (t, *J*= 7.4 Hz, 1H), 6.97 (dd, *J*= 19.4, 8.0 Hz, 2H), 6.75 (t, *J*= 7.4 Hz, 1H), 6.48 (s, 1H), 6.30 (d, *J*= 7.7 Hz, 1H), 5.07 (s, 1H), 3.62 (dt, *J*= 14.5, 7.4 Hz, 1H), 3.34 – 3.27 (m, 1H), 0.71 (t, *J*= 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.8, 172.7, 154.3, 143.2, 132.8, ⁸⁰ 132.1, 131.5, 130.2, 129.8, 126.8, 126.7, 124.7, 124.6, 123.2, 122.5, 118.1, 115.4, 109.7, 97.0, 79.1, 71.6, 42.5, 31.7, 11.4. $[\alpha]^{20}{}_{D}$ = -175.0 (*c* 0.12, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL/min), -83% ee, t_{minor} = 5.91 min, t_{major} = ⁸⁵ 12.47 min.

5bb Yellow solid, mp 180.5–181.9 °C; 27.4 mg, yield 50 %; ¹H NMR (600 MHz, CDCl₃) δ 8.76 (s, 1H), 7.32 (d, *J*= 8.5 Hz, 2H), 7.24 (t, *J*= 7.7 Hz, 1H), 7.07 (t, *J*= 7.4 Hz, 2H), 7.02 (dd, *J*= 11.3, 4.2 Hz, 1H), 6.85 (d, *J*= 7.9 Hz, 1H), 6.77 (d, *J*= 8.2 Hz, 1H),

- ⁹⁰ 6.73 (t, *J*= 7.6 Hz, 1H), 6.64 (t, *J*= 7.5 Hz, 1H), 6.47 (t, *J*= 8.7 Hz, 1H), 6.39 (d, *J*= 7.8 Hz, 1H), 6.25 (s, 1H), 5.41 (s, 1H), 3.82 (dt, *J*= 14.4, 7.3 Hz, 1H), 3.71 3.64 (m, 1H), 1.05 (t, *J*= 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 194.5, 174.5, 152.2, 143.0, 132.5, 131.2, 131.1, 130.5, 130.0, 129.7, 129.0, 126.4, 123.7, 123.6, ⁹⁵ 123.0, 122.8, 120.0, 118.7, 109.2, 98.1, 80.8, 72.58 42.5, 31.6, 11.5. $[\alpha]^{20}{}_{\rm D}$ = -55.6 (*c* 0.41, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL/min), 84% ee, t_{major} = 5.20 min, t_{minor} = 7.23 min.
- ¹⁰⁰ **4bf** Yellow solid, mp 182.3–183.8 °C; 22.5 mg, yield 46 %; ¹H NMR (600 MHz, CDCl₃) δ 8.71 (s, 1H), 7.54 (d, *J*= 7.4 Hz, 1H), 7.50 7.41 (m, 3H), 7.23 7.17 (m, 1H), 7.09 (t, *J*= 7.7 Hz, 1H), 6.96 (dd, *J*= 12.1, 5.0 Hz, 2H), 6.91 (d, *J*= 8.2 Hz, 1H), 6.87 (d, *J*= 7.9 Hz, 1H), 6.66 (dd, *J*= 10.8, 4.2 Hz, 1H), 6.41 (d, *J*= 9.1 Hz, 1H), 6.22 (d, *J*= 7.5 Hz, 1H), 4.97 (s, 1H), 3.54 (dt, 14.0, 7.0 Hz, 1H), 3.23 (dt, *J*= 13.9, 6.9 Hz, 1H), 0.62 (t, *J*= 7.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 193.0, 172.7, 171.2, 162.3, 154.4, 143.2, 132.0, 131.6, 131.6, 129.8, 126.7, 124.7, 124.5, 122.4, 118.1, 115.4, 114.0, 113.9, 109.6, 97.0, 79.1, 71.6, 60.5, 42.5, 110 11.4. $[\alpha]^{20}_{D} = -142.4$ (*c* 0.19, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (20% 2-propanol/hexane, 1.0 mL/min), -82% ee, t_{minor} = 7.78 min, t_{major} = 19.81 min.

5bf Yellow solid, mp 172.3–173.1 °C; 30.0 mg, yield 47 %; ¹H ¹¹⁵ NMR (600 MHz, CDCl₃) δ 8.85 (s, 1H), 7.16 (t, *J*= 7.7 Hz, 1H),

RSC Advances Accepted Manuscript

- 7.11 (dd, J= 8.6, 5.3 Hz, 2H), 6.94 (t, J= 7.7 Hz, 1H), 6.79 (dd, J= 17.4, 8.5 Hz, 3H), 6.70 (d, J= 8.2 Hz, 1H), 6.68 6.63 (m, 1H), 6.56 (t, J= 7.5 Hz, 1H), 6.38 (d, J= 7.3 Hz, 1H), 6.32 (d, J= 7.7 Hz, 1H), 6.23 (d, J= 3.1 Hz, 1H), 5.35 (s, 1H), 3.74 (dt, J= 14.3, 5 7.3 Hz, 1H), 3.64 3.57 (m, 1H), 0.98 (t, J= 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 194.7, 174.6, 164.0, 162.3, 152.4,
- 143.1, 131.1, 130.9, 130.8, 129.7, 129.1, 126.5, 123.1, 122.8, 120.2, 118.8, 115.2, 115.1, 109.2, 98.3, 80.8, 72.6, 42.5, 20.8, 11.5. $[\alpha]^{20}{}_{D} = -189.5$ (*c* 0.19, CHCl₃); The enantiomeric ratio was 10 determined by HPLC on Chiralpak AD column (20% 2propanol/hexane, 1.0 mL/min), 82% ee. t_{main} = 6.50 min. t_{min} =
- propanol/hexane, 1.0 mL/min), 82% ee, $t_{major} = 6.50$ min, $t_{minor} = 9.12$ min. **4bj** Yellow solid, mp 134.7–135.4 °C; 21.8 mg, vield 45 %; ¹H
- **40** Yenow solid, mp 134.7–135.4 °C, 21.8 mg, yield 45 %, H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 7.62 (d, *J*= 7.4 Hz, 1H), 15 7.51 (t, *J*= 7.5 Hz, 1H), 7.43 (d, *J*= 8.0 Hz, 2H), 7.27 (dd, *J*= 12.7, 5.1 Hz, 1H), 7.16 (dd, *J*= 11.1, 8.4 Hz, 3H), 6.98 (d, *J*= 8.2 Hz,
- 1H), 6.94 (d, *J*= 7.9 Hz, 1H), 6.73 (t, *J*= 7.5 Hz, 1H), 6.44 (s, 1H), 6.31 (d, *J*= 7.7 Hz, 1H), 5.02 (s, 1H), 3.61 (dt, *J*= 14.5, 7.4 Hz, 1H), 3.29 (dt, *J*= 14.1, 7.1 Hz, 1H), 2.38 (s, 3H), 0.70 (t, *J*= 7.4
- ²⁰ Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 193.1, 172.7, 154.5, 143.3, 138.8, 131.9, 130.7, 129.7, 129.6, 127.9, 127.0, 126.6, 124.7, 124.5, 122.2, 118.1, 115.7, 109.6, 79.7, 42.4, 21.5, 20.7, 11.4. [α]²⁰_D = -86.7 (*c* 0.15, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-
- $_{25}$ propanol/hexane, 1.0 mL/min), -83% ee, t_{minor} = 8.08 min, t_{major} = 12.57 min.
- **5bj** Yellow solid, mp 164.7–165.1 °C; 23.3 mg, yield 48 %; ¹H NMR (600 MHz, CDCl₃) δ 8.78 (s, 1H), 7.25 7.20 (m, 1H), 7.03 (d, *J*= 7.8 Hz, 2H), 7.01 6.94 (m, 3H), 6.84 (d, *J*= 7.9 Hz,
- ³⁰ 1H), 6.75 (d, J= 8.1 Hz, 1H), 6.70 (t, J= 7.6 Hz, 1H), 6.61 (t, J= 7.5 Hz, 1H), 6.41 (d, J= 7.5 Hz, 1H), 6.39 6.33 (m, 2H), 5.45 (s, 1H), 3.82 (dt, J= 14.3, 7.3 Hz, 1H), 3.69 3.63 (m, 1H), 2.23 (s, 3H), 1.05 (q, J= 7.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 195.3, 174.6, 152.5, 143.1, 139.3, 131.0, 129.6, 129.2, 128.9,
- ³⁵ 128.8, 126.6, 123.8, 123.0, 122.5, 118.9, 109.1, 81.6, 72.6, 42.5, 21.2, 20.8, 11.5. $[\alpha]^{20}{}_{D} = -113.8$ (*c* 0.19, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL/min), 82% ee, $t_{major} =$ 4.62 min, $t_{minor} = 6.47$ min.
- 40 4bkYellow solid, mp 162.1–163.6 °C; 20.0 mg, yield 44 %; ¹H NMR (600 MHz, CDCl₃) δ 8.45 (s, 1H), 7.66 (t, *J*= 8.1 Hz, 1H), 7.52 (t, *J*= 7.7 Hz, 1H), 7.46 (t, *J*= 8.4 Hz, 2H), 7.29 (dd, *J*= 10.2, 4.9 Hz, 1H), 7.18 7.13 (m, 1H), 6.99 (d, *J*= 8.2 Hz, 1H), 6.95 (d, *J*= 7.9 Hz, 1H), 6.87 (dd, *J*= 8.8, 5.5 Hz, 2H), 6.73 (t, *J*= 8.0 Hz,
- ⁴⁵ 1H), 6.46 6.42 (m, 1H), 6.31 (d, J= 7.7 Hz, 1H), 5.02 (s, 1H), 3.83 (s, 3H), 3.65 – 3.59 (m, 1H), 3.30 (ddd, J= 14.1, 8.0, 6.2 Hz, 1H), 0.70 (t, J= 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 193.2, 172.7, 160.0, 154.5, 143.3, 131.9, 131.0, 130.3, 129.7, 127.0, 126.6, 125.8, 124.8, 124.5, 122.1, 118.1, 113.6, 112.5,
- ⁵⁰ 109.6, 79.5, 71.5, 55.2, 42.5, 22.7, 11.4. $[\alpha]^{20}{}_{D} = -100.0$ (*c* 0.11, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL/min), 84% ee, t_{minor} = 11.35 min, t_{major} = 24.91 min.
- **5bk**Yellow solid, mp 210.3–211.3 °C; 21.5 mg, yield 43 %; ¹H 55 NMR (600 MHz, CDCl₃) δ 8.72 (s, 1H), 7.23 (t, *J*= 7.7 Hz, 1H), 7.07 (d, *J*= 8.6 Hz, 2H), 7.01 (t, *J*= 7.4 Hz, 1H), 6.84 (d, *J*= 7.8 Hz, 1H), 6.76 (d, *J*= 8.1 Hz, 1H), 6.71 (t, *J*= 7.6 Hz, 1H), 6.67 –

6.60 (m, 3H), 6.41 - 6.32 (m, 3H), 5.47 (d, J = 5.4 Hz, 1 H), 3.81

(dt, J= 14.6, 7.3 Hz, 1H), 3.74 – 3.62 (m, 4H), 1.04 (t, J= 7.3 Hz, ⁶⁰ 3H). ¹³C NMR (150 MHz, CDCl₃) δ 195.3, 174.5, 160.1, 152.5, 143.1, 131.0, 130.3, 129.6, 129.3, 126.7, 125.6, 123.7, 123.0, 122.5, 119.0, 113.5, 109.1, 98.5, 81.4, 72.6, 42.4, 20.8, 11.5. [α]²⁰_D = -32.7 (*c* 0.18, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-⁶⁵ propanol/hexane, 1.0 mL/min), 82% ee, t_{major} = 5.58 min, t_{minor} = 9.72 min.

4bc/5bc Yellow solid, 51.9 mg, yield 85 %; dr =1:1. ¹H NMR (600 MHz, DMSO) δ 11.80 (s, 1H), 11.68 (s, 1H), 7.80 (d, J = 7.3 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H), 70 7.15 (t, J = 7.9 Hz, 1H), 6.96 – 6.92 (m, 2H), 6.87 (d, J = 8.0 Hz,

- 1H), 6.67 (t, J = 8.1 Hz, 2H), 6.61 (t, J = 7.6 Hz, 1H), 6.53 (d, J = 7.1 Hz, 1H), 6.45 (dd, J = 7.6, 0.8 Hz, 1H), 6.43 (s, 1H), 6.37 (d, J = 7.0 Hz, 1H), 6.13 (d, J = 7.4 Hz, 1H), 5.40 (s, 1H), 5.08 (s, 1H), 4.98 (d, J = 15.7 Hz, 1H), 4.91 (d, J = 15.7 Hz, 1H). ¹³C
- ⁷⁵ NMR (150 MHz, DMSO) δ 193.2, 174.5, 153.7, 143.1, 136.0, 133.7, 131.9, 131.0, 130.9, 129.8, 129.1, 128.2, 128.1, 127.4, 126.3, 124.8, 124.6, 123.2, 123.1, 120.3, 118.1, 110.7, 99.3, 96.8, 80.1, 51.5, 44.0. [α]²⁰_D= - 42.9(*c* 0.19, CHCl₃); The enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-⁸⁰ propanol/hexane, 1.0 mL/min), -65% ee, t_{minor} = 7.52 min, t_{major} =
- 12.58 min;50% ee, $t_{major} = 6.18$ min, $t_{minor} = 8.85$ min. **Crystal data for 4ac (CCDC: 1001582):** $C_{25}H_{18}BrN_3O_4S$ (536.39), Triclinic, space group P -1, a=9.0285(3), b=9.3506(3), c=14.1171(5) Å, V =1109.38(6) Å³, Z = 10, specimen s 0.237x0.143x0.124 mm³, T = 296(2) K, SIEMENS P4 diffractometer, absorption coefficient 1.987 mm⁻¹, reflections collected 38048, independent reflections 5164 [R(int) = 0.0398], refinement by Full-matrix least-squares on F^2 , data/restraints/parameters 5164 / 0 / 308, goodness-of-fit on F^2 =
- ⁹⁰ 1.022, final *R* indices [I>2(I)] *R*1 = 0.0418, *wR*2 = 0.0954 , *R* indices (all data) *R*1 = 0.0600, *wR*2 = 0.1048, largest diff. peak and hole 0.989 and -0.734 e Å⁻³.
- 5ac Crystal data for (CCDC: 1001583): $C_{25}H_{18}BrN_{3}O_{4}S(536.39),$ Orthorhombic, space group 95 P2(1)2(1)2(1), a=7.8034(10), b=9.5210(13), c=30.485(4) Å, V =2264.9(5) Å³, Z = 21, specimen 0.243x0.162x0.148 mm³, T = 296(2) K, SIEMENS P4 diffractometer, absorption coefficient 1.946 mm⁻¹, reflections collected 11290, independent reflections 4963 [R(int) = 0.0245], refinement by Full-matrix least-squares 100 on F², data/restraints/parameters 4963 / 0 / 307, goodness-of-fit on $F^2 = 1.004$, final R indices [I>2(I)] R1 = 0.0372, wR2 = 0.0798, R indices (all data) R1 = 0.0588, wR2 = 0.0736, largest diff. peak and hole 0.463 and -0.478 e $Å^{-3}$.

Acknowledgment

¹⁰⁵ We are grateful for the financial support by the Program for the National Natural Science Foundation of China (21272214).

Notes and references

 ^a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry and Life Science, Zhejiang
¹¹⁰ Normal University, Jinhua 321004, P. R. of China.;E-mail: xiejw@zjnu.cn; Fax: (+86) 579 82282610.

[†] These authors contributed equally to this work.

[1] (a) G. Rousseau, F. Robert, K. Schenk, Y. Landais, Org. Lett. 2008, 10, 4441; (b) F. Zhao, C. Wang, L. Liu, W.-X. Zhanga, Z. Xi, Chem.

Commun. 2009, 6569; (c) K. Murai, H. Komatsu, R. Nagao, H. Fujioka, Org. Lett. 2012, 14, 772; (d) K. Bogdanowicz-Szwed, A. Budzowski, R. Gil, P. Serda, Monatsh. Chem. 2010, 141, 63.

- [2] (a) R. Rios, Chem. Soc. Rev. 2012, 41, 1060; (b) H.-P. Bi, X.-Y. Liu, F.-R. Gou, L.-N. Guo, X.-H. Duan, X.-Z. Shu, Y.-M. Liang, Angew. Chem., Int. Ed. 2007, 46, 7068; (c) T. Jin, M. Himuro, Y. Yamamoto, Angew. Chem., Int. Ed. 2009, 48, 5893; (d) F. C. Pigge, J. J. Coniglio, R. Dalvi, J. Am. Chem. Soc. 2006, 128, 3498; (e) J. Huang, A. J. Frontier, J. Am. Chem. Soc. 2007, 129, 8060.
- 10 [3] G. S. Singh and Z. Y. Desta, Chem. Rev. 2012, 112, 6104.
- [4] (a) R. F. Bond, J. C. A. Boeyens, C. W. Holzapfel, P. S. Stevn, J. Chem. Soc., Perkin Trans. 1 1979, 1751; (b) A. Jossang, P. Jossang, H. A. Hadi, T. Sevenet, B. Bodo, J. Org. Chem. 1991, 56, 6527; (c) C. B. Cui, H. Kakeya, H. Osada, Tetrahedron. 1996, 52, 12651; (d) C. B.
- Cui, H. Kakeya, H. Osada, J. Antibiot. 1996, 49, 832; (e) C. V. Galliford, K. A. Scheidt, Angew. Chem., Int. Ed. 2007, 46, 8748; (f) F. Y. Miyake, K. Yakushijin, D. A. Horne, Org. Lett. 2004, 6, 711; (g) J. J. Badillo, N. V. Hanhan, A. K. Franz, Curr. Opin. Drug Discovery Dev. 2010, 13, 758; (h) M. Rottmann, C. McNamara, B. K. S. Yeung,
- M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. 20 Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. González-Páez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H.-P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler, T. T. Diagana, Science 2010, 329, 1175.
- 25 [5] (a) A. P. Antonchick, C. Gerding-Reimers, M. Catarinella, M. Schürmann, H. Preut, S. Ziegler, D. Rauh, H. Waldmann, Nat. Chem. 2010, 2, 735; (b) B. Tan, N. R. Candeias, C. F., Barbas, III Nat. Chem. 2011, 3, 473; (c) H. Wu, L.-L. Zhang, Z.-Q. Tian, Y.-D. Huang, Y.-M Wang, Chem. Eur. J. 2013, 19, 1747; (d) R. Ghahremanzadeh, G. I.
- Shakibaei, S. Ahadi, A. Bazgir, J. Comb. Chem. 2010, 12, 191; (e) R. 30 Ghahremanzadeh, M. Sayyafi, S. Ahadi, A. Bazgir, J. Comb. Chem. 2009, 11, 393; (f) B. Liang, S. Kalidindi, J. A. Porco, C. R. J. Stephenson, Org. Lett. 2010, 12, 572.
- [6] (a) W.-B. Chen, Z.-J. Wu, J. Hu, L.-F. Cun, X.-M. Zhang, W.-C.
- Yuan, Ogr. Lett. 2011, 13, 92472; (b) W.-B. Chen, W.-Y. Han, Y.-Y. 35 Han, X.-M. Zhang, W.-C. Yuan, Tetrahedron 2013, 69, 5281.
- [7] (a) X.-L. Liu, W.-Y. Han, X.-M. Zhang, W.-C. Yuan, Ogr. Lett. 2013, 15, 1246; (b) W.-Y. Han, S.-W. Li, Z.-J. Wu, X.-M. Zhang, W.-C. Yuan, Chem. Eur. J. 2013, 19, 5551; (c) Y.-M. Cao, F.-F. Shen, F.-
- T. Zhang, R. Wang, Chem. Eur. J. 2013, 19, 1184; (d) H. Wu, L.-L. 40 Zhang, Z.-Q. Tian, Y.-D. Huang, Y.-M. Wang, Chem. Eur. J. 2013, 19, 1747; (e) F. Tan, H-G. Cheng, B. Feng, Y-Q. Zou, S.-W. Duan, J.-R. Chen, W.-J. Xiao, Eur. J. Org. Chem. 2013, 2071.
- [8] (a) Y.-Y. Han, W.-B. Chen, W.-Y. Han, Z.-J. Wu, X.-M. Zhang, W.-C. Yuan, Ogr. Lett. 2012, 14, 490; (b) S. Kato, T. Yoshino, M. 45 Shibasaki, M. Kanai, S. Matsunaga, Angew. Chem. Int. Ed. 2012, 51, 7007
 - [9] D. Du, Y. Jiang, Q. Xu, M. Shi, Adv. Synth. Catal. 2013, 355, 2249. [10] (a) L. L. Andreani, E. Lapi, Bull. Chim. Farm., 1960, 99, 583; (b) Y.
- L. Zhang, B. Z. Chen, K. Q. Zheng, M. L. Xu, X. H. Lei, Yao Xue 50 Bao 1982, 17, 17; (c) L. Bonsignore, G. Loy, D. Secci, A. Calignano, Eur. J. Med. Chem., 1993, 28, 517; (d) K. R. Müller-Vahl, U. Schneider, A. Koblenz, M. Jöbges, H. Kolbe, T. Daldrup, H. M. Emrich, Pharmacopsychiatry, 2002, 35, 57. (e) K. R. Müller-Vahl, H.
- Prevedel, K. Theloe, H. Kolbe, H. M. Emrich, U. Schneider, 55 Neuropsychopharmacology 2003, 28, 384.
- [11] (a) A. G. Shavva, S. N. Morozkina, I. V. Ishchenko, I. I. Eliseev, G. L. Starova, S. I. Selivanov, Sh. N. Abusalimov, S. S. Selivanov, I. Y. Kameneva, N. D. Eshchenko, Bioorg. Khim. 2007, 33, 310; (b) S. N.
- Morozkina, S. S. Selivanov, S. I. Selivanov, A. S. Drozdov, N. D. 60 Drozdov, A. G. Shavva, Chemistry of Heterocyclic Compounds 2009, 45 1313
 - [12] (a) Y. Kashiwada, K. Yamazaki, Y. Ikeshiro, T. Yamagishi, T. Fujioka, K. Mihashi, K. Mizuki, L. M. Cosentino, K. Fowke, S. L. M.
- Natschke, K. H. Lee, Tetrahedron 2001, 57, 1559; (b) A. V. 65 Kurdyumov, R. P. Hsung, K. Ihlen, J. Wang, Org. Lett. 2003, 5, 3935. (c) Y. Kang, Y. Mei, Y. Du, Z. Jin, Org. Lett. 2003, 5, 4481. (d) Y. Hano, R. Inami, T. Nomura, Heterocycles 1993, 35, 1341; (e) M. P. Paduraru, P. D. Wilson, Org. Lett. 2003, 5, 4911.

- 70 [13] (a) J.-W. Xie, L.-P. Fan, H. Su, X.-S. Li, D.-C. Xu, Org. Biomol. Chem., 2010, 8, 2177; (b) Z.-W. Guo, X.-S. Li, W.-D. Zhu, J.-W. Xie, Eur. J. Org. Chem. 2012, 6924.
 - [14] (a) Y. Sohtome, K. Nagasawa, Synlett, 2010, 1; (b) L. W. Xu, J. Luo, Y. X. Lu, Chem. Commun. 2009, 1807; (c) D. W. C. MacMillan,
- Nature 2008, 455, 304; (d) J. T. Mohr, M. R. Krout, B. M. Stoltz, Nature 2008, 455, 323; (e) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471; (f) C. Chandler, P. Galzerano, A. Michrowska, B. List, Angew. Chem. 2009, 121, 2012; Angew. Chem. Int. Ed. 2009, 48, 1978; (g) L. Albrecht, B. Richter, C. Vila, H. Krawczyk, K. A. Jørgensen, Chem. Eur. J. 2009, 15, 3093. 80
- [15] (a) T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672; (b) T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119; (c) S. Tian, Y. Chen, J. Hang, L. Tang, P. McDaid, L. Deng, Acc. Chem. Res. 2004; (d) C. L. Cao, M. 85
 - C. Ye, X. L. Sun, Y. Tang, Org. Lett. 2006, 8, 2901.

Organocatalytic Domino Michael/Cyclization Reaction: Efficient Synthesis of Multi-functionalized Tetracyclic Spirooxindoles with Multiple Stereocenters

Zu-Kang Fu, Jin-Yun Pan, Dong-Cheng Xu, Jian-Wu Xie

A series of chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c]pyrrole- 1,3'-indoline] derivatives with four vicinal chiral carbon centers including two quaternary stereocenters were ¹⁰ successfully prepared via domino reaction of various 3-nitro-2H-chromene derivatives to 3- isothiocyanato oxindole with moderate to good enantioselectivities, employing readily available bifunctional thiourea **1d** as the organocatalyst.