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PtOEP microsheets with well-defined shape and smooth surface were fabricated, 

which showed active optical waveguides, photodetector and photoswitching 

properties. 
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Single-crystal microsheets of platinum octaethylporphyrin 
(PtOEP) were fabricated by a facile solution process and fully 
characterized. The as-fabricated microsheets had well-
defined shapes and smooth surfaces, and could act as active 10 

optical waveguides. The prototype photodetector based on a 
single microsheet showed high reproducibility and 
photosensitivity with an Ion/Ioff ratio of ~500. 

 
Functional organic micro/nanostructures with controlled shapes 15 

and sizes are of great significance for miniaturized devices due to 
their unique physical and chemical properties.1 Porphyrin and its 
derivatives have planar aromatic structures and are ideal building 
blocks for organic micro/nanostructures.2,3 Previous studies have 
indicated that they could self-assemble into one-dimensional (1D) 20 

micro/nanostructures through π-π interaction.3–7 The 1D products 
of porphyrins exhibit high thermal and chemical stabilities, and 
possess good electrical and optical properties.3,6,8 However, it is 
noted that there are very few studies on two-dimensional (2D) 
micro/nanostructures of porphyrins, as well as their photoelectric 25 

properties.2,9 The fabrication of 2D micro/nanostructures with 
both well-defined shapes and smooth surfaces is still a hard task 
for porphyrins.10 On the other hand, 2D micro/nanostructures are 
expected to have different photoelectric properties from 1D ones, 
and are thus of great scientific interest from both fundamental and 30 

practical points of view. 
Herein, we report the fabrication of micrometer-sized sheets of 

platinum octaethylporphyrin (PtOEP) by a facile solution process. 
Fig. 1a is the chemical structure of PtOEP. The targeted molecule 
is a typical phosphorescence material, which is extensively used 35 

in optical oxygen sensor,11 temperature sensor,12 organic light-
emitting diode,13 and organic solar cells.14 Recently, 1D structures 
of PtOEP have been prepared by either physical vapor deposition 
or solution-phase precipitative method.15,16 This differs from the 
present study that 2D structures of PtOEP are formed. Moreover, 40 

the as-formed microsheets are single crystals, have well-defined 
shapes, and can act as active optical waveguides. The prototype 
photodetector based on single microsheet exhibits high sensitivity, 
stability and photo-switching properties. 

In a typical synthesis, a chloroform solution of PtOEP (2 45 

mg/ml) was slowly injected into propylene glycol methyl ether 
acetate (PGMEA). The volume ratio of chloroform and PGMEA 
was 3:1. The mixed solution was shaken for 60s and stored at 

ambient conditions for ~ 3 h. Then, a drop (~ 5 μl) of PtOEP 
solution was deposited onto Si substrate. The solvent was allowed 50 

to evaporate completely in air and the resultant product was 
further annealed at 150 oC for 30 min. 
 

 
Fig. 1 (a) Chemical structure of PtOEP. (b) SEM and (c) AFM images of 55 

PtOEP microsheets. (d) XRD pattern of microsheets and source powder of 
PtOEP. The inset is an SAED pattern recorded within a single PtOEP 
microsheet. 

Fig.1b shows a typical scanning electron microscopy (SEM) 
image of the product. The image demonstrates the formation of 60 

microsheets with well-defined shapes and smooth surfaces. The 
average width of microsheets is ~ 9 μm and the length is ~ 20 μm. 
Fig.1c shows an atomic force microscopy (AFM) image of a 
representative microsheet. The cross-section reveals a thickness 
of ~ 1 μm. It is noted that the aspect ratio (length/width) of 65 

microsheets is dependent on the volume ratio of chloroform and 
PGMEA. Larger aspect ratio can be obtained by increasing the 
PGMEA content in the mixed solution (Fig. S1, ESI†). Fig. 1d 
shows the XRD patterns of both microsheets and PtOEP source 
powder. All the diffraction peaks could be well-indexed to the 70 

triclinic phase of PtOEP.3,16 Moreover, the diffraction peaks of 
(001) planes of microsheets are significantly enhanced relative to 
those of source powder, indicating a highly crystalline feature of 
microsheets. This assumption is further supported with the well-
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Fig. 4 (a) Schematic illustration and (b) representative optical image of 
device based on PtOEP microsheet. (c) Dark current and photocurrents at 
different incident power densities. (d) Curve of photocurrents versus 5 

incident optical densities at a bias voltage of -20 V 

Moreover, the photoconduction switching is demonstrated to 
be prompt and reversible by light turning on and off under the 
illumination intensity of 12.05 mW cm-2 (Fig. 5a). It is clear that 
the current of devices increases with the bias voltage and shows 10 

two distinct states, a “low” current state in the dark and a “high” 
current state under white light illumination. The “on”- and “off”-
state currents for 11 cycles remain almost the same. The 
switching in the two states is very fast and reversible, and the 
response time is ca. 1s from the “off”-to “on”-state, and the 15 

recovery time is ca. 1.5 s (Fig. S2, ESI†). This allows the device 
acting as a high-quality photosensitive switch. The excellent 
photoresponse characteristics may be attributed to the synergy-
effect of a high orientation and charge transportability.19 In 
addition, the photodetector based on the PtOEP microsheet shows 20 

high stability as shown in Fig. 5b. The photocurrent nearly holds 
steady and only decreases by 1.8% after 900 s illumination, 
indicating the high photocurrent durability of the photo detectors. 
A similar phenomenon has been reported in the literature and is 
possibly attributed to the traps and other defect states in the 25 

semiconductor nanomaterials.20 
 

 
Fig. 5 (a) Time-dependent on/off switching of device based on the PtOEP 
microsheet. (b) Current versus time continuously over 900 s under 30 

illumination. 

In summary, PtOEP microsheets with well-defined shapes and 
smooth surfaces were fabricated by a facile solution process. The 
fluorescence microscopy image and spatially resolved PL spectra 
of PtOEP microsheets reveal a typical characteristic of active 35 

waveguide. Moreover, the prototype photodetectors based on 
individual microsheets exhibit good stability, fast switching rate, 

and high photosensitivity. The highest ratio of Ion/Ioff of the 
photodiode can reach 500. The superior performance together 
with their facile, large-scale, and low-cost preparation process 40 

makes the as-obtained PtOEP microsheets promising in 
waveguide sensing and photodetector devices. 
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