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Abstract 

A threshold concentration monitoring procedure based on near-infrared (near-IR) 

spectroscopy is described for use in continuous process monitoring applications. The method is 

based on collecting an off-line reference sample and obtaining a near-IR spectrum and 

corresponding reference concentration at the start of the monitoring period. Subsequently, 

spectra are collected continuously and ratios are taken to the reference spectrum. The resulting 

spectra in absorbance units are differential spectra whose effective analyte concentration (termed 

the differential concentration) is the difference in concentration relative to the concentration in 

the reference sample. By knowing the reference concentration and a user-specified threshold, a 

critical concentration can be defined that specifies the threshold in terms of differential 

concentrations. Determining whether the analyte concentration is within specification can then 

be addressed as a pattern classification problem and a qualitative classification model can be 

used to discriminate differential spectra that reflect the two possible states: within or outside of 

specification. A simulated biological process is used to test the methodology in which a dynamic 

system of glucose, lactate, urea, and triacetin in the mM range in phosphate buffer is monitored 

continuously to detect occurrences when the glucose concentration drops below a threshold of 

3.0 mM. With the use of three sets of prediction data, one of which was collected 2.5 years after 

the calibration data, the monitoring algorithm is implemented with 100% successful detections 

and no false detections.  
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Introduction 

Near-infrared (near-IR) spectroscopy has found significant use in industrial monitoring 

applications involving process control and quality assurance.
1-7

 Within these applications, an 

area of potential interest is threshold monitoring. In threshold monitoring, rather than track the 

absolute concentration of a component of interest, the goal is to identify whether that 

concentration is too low, too high, or outside of a desired range. By not requiring an absolute 

concentration to be determined, the monitoring task is simplified and potentially made more 

robust.  

In this paper, a threshold monitoring methodology is developed on the basis of the 

continuous collection of near-IR spectra and the real-time application of a classification model to 

assign spectra to one of two data categories: (1) spectra meeting a concentration specification or 

(2) spectra not meeting that specification. In the context of a process control application, these 

two data classes correspond to situations in which an operator would be notified that the process 

is out of specification (alarm class) or the corresponding case in which no notification is 

necessary (non-alarm class). For the example used here, the scenario implemented is a case in 

which an alarm is sounded if an analyte concentration drops below a pre-determined threshold. 

The same methodology could be used for identifying the occurrence of a concentration above a 

threshold or the case in which a concentration is required to be between a specified minimum 

and a maximum.  

In the work presented, a dynamic system based on varying mM concentrations of 

glucose, urea, lactate, and triacetin in phosphate buffer is implemented. While this chemical 

system was not designed to mimic a specific industrial or biological process, the compounds are 

either present in living systems or are spectroscopically similar to such compounds. Thus, the 

results obtained in this work could be relevant for applications as diverse as continuous 

monitoring of analytes such as blood glucose in a hospital environment or industrial monitoring 
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of a biotechnology process. In addition, the compounds used in this study all have absorptivities 

on the order of 10
-4

 absorbance units (AU)/mm-mM
8
 and exhibit a high degree of spectral 

overlap. This system thus provides a challenge to the sensitivity and selectivity of near-IR 

spectroscopy for use in continuous monitoring applications.  

Theory 

  

The objective of this research was to evaluate the potential for implementing a threshold 

concentration monitor with near-IR spectroscopy. The key elements of this algorithm are: (1) 

collection of a calibration database of near-IR spectra and associated reference analyte 

concentrations that can be used subsequently in the construction of classification models that 

allow spectra to be assigned membership in one of two data classes: spectra meeting a desired 

threshold concentration (non-alarm) or spectra not meeting this standard (alarm), (2) use of a 

reference measurement to determine the analyte concentration at the start of the monitoring 

period, (3) collection of a reference near-IR spectrum at the same time the reference analyte 

measurement is made, (4) use of this reference spectrum as the spectral background in the 

calculation of absorbance values for spectra collected subsequently, (5) definition of a critical 

concentration that specifies the change in analyte concentration relative to the reference 

concentration that will cause the process being monitored to be out of specification and thereby 

trigger an alarm, (6) use of the calibration database to construct a classification model that allows 

spectra to be grouped into the alarm and non-alarm classes on the basis of the critical 

concentration, and (7) collection of spectra continuously during the monitoring period and 

classification of these spectra in real time as belonging to the alarm or non-alarm data classes. If 

a spectrum is placed into the alarm class, the process is judged to be out of specification and the 

operator is alerted. 

 As indicated above, the spectra submitted to the classification algorithm are in 

absorbance units relative to the reference spectrum collected at the start of the monitoring period. 
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The motivation for the use of this reference spectrum as the absorbance background is to remove 

common spectral features that originate from the sample matrix. A complication that arises, 

however, is that the analyte is present in both spectra and thus the absorbance spectrum that 

results from taking the ratio no longer has an analyte signal intensity that corresponds to its 

original concentration. We term this generated spectrum a differential absorbance spectrum and 

specify its new effective concentration as the differential concentration.  

The effective analyte concentration in the differential spectrum is equal to the 

concentration differences of the two original spectra that are used in the absorbance calculation. 

This concept can be explained using the derivation shown below. Given two single-beam 

intensities, I1	and I2, collected for samples 1 and 2, respectively, the absorbance for the two 

samples can be calculated using a background single-beam intensity,	I0, according to the Beer-

Lambert law  

                                            - log
10
����I1
I0
����=abc1                       (1) 

                                           - log
10
����I2
I0
����=abc2                                             (2) 

In Eqs. 1 and 2, the terms c1 and c2 correspond to the concentrations of the analyte in 

samples 1 and 2, respectively, and a and b denote the absorptivity and path length. The 

wavelength dependence of	I1,	I2, I0 and a is omitted for simplicity.  For the sake of this 

derivation, these equations further assume that the samples contain only a single absorbing 

species.  

The difference between the two equations is given by:  

                                - log
10
����I1
I0
����+ log

10
����I2
I0
����=abc1-abc2                                (3) 

Expanding the expressions containing logarithms, canceling the terms containing I0 and 

rearranging yields: 
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                                       - log
10
����I1
I2
����= ab����c1-c2����                                                 (4) 

As shown in Eq. 4, taking the negative logarithm of the ratio of two single-beam spectra 

computes a differential spectrum in absorbance units and the concentration is equal to the 

differences in concentrations of the corresponding spectra (i.e., numerator concentration – 

denominator concentration).  

A characteristic of this calculation is that differential concentrations can be either positive 

or negative. For glucose as an example analyte in a monitoring application, differential spectra 

corresponding to differential glucose concentrations of 20.0 mM and –20.0 mM in phosphate 

buffer are shown in Fig. 1. Both positive and negative spectral features can be observed 

depending on the differences in the concentrations of the two spectra whose ratio is computed. 

This calculation can be extended to multicomponent systems that follow a linear mixture 

model. In this case, the negative logarithm of the ratio of two single-beam spectra will compute a 

differential spectrum corresponding to the sum of differences in concentrations of each absorbing 

species in the two samples. For example, if the sample whose differential absorbance spectrum is 

displayed in Fig. 1 also contained lactate, both glucose and lactate bands would appear in the 

differential spectrum according to the differences in concentrations of glucose and lactate 

between the numerator and denominator single-beam spectra used in the absorbance calculation.  

The differential spectral calculation is based on several assumptions. The derivation 

assumes that the optical path length b does not change across the data collection. This suggests 

that care should be taken to minimize path length variation over time. The derivation further 

assumes that the background information is the same for all the spectra collected. If this is not 

the case, instead of a single I0 term in Eqs. 1-3, there would be I0,1 and I0,2. A differential 

background term would then be introduced into the computed absorbance spectrum. For 

example, with aqueous samples, if the solution temperature were different between the 
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numerator and denominator spectra used to compute the absorbance, a temperature-dependent 

baseline artifact would be introduced into the differential spectrum because of the temperature 

sensitivity of the background water absorbance. 

Spectra can be used interchangeably in the numerator and denominator in the calculation 

of the differential spectrum. In the work described here, the monitoring scenario was to detect 

concentration excursions below a set threshold. If one assumes the process is in specification at 

the start of the monitoring period when the reference measurement is made, the alarm condition 

will correspond to a negative differential concentration and differential concentrations on both 

sides of the alarm threshold will be negative. For this reason, calibration differential spectra were 

computed such that only negative concentration differences resulted.  

For example, consider the case in which the alarm threshold concentration is 3.0 mM and 

the reference concentration obtained at the start of the monitoring period is 5.0 mM. If the 

reference spectrum corresponding to the reference concentration is used in the denominator of 

the absorbance calculation, differential spectra just below and just above the monitoring 

threshold will have differential concentrations near 3.0 – 5.0 = -2.0 mM.  

The steps used in building the calibration database are shown in the left flowchart in Fig. 

2. This would involve running the process under conditions in which the analyte concentration is 

caused to change over a specified range, conventional reference measurements are made at fixed 

time intervals, and near-IR spectra are collected continuously. Single-beam spectra are collected 

at a specified level of signal averaging and stored in blocks, which are contiguous groups of 

spectra corresponding to a selected time window. The block size specifies a time window in 

which the background variation is assumed to be negligible. Differential spectra computed 

within a block are assumed to have matching backgrounds and thus constant background features 

will have been reduced to zero absorbance. 
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Because of the need for potentially costly and time-consuming reference concentration 

measurements, the number of spectra in which the actual analyte concentration is known will be 

limited. Depending on the process, it may be possible to interpolate concentrations in order to 

assign pseudo-reference concentrations to additional spectra. In general, however, the calibration 

database acquired will have fewer spectra, fewer analyte levels, and fewer reference analyte 

measurements than would be desirable from the standpoint of experimental design. 

The use of differential spectra has an additional advantage for such a case in which the 

calibration database is limited. By computing differential spectra from all combinations of the 

single-beam spectra collected within a time block, the calibration database is expanded to fill in 

additional levels of analyte concentration, as well as some additional variation in the non-

constant background components that are not removed by the differential absorbance calculation.  

To compress the calibration database, a dimensionality reduction algorithm is applied. 

For the work described here, the partial least-squares
9
 (PLS) algorithm was used to reduce the 

dimensionally of the original spectra to an h-dimensional PLS score matrix. Other possible 

techniques for use in this task are principal component analysis
10, 11

 (PCA) and the discrete 

wavelet transform.
12

 The reduction in dimensionality reduces the time required for the steps 

required in building the classification model used to identify alarm and non-alarm spectra. The 

computed PLS spectral loadings and loading weights are saved for the calculation of PLS scores 

for spectra collected in the future when the classification model is put into operation.   

Once the calibration database is assembled, the next step is to calibrate the alarm 

algorithm.  The steps of this procedure are summarized in the right flow chart in Fig. 2. The 

alarm threshold concentration, Calarm, is user-selected and specific to the process being 

monitored. In the minimum threshold example employed here, if a spectrum represents an 

analyte concentration that is equal to or lower than the threshold, an alarm would trigger to alert 

the operator that the process has gone out of specification.  
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Once the alarm threshold concentration is defined, the next step is to partition the 

calibration database (i.e., as represented by the PLS scores) into alarm and non-alarm groups. 

The differential concentrations can be used to identify the alarm and non-alarm patterns. As 

discussed previously, the calculation of the differential spectra is performed to yield negative 

differential concentrations. To identify the alarm and non-alarm spectra within the differential 

concentrations that comprise the calibration database, a negative threshold concentration needs to 

be defined. As defined in Eq. 5, the difference between the alarm threshold concentration and the 

reference concentration (Cref) measured at the start of the monitoring period is defined as the 

critical concentration, Ccrit: 

      Ccrit = Calarm – Cref                                  (5) 

Assuming that Cref is not already in the alarm state, Ccrit will always be negative in sign 

for the low threshold application. This critical concentration identifies the alarm point in the 

context of the future differential spectra computed with respect to the reference spectrum. As an 

example, if Cref  is 4.0 mM, Ccrit = 3.0 mM – 4.0 mM = -1.0 mM. Any differential spectrum 

having a differential concentration below -1.0 mM will trigger an alarm. 

The calibration database is partitioned into alarm and non-alarm classes on the basis of 

Ccrit. If any differential concentration is lower than this critical concentration, the corresponding 

PLS score vector (pattern) is placed into the alarm class; otherwise it is placed into the non-alarm 

class. The alarm decision is thus a classification problem in which patterns are classified into 

either the alarm or non-alarm classes.  

Once the calibration database is partitioned, the next step is to compute a classification 

model that can mathematically discriminate the alarm and non-alarm classes. Many choices exist 

for building classification models, including artificial neural networks,
13-17

 support vector 

machines,
16, 17

 and discriminant analysis methods.
18, 19

 In this work, the technique of piecewise 

linear discriminant analysis (PLDA) was used to build classification models.  
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The PLDA method uses multiple linear discriminant functions to approximate a nonlinear 

separation boundary between two data classes. We have used this method in a number of 

applications in our laboratory,
20-22

 and found it to be quick to implement in an automated manner 

without the requirement for extensive optimization of its architecture. Because the optimization 

of the discriminant functions is iterative in nature, three replicate classification models were 

constructed to allow the incorporation of variability in the positioning of the separating boundary 

between the data classes.  

The steps in the operation of the alarm algorithm are summarized in Fig. 3. Spectra are 

collected continuously over time while the process evolves. The ratio of each spectrum to the 

collected reference is taken, forming a differential spectrum corresponding to the signed 

difference in concentration relative to the reference. After projecting each differential spectrum 

collected at time, t, onto the previously computed PLS factors, an h-dimensional spectral pattern 

(i.e., the PLS score vector), tdiff,t is obtained. Using the previously computed classification model, 

the pattern tdiff,t is classified into either the alarm or non-alarm classes. 

Application of the PLDA method produces a discriminant score that determines the class 

membership of the pattern, tdiff,t. If the discriminant score is higher than zero, the corresponding 

pattern belongs to the alarm side of the separating boundary while a zero or negative 

discriminant score corresponds to a pattern on the non-alarm side. As noted above, this research 

computed three replicate classifiers. To be classified as an alarm, two of the three replicate 

classifiers had to place the pattern in the alarm class. 

Experimental 

Near-infrared spectra used for this study were collected during 14 one-day data collection 

sessions by using two dynamic systems (DS 1 and DS 2), each consisting of four chemical 

components in phosphate buffer. The individual data groups will be termed runs 1 to 14. If run 1 
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is defined as time zero, runs 2-14 were conducted approximately 1, 2, 2, 3, 4, 21, 26, 28, 30, 56, 

57, 58 and 175 weeks later. Runs 1-5 corresponded to DS 1 and runs 6-14 derived from DS 2.  

Reagents 

Phosphate buffer (0.1 M) was prepared in 18.2 MΩ water purified by a Labconco water 

purification system (Labconco, Kansas City, MO). A buffer pH of 7.4 was achieved by titrating 

monobasic sodium phosphate (ACS reagent, Fisher Scientific, Fair Lawn, NJ) with 50 % w/w 

sodium hydroxide (Fisher Scientific). The buffer contained sodium benzoate (ACS reagent, 

Fisher Scientific) at 5 g/L as a preservative.  

For DS 1, stock solutions of α-D-glucose (ACS reagent, Fisher Scientific), triacetin (ACS 

reagent, Sigma-Aldrich, St. Louis, MO) and urea (ACS reagent, Fisher Scientific) were prepared 

in the phosphate buffer. Each of the stock solutions in DS 1 contained 10 mM sodium L-lactate 

(ACS reagent, Sigma-Aldrich). Dynamic system 2 was composed of α-D-glucose, triacetin, and 

L-lactate prepared in phosphate buffer. Each of the stock solutions in DS 2 contained 10 mM 

urea. The data collected from these two dynamic systems were concatenated to create an overall 

data set for use in testing the threshold monitor.  

Apparatus and Procedures 

To simulate concentration excursions that might occur during an industrial process, three 

stock solutions maintained at ~55 °C in a water bath were mixed in different ratios using three 

peristaltic pumps (Rabbit-Plus and Dynamax Models, Rainin Instrument Co., Woburn, MA) 

operating under the control of Rainin Pump Control software (Version VI, Waterville Analytical, 

Waterville, MA). The individual solutions exiting the three pumps were connected by Y-

connectors and flowed through an in-line mixer (Cole-Parmer Instrument Co., Vernon Hills, IL) 

to achieve a homogeneous output solution.  
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By changing the pump speeds, and therefore the flow rates of each of the solutions, the 

concentrations of the solutions exiting the mixer were varied. The concentration of each 

component of the solution exiting the mixer can be calculated as shown in Eq. 6: 

                   C2 =
(C1R1 )

(R1+R2 +R3)
                     (6) 

For the case of a prepared glucose concentration, C2, C1 in Eq. 6 is the concentration of 

the glucose stock solution, R1 is the pump speed for the glucose pump, and R2 and R3 are the 

pump speeds for the other two stock solutions. The stock solution concentration, total pump 

speed (R1+R2+R3) and glucose pump speed thus determine a desired glucose concentration. For 

the work presented here, the total pump speed was always 10 rpm.  

Runs 1-11 were used to form the calibration database, and runs 12-14 were used as 

prediction sets to simulate the operation of the threshold monitor. The concentration values for 

each component per sample were assigned to minimize correlations between the constituents. 

For the calibration data, pairwise correlation coefficients between the chemical components 

ranged from 0.26 to -0.34. For prediction sets 1, 2, and 3, respectively, the ranges of correlation 

coefficients were -0.42 to -0.62, -0.40 to -0.65, and -0.43 to -0.57. These levels of correlation 

were judged to be acceptable from the standpoint of preventing fortuitous results based on 

chance correlations.  

The solution exiting the mixer was flowed through a 20 mm-diameter circular aperture 

transmission cell (Model 118-3, Wilmad Glass, Buena, NJ). The sample cell employed sapphire 

windows (Meller Optics, Providence, RI) and had a path length of 1.26 mm. The transmission 

cell was placed in the sample compartment of a Nicolet 6700 Fourier transform spectrometer 

(Nicolet Analytical Instruments, Madison, WI). The spectrometer employed a tungsten-halogen 

source, CaF2 beam splitter, and a liquid-nitrogen-cooled InSb detector. A K-band optical 

interference filter (Barr Associates, Westford, MA) was placed before the sample to isolate the 
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region of 5000-4000 cm
-1

.  To ensure detector linearity, an aperture setting of 100 was used and 

the source was further attenuated by placing a nominal 63 % neutral density filter (Rolyn Optics, 

Covina, CA) before the sample.  

The temperature of the samples exiting the sample cell was monitored with a copper-

constantan thermocouple probe and digital meter (Omega Engineering Inc., Stamford, CT) 

inserted into a port in the vinyl tubing. For the entire study, the temperature range of the flowing 

liquid was maintained in the range of 36.6-37.2 °C.  

After the sample exited the sample cell, fractions were continuously collected at a rate of 

1 min/tube using a Gilson FC 203B fraction collector (Gilson, Inc., Middleton, WI). The glucose 

concentrations of each of the fractions were verified each day with a YSI Model 2300 STAT 

PLUS glucose-lactate analyzer (YSI Inc., Yellow Springs, OH) which had an estimated 

instrumental error of ± 0.2 mM according to the YSI product specifications.  

The software used for the data collection and subsequent Fourier processing was Omnic 

(Version 7.1, Nicolet Analytical Instruments) operating on a Dell OptiPlex GX280 computer 

(Dell Computer Corp., Austin, TX) running under Windows 7 (Microsoft, Inc., Redmond, WA). 

Spectra for the liquid flowing through the sample cell were collected continuously as 64 co-

added (~ 1 min) asymmetric scans consisting of 4097 points. The Fourier processing steps 

included one level of zero filling, Happ-Genzel apodization, and Mertz phase correction. The 

computed spectra had a point spacing of 1.93 cm
-1

. This corresponded to 519 resolution elements 

over the range of 4000-5000 cm
-1

.  

The starting time for the spectral collection, starting time for the fraction collector and the 

time for the solution to flow through the tubing from the sample cell to the fraction collector 

were used to assign a glucose concentration value to each of the collected spectra. Spectra 

collected while the pump speed was changing had partially equilibrated glucose concentrations 

and were omitted from the data analysis.  
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After collection and Fourier processing, spectra were transferred to a Dell Precision 670 

workstation (Dell Computer Corp.) running under Red Hat Linux (Version 5.3, Red Hat, Inc., 

Raleigh, NC). All subsequent calculations were performed on this computer using the Matlab 

development environment (Version 7.4.0 (R2007a), The MathWorks, Inc., Natick, MA). 

Software for the calculation of piecewise linear discriminants used in-house code written in 

Fortran and compiled with the Intel Fortran Compiler for Linux (Version 10.0, Intel Corp., Santa 

Clara, CA). 

Results and Discussion 

Overview of Collected Data 

The complete glucose concentration profile for runs 1-14 is given in Fig. 4. The 

horizontal line at 3.0 mM in indicates the concentration used in this work to define the 

monitoring threshold. The calibration set was split into training and monitoring sets. The 

monitoring set was used as a pseudo-prediction set to help in the evaluation of parameters 

pertaining to the use of PLS and PLDA. Vertical lines in Fig. 4 denote the training (runs 1-10), 

monitoring (run 11), and prediction (runs 12-14) sets. Across all the data sets, there were 1088 

single-beam spectra.  

For each concentration level, short-term noise was evaluated by computing 100 % lines 

from each pair of consecutive spectra. These 100 % lines were converted to AU, and the 

wavenumber region of 4300-4500 cm
-1

 was fitted to a third-order polynomial model. The RMS 

noise was then computed about the polynomial fit to obtain the intrinsic measurement noise. The 

polynomial model corrects for systematic offsets in the 100% lines. The average RMS noise 

values calculated across the spectra in each of the 14 runs ranged from 1.5 to 4.3 µAU.  

Assembly of Calibration Database 

For this study, all spectra collected during a single run were treated as having a constant 

background and placed into a single data block. Differential spectra were calculated by taking 
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the ratios of all combinations of single-beam spectra within each block. Each ratio was oriented 

to produce a negative differential concentration. Those combinations that produced a differential 

glucose concentration of 0.0 mM were not used. This procedure yielded a total of 51,269 

differential spectra in the calibration database.  

Optimization of Calibration Parameters 

The PLS algorithm was used to reduce the multidimensional spectral information in the 

calibration database into a series of PLS scores. Two parameters that must be optimized for the 

implementation of PLS are the spectral region submitted to the algorithm and the number of 

latent variables to be computed.  

For the optimization of these two parameters, the training and monitoring sets were used. 

The training set consisted of 936 single-beam spectra collected over 10 days. The calculation of 

differential spectra for the training set led to 45,844 spectra. The optimization of the spectral 

range and the number of PLS factors was performed in two steps: (1) a grid search analysis and 

(2) a PLDA-based optimization.  

The grid search was based on sliding a window of fixed spectral width in 50 cm
-1

 

increments across the 4900-4100 cm
-1

 range in the differential spectra. The starting spectral 

width of 100 cm
-1

 was incremented in 50 cm
-1

 increments up to 700 cm
-1

. At each step, PLS 

models for differential glucose concentration were constructed using 3-16 latent variables. This 

produced a total of 1386 parameter combinations. The performance of each model was assessed 

by use of cross-validation. Individual cycles in the calculation involved withholding 10% of the 

calibration subset in contiguous blocks, building a PLS model with the remaining data and then 

using the model to predict the differential glucose concentrations for the spectra withheld. 

Pooling the errors in predicted concentration over 10 cycles produced a standard error of cross-

validation (SECV).   
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The computed SECV values were sorted, and an F-test was performed at the 95% level to 

identify the optimal number of latent variables for each spectral range. The optimal model size 

for a given spectral range was set as the number of latent variables that produced a value of 

SECV that was not statistically different from the minimum SECV found for that range. Table 1 

summarizes the four optimal wavenumber ranges and the corresponding numbers of latent 

variables.  

Fig. 5 plots the values of SECV with respect to the number of latent variables for the 

spectral range that produced the overall lowest SECV (4650-4250 cm
-1

). While the minimum 

SECV occurs at 16 latent variables, the trace is only decreasing very slowly past 11. No benefit 

to extending the optimization past 16 latent variables is apparent. In addition, despite the results 

of the F-test, further evaluation of model sizes less than 16 is suggested.  

The performance of the monitoring set with PLDA was tested with the top four spectral 

ranges found through the grid search. For each range tested, the number of latent variables was 

varied from 6 to 11. This selection was made on the basis of plots such as Fig. 5 that suggested 

little improvement in modeling performance was obtained past 11 latent variables. 

To simulate the implementation of the threshold monitor, the first spectrum in the 

monitoring set was taken as the reference spectrum, and the corresponding glucose concentration 

(5.3 mM) was used as Cref in Eq. 5. Thus, using an alarm concentration of 3.0 mM and according 

to Eq. 5, Ccrit = 3.0 – 5.3 = -2.3 mM. The remaining 105 single-beam spectra in the monitoring 

set were used to compute differential spectra by taking the ratio to the reference spectrum. 

The PLS loading weights and spectral loadings previously computed from the training set 

were then used to compute the scores that defined the pattern vectors corresponding to each 

differential spectrum. For a given spectral range under consideration, the loading weights and 

spectral loadings computed from that range were employed in the calculation of the PLS scores.  
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The critical concentration was used to partition the 45,844 PLS score vectors in the 

training set into alarm and non-alarm classes. There were 21,364 alarm patterns and 24,480 non-

alarm patterns in the training set. For each combination of spectral range and number of latent 

variables, three replicate piecewise linear discriminants were computed on the basis of using the 

training set in conjunction with three sets of training parameters. Each replicate classifier was 

based on a single linear discriminant function.  

One measure of the discriminating ability of the patterns is the total number of alarm 

patterns separated by the discriminant function. For each combination of spectral range and 

number of latent variables, Table 2 summarizes the percentage (average ± standard deviation) of 

alarm patterns separated across the three replicate classifiers.  

Each replicate classifier was applied to predict the class assignment for the 48 alarm and 

58 non-alarm patterns in the monitoring set. Table 2 further summarizes the percentage (average 

± standard deviation) of missed and false alarms for each of the parameter combinations studied. 

None of the combinations of spectral range and latent variables produced missed or false 

alarms with the monitoring set. To define a criterion for selecting a classifier for use in 

subsequent testing with the three prediction sets, the smallest model (i.e., the model based on the 

lowest dimensional patterns) that achieved an acceptable degree of separation of the training set 

was selected. A level of 95% separation of the training data was chosen as the criterion for 

acceptable performance. Through the use of this criterion, the classifier based on a spectral range 

of 4650-4300 cm
-1

 and eight latent variables was chosen as optimal for use in subsequent testing. 

The results for this parameter combination are shown in bold in Table 2. This spectral 

range is logical as it encompasses the glucose C-H combination band at 4400 cm
-1

 (see Figure 1). 

The glucose concentration profile for the monitoring set is given in Fig. 6 (right y-axis). Overlaid 

on the plot are the discriminant scores produced by the optimal classifier when applied to the 

monitoring data. The discriminant scores plotted represent the result of the classification rule in 
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which two positive discriminant scores from among the three replicate classifiers signal an alarm 

decision. For patterns placed in the alarm class, the average positive discriminant score is 

plotted. For patterns classified as non-alarm, the average of the negative discriminant scores is 

plotted. As seen in the figure, no missed or false alarms were observed, and the trace of the 

discriminant scores about the 0.0 decision threshold matches the trace of the concentrations 

about the alarm threshold of 3.0 mM.  

Classification Performance with Prediction Sets 

Classifiers were next developed to test the implementation of the alarm algorithm with 

the three prediction sets. The parameter settings of 4650-4300 cm
-1

 and eight latent variables 

selected from the work with the monitoring data were again employed. The full set of calibration 

data based on runs 1-11 was used to define the calibration database for the development of the 

classifiers. 

The reference concentration for prediction set 1 was 4.6 mM and the critical 

concentration was -1.6 mM. Differential spectra were generated relative to the reference 

spectrum and the PLS factors previously computed with the calibration data were used to 

compute the corresponding score vectors. The calibration patterns were partitioned on the basis 

of the critical concentration into a training set containing 28,469 alarm patterns and 22,800 non-

alarm patterns. Three replicate classifiers were computed with the training set. As with the 

monitoring set, each classifier contained a single discriminant function. Across the three replicate 

classifiers, an average of 85 ± 0.01 % of the alarm patterns in the calibration set were separated. 

Discriminant scores were then computed for the differential spectra in prediction set 1, producing 

no missed or false alarms.  

The same procedures were used for prediction set 2. The reference glucose concentration 

was 3.9 mM, and the corresponding critical concentration was -0.9 mM. The data partitioning 

based on this critical concentration resulted in 35,062 alarm patterns and 16,207 non-alarm 
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patterns. Approximately 80 ± 0.03 % of the alarm patterns of the calibration set were separated 

with a single discriminant function. Applying the decision rule of two out of three classifiers 

signaling an alarm, there were no missed or false alarms for this prediction set.  

The critical concentration for prediction set 3 was -1.1 mM, and the calibration database 

was partitioned into 31,575 alarm patterns and 19,694 non-alarm patterns. Approximately 77 ± 

0.01 % of the alarm patterns of the calibration set were separated with a single discriminant 

function. Fig. 7 shows the glucose concentration profile for prediction set 3 in which there were 

62 non-alarms and 71 alarm patterns. The first and the third classifiers predicted no missed or 

false alarms, while the second classifier predicted one missed alarm and no false alarms. 

Applying the alarm decision rule for the combined use of the three replicate classifiers gave no 

missed or false alarms. The trace of the combined discriminant scores is also shown in Fig. 7 

(left y-axis).  

Fig. 8 plots the three replicate discriminant scores with respect to the corresponding 

differential glucose concentrations for prediction set 3. A clear relationship between the 

discriminant scores and differential concentrations is observed, and the intersection of the 

discriminant score threshold of 0.0 with the critical concentration of -1.1 mM can be seen from 

the plotted reference lines. The advantage of using a discriminant approach rather than a formal 

quantitative concentration model for implementing the alarm can also be observed. There is no 

need to build a precise predictive model for concentration when the question being addressed is 

one of classification (i.e., whether the concentration is above or below a threshold value). 

Finally, Fig. 9 addresses the utility of the calculation of differential spectra in helping to 

maintain the viability of the calibration data with time. The first three PLS scores for the 

calibration data and prediction set 3 are plotted in the figure. The calibration and prediction 

patterns cluster together in the same data space. When one considers the data from prediction set 

3 were collected 2.5 years after the end of the collection of the calibration data, the lack of 
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evidence of instrumental drift is directly attributable to the use of differential spectra in 

developing the methodology.  

Conclusions 

In this paper, a threshold monitor algorithm based on differential near-IR spectra was 

tested with a simulated process. A synthetic sample matrix was constructed from glucose, urea, 

lactate, and triacetin in phosphate buffer to provide a challenge to the ability to extract glucose 

information selectively from near-IR spectra in the combination region. 

This study provided a first test of one of the key components of the alarm algorithm, the 

use of differential spectra computed relative to a glucose-containing reference spectrum. Within 

the calibration data, the calculation of all combinations of spectral ratios within time blocks 

served to expand the concentration data space. Further, the calculation of differential spectra 

served to simplify the resulting absorbance spectra by removing constant features of the spectral 

background.  

The successful use of the PLDA method to implement the alarm decision provided 

verification that a pattern classification approach can be employed to identify concentration 

levels within near-IR spectra. The iterative nature of the training of the classifiers raises the 

possibility that the optimization may become trapped in local maxima. By training three replicate 

discriminants and using them together to implement the alarm decision, the overall robustness of 

the alarm algorithm was improved and the potential problem of training variance was effectively 

addressed.  

The developed alarm algorithm was tested with three external prediction sets. The results 

obtained were very promising. No missed or false alarms were observed for any of the prediction 

sets. The robustness of the methodology was also tested by collecting prediction set 3 two years 

and six months later than the last day of the calibration data. The result for this prediction set 

(i.e., no missed or false alarms) clearly demonstrates the excellent robustness of the methodology 
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to changes in instrumental characteristics with time. The use of differential spectra computed 

relative to a same-day reference was considered to be a key component of the observed 

robustness of the methodology.  

While the results presented in this paper were extremely promising, several qualifying 

considerations must be underscored. First, even though the calculation of differential absorbance 

values helped to simply the background contributions present in the resulting spectra, all of the 

conventional requirements for a successful multivariate calibration remained. For example, the 

calibration data must match the future data to which the method will be applied. Unpredictable 

results will likely be obtained if an unknown component with varying concentration (i.e., varying 

relative to the reference spectrum) is introduced. Second, the chemical system used here was 

relatively straightforward and thus did not offer the complexities of a real biological process that 

might be monitored. Thus, there was no need to incorporate spectral outlier detection or to adopt 

a more sophisticated decision-making algorithm regarding when to identify the alarm state. 

These represent areas of future investigation.  

Finally, while the methodology presented here was based on a low threshold application, 

the same procedures could be used to detect when a concentration exceeds a high threshold. In 

this case, the differential spectra would be computed to yield positive differential concentrations 

and the critical concentration would be positive. All of the other procedures would be the same 

as described here. Implementing classification models for both high and low thresholds could 

also be done to develop an alarm system for maintaining concentrations between specified upper 

and lower limits.  
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Table 1 Results of grid search optimization of spectral range and latent variables 

  

Spectral range (cm
-1)

 Latent variables SECV
a
 (mM) 

4650-4250 16 0.322 

4650-4300 15 0.324 

4700-4250 16 0.324 

4700-4300 15 0.325 

 

a
Standard error of cross-validation obtained from the grid search optimization.  
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Table 2 Average percentages of missed and false alarms for the monitoring set 

 

Spectral 

range 

(cm
-1

) 

 

Number of Latent Variables 
 

                      6                         7                       8                      9                   10                11    

4650-4250 

 
AM (%)a ± S.D 

 

AF (%)b ± S.D 
 

DS (%)c ± S.D 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

82.5 ± 0.0 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

85.9 ± 6.2 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

95.1 ± 1.4 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

97.7 ± 1.4 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

98.1 ± 0.7 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

99.7 ± 0.0 

4700-4250 

 
AM (%)a ± S.D 

 

AF (%)b ± S.D 
 

DS (%)c ± S.D 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

75.5 ± 0.9 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

89.0 ± 0.1 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

88.2 ± 3.4 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

98.4 ± 0.3 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

97.9 ± 1.3 

 
0.0 ± 0.0 

 

0.0 ± 0.0 
 

98.4 ± 0.9 

4650-4300 

 

AM (%)a ± S.D 
 

AF (%)b ± S.D 

 
DS (%)c ± S.D 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
85.4 ± 0.6 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
94.8 ± 0.6 

 

0.0 ± 0.0 

 

0.0 ± 0.0 

 

96.0 ± 0.0 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
99.0 ± 0.1 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
99.7 ± 0.1 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
99.8 ± 0.0 

4700-4300 

 

AM (%)a ± S.D 
 

AF (%)b ± S.D 

 
DS (%)c ± S.D 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
83.2 ± 0.3 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
88.5 ± 0.1 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
93.8 ± 0.0 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
93.0 ± 1.7 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
98.7 ± 0.6 

 

0.0 ± 0.0 
 

0.0 ± 0.0 

 
99.6 ± 0.2 

a
Average percentage of missed alarms (AM) ± standard deviation. 

b
Average percentage of false alarms (AF) ± standard deviation. 

c
Average percentage of separated alarm patterns with a single discriminant  

(DS) ± standard deviation. 
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Figure Captions 

Fig. 1 Differential spectra of glucose in 0.1 M, pH 7.4 phosphate buffer for both positive (dashed 

line) and negative (solid line) concentrations of 20.0 mM, computed by taking the negative 

logarithm of the ratio of two single-beam spectra containing glucose. The spectral features can 

be either positive or negative depending on the concentrations corresponding to the spectra used 

in the numerator and denominator of the absorbance calculation. Glucose combination bands 

near 4300 (C-H), 4400 (C-H), and 4650 (O-H) cm
-1 

are visible in the spectra.  

Fig. 2 Flow charts describing the steps used in building the calibration database (left) and the 

calibration procedure used at the start of the monitoring period (right). The calibration database 

consists of a PLS score matrix (n×h) computed from using n differential spectra and 

corresponding differential concentrations to produce h PLS latent variables. In the right diagram, 

Cref is the reference analyte concentration obtained at the start of the monitoring period. The 

alarm threshold concentration, Calarm, is 3.0 mM for these experiments. The difference between 

Calarm and Cref is termed the critical concentration, Ccrit (Eq. 5). 

Fig. 3 Flow chart of the operation of the alarm. A spectrum is collected at time t and the ratio is 

taken to the reference spectrum to compute a differential spectrum. Projection of the differential 

spectrum onto the calibration PLS factors yields a pattern (i.e., tdif,t) which is classified using the 

previously computed discriminants. If the pattern is classified into non-alarm class, the process 

repeats. If the pattern is placed into the alarm class, an alarm is sounded to alert the operator.  

Fig. 4 Glucose concentration profiles for the study. The labels denote the subdivision of the data 

into groups for calibration, calibration testing (monitoring), and external prediction. The 

horizontal dashed line denotes the threshold monitor concentration of 3.0 mM used in this work. 

Fig. 5 Cross-validation results (SECV) vs. the number of latent variables for the optimal 

wavenumber range of 4650-4250 cm
-1

. Calibration models were based on PLS analysis of 

differential spectra and concentrations in the calibration subset. 
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Fig. 6 The discriminant scores corresponding to the combined use of the three replicate 

classifiers with the monitoring data are shown (diamonds, left y-axis) with the reference glucose 

concentrations superimposed (solid trace, right y-axis). The horizontal line corresponds to the 

alarm/non-alarm thresholds for the discriminant scores (0.0) and reference concentrations (3.0 

mM). There were 48 and 58 spectra in the alarm and non-alarm data classes, respectively. No 

missed or false alarms were observed.  

Fig. 7 The discriminant scores corresponding to the combined use of the three replicate 

classifiers with prediction set 3 are shown (diamonds, left y-axis) with the reference glucose 

concentrations superimposed (solid trace, right y-axis). The horizontal line correspond to the 

alarm/non-alarm thresholds for the discriminant scores (0.0) and reference concentrations (3.0 

mM). There were 71 and 62 alarm and non-alarm patterns, respectively. No missed or false 

alarms were observed.  

Fig. 8 Discriminant scores are plotted with respect to differential glucose concentrations for 

prediction set 3. Circles, “+” symbols, and squares denote the discriminant scores produced by 

the three replicate classifiers. A clear relationship between discriminant scores and differential 

concentrations is noted. Reference lines allow the intersection between the critical concentration 

of -1.1 mM and the discriminant score alarm threshold of 0.0 to be seen.  

Fig. 9 First three PLS scores plotted for the calibration data set and prediction set 3. Blue circles, 

red squares, and green triangles denote the calibration patterns from DS1, the calibration patterns 

from DS2, and the patterns from prediction set 3, respectively. Clear overlap of the patterns is 

noted. This verifies that the calibration and prediction data are consistent, even with a separation 

in time of 2.5 years.   
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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