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Iron-catalyzed [2+2+2] intermolecular cycloaddition of 

trifluoromethyl group substituted unsymmetrical internal 

alkynes afforded the corresponding the trifluoromethyl group 

substituted benzene derivatives in high yield with excellent 

selectivity. 

Trifluoromethyl group (-CF3) substituted benzene derivatives are 

important structural motifs due to its interesting biological 

activities.1 One of the most efficient synthetic methods of benzene 

derivatives is transition metal-catalyzed [2+2+2] cycloaddition of 

alkynes.2 Although various types of transition metal catalysts and 

substrates have been investigated to the inter- and intramolecular 

reactions,2 iron-catalyzed [2+2+2] intermolecular cycloadditions 

have remained challenging topics.3,4 To the best of our knowledge, 

there are no example of the CF3-substituted benzene derivatives 

were produced via iron-catalyzed [2+2+2] cycloaddition.2a,5 

Previously, we reported that ruthenium-catalyzed [2+2+2] 

cyclotrimerization of CF3-substituted internal alkynes.
5c Here, we 

report the development of iron-catalyzed [2+2+2] cycloaddition of 

CF3-substituted internal alkynes. The protocol gave access to arenes 

bearing CF3 of important structural motifs.1 

We initially examined the trimerization of CF3-substituted 

unsymmetrical internal alkyne 1a in the presence of iron catalyst 

under various reaction conditions (Table 1). The cyclotrimerization 

of CF3-alkyne 1a using FeI2 (20 mol%) with DPPP as a ligand under 

Zn and ZnI2 in CH3CN at 80 °C for 12 h led to the corresponding 

CF3-substituted benzene 2a in 66% yield with a 92% regioselectivity 

(entry 1). The trimerization using FeCl2 gave the desired product 2a 

in 79% yield with a 94% regioselectivity (entry 2). Replacing FeCl2 

with Fe(OTf)2 or FeCl3, the decrease of desired product was 

observed (entries 3 and 4).6 It was found that the cyclotrimerization 

of 1a with 5 mol % of FeCl2 for 36 h led to the desired product in 

87% yield with a 95% regioselectivity without formation of 

byproducts (entry 5). The yield from trimerization 1a was 

insufficient in the absence of ZnI2 (entry 6). The combination of 

Zn/ZnI2 is assumed to play an important role to promote such a 

process.7 The reaction with DPPE, DPPB, or PPh3 as a ligand 

resulted in lower yield of the desired product (entries 7-9).  The 

catalytic amount of Zn was not effective in the reaction. The use of 

3.0 equiv of Zn was necessary for the efficient cyclotrimerization. 

Table 1. Iron-catalyzed Cyclotrimerization of 1-(4-Methyl-phenyl)-

3,3,3-trifluoropropyne (1a) 

 

entry 
[Fe]  

(mol %) 
ligand 

time 
(h) 

yield 
(%)a 

2a:3ab 

1 FeI2 (20) DPPP 12 66 92:8 

2 FeCl2 (20) DPPP 12 79 94:6 

3 Fe(OTf)2 (20) DPPP 12 68 95:5 

4 FeCl3 (20) DPPP 12 49 93:7 

5 FeCl2 (5) DPPP 36 87 95:5 

 6c FeCl2 (5) DPPP 36 10 95:5 

7 FeCl2 (5) DPPE 36 21 94:6 

8 FeCl2 (5) DPPB 36 <2 N.D. 

9 FeCl2 (5) PPh3
d 36 <2 N.D. 

aIsolated yield of 2a and 3a. bRatio was determined by 1H and/or 19F NMR of 

the crude materials. cWithout ZnI2. 
d20 mol%. 

We next examined the iron-catalyzed [2+2+2] cyclotrimerization of 

various CF3-alkynes 1b-m under the optimized reaction conditions 

(Table 2). For the reaction of 1b-e, which has an electron-

withdrawing group at the para-position on the benzene ring, the 

corresponding CF3-benzene derivatives 2b-e were formed in up to 
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96% isolated yield with high regioselectivity (entries 1-4). In 

contrast, the cycloadditition using 1h and 1i having an electron-

donating group at the para-position on the benzene ring gave 2h and 

2i with 93% regioselectivity in 73% and 65% yield, respectively 

(entries 7 and 8). The cycloaddition of 1j-l also afforded 2j-l in up to 

92% isolated yield with 96% regioselectivity (entries 9-11). For the 

reaction of 1m and 1o bearing a functional group at the ortho-

position on the benzene ring was not effective to give a small 

amount of products (entry 12 and 13). When the reaction was 

performed using 1-phenyl-1-propyne, 1-phenyl-2-trimethylsilyl 

acetylene, or ethyl phenyl propiolate, the trimerization did not 

proceed in the similar conditions.8 A plausible mechanism is 

depicted in Scheme 1. The coordination of two CF3-alkynes 1 to the 

Fe (0) complex is followed by an oxidative cyclometalation to give 

the ferracyclopentadiene I.4,7 An additional insertion of CF3-alkyne 1 

and reductive elimination subsequently afford the regioselective 

cyclotrimerization product 2.  

Table 2. Iron-catalyzed Cyclotrimerization of CF3-Alkynes 1b-n
 

 
Entry 1 yield (%)a    2:3b 

1 1b 96 95:5 

2 1c 96 95:5 

   3c,d 1d 86 94:6 

4 1e 80 94:6 

5 1f 79 95:5 

 6c 1g 62 93:7 

 7d 1h 73 93:7 

 8c 1i 65 93:7 

9 1j 92 96:4 

10 

 
1k 83 96:4 

11 

 
1l 84 96:4 

12 1m <2 N.D. 

 13 1n <2 N.D. 

aIsolated yield of 2 and 3. bRatio was determined by 1H and/or 19F NMR of 
the crude materials. c60 h. dFeCl2 (7.5 mol%), DPPP (15 mol%), ZnI2 (11.3 

mol%).  

Scheme 1. Proposed Mechanism  

 

 

 

 

 

 

 

 

Furthermore, our reaction conditions of the iron-catalyzed 

cyclotrimerization using CF3-alkynes were applied to the [2+2+2] 

cycloaddition of CF3-alkyne 1c with 1,6-diyne 4a (Table 3). Under 

the similar conditions, treatment of 1c with 4a afforded the 

corresponding CF3-benzene 5ca in 17% yield (entry 1). The reaction 

without a ligand increased the yield of the desired product to give 

5ca in 75% yield (entry 2). We were pleased to find that the reaction 

of 1c with 4a under air conditions successfully promoted the 

formation of 5ca in 90% yield (entry 3).9 No reaction was observed 

in 40 mol % of zinc (entry 4).10 It should be noted that no reaction 

was observed in the absence of iron catalyst (entry 9).  

Next, the cycloaddition of CF3-alkynes 1 with 1,6-diynes 4 was 

performed in the optimized reaction conditions (Table 4). The 

reaction of 1a and 1h bearing an electron-donating group at the 

para-position on the benzene ring with 4a gave the corresponding 

CF3-benzene derivative 5aa and 5ha in 92% and 94% yield, 

respectively (entries 1 and 5). For the reaction of 1c or 1n, which has 

an electron-withdrawing group at the para-position on the benzene 

ring with 4a, cycloadduct 5ca and 5na was formed in 90% and 94% 

yield, respectively. (entries 2 and 8). The carbocyclization of 1j 

bearing an electron-donating group at the meta-position on the 

benzene ring with 4a afforded 5ja in 88% yield. The cycloaddtion of 

1m bearing an electron-donating group at the ortho-position on the 

benzene ring took place to give 5ja in 82% yield. The reaction of 1h 

with various 1,6-diynes 4b-e proceeded in the similar conditions to 

afford 5hb-e in up to 97% isolated yield. 

Table 3. Iron-catalyzed [2+2+2] Carbocyclization of 1-(4-

Chlorophenyl)-3,3,3-trifluoropropyne (1c) with 1,6-Diyne 4aa 

 

entry [Fe] (mol %) additive (mol %) yield (%)b  

 1c FeCl2 (5) Zn/ZnI2 (300/7.5) 17 

2 FeI2 (20) Zn (200) 75 

3 FeI2 (20) Zn (200) 90 

4 FeI2 (20) Zn (40) 0 

5 FeCl2 (20) Zn (200) 83 

6 FeBr2 (20) Zn (200) <1 

7 Fe(OTf)2 (20) Zn (200) 0 

8 FeCl3 (20) Zn (200) 67 

9 – Zn (200) 0 

aUnder air. bIsolated yield. cDPPP (10 mol%), CH3CN (0.3 mL), under 

nitrogen. 

We also performed the iron-catalyzed  [2+2+2] carbocyclization of 

CF3-alkyne with unsymmetrical 1,6-diynes (eq 1). The cycloaddition 

reaction of CF3-alkyne 1a with unsymmetrical 1,6-diyne 4f gave 

cycloadduct 5af and 5’af in 82% yield as a 72:28 (5:5’) mixture of 

regioisomers. The cycloaddition of 1a with 4g afforded 5ag and 5’ag 

in 85% yield as a 85:28 (5:5’) mixture of regioisomers. The structure 

of major product was confirmed in X-ray analysis of 5ag (See 

supporting information). The regioselectivity suggests that the iron-

catalyzed cycloaddition of CF3-alkyne with 1,6-diyne follows a 

similar mechanism to that of well-established mechanism.4 A 

plausible mechanism is depicted in Scheme 2. The coordination of 

1.6-diyne 4 to the Fe (0) complex is followed by an oxidative 

cyclometalation to give the ferracyclopentadiene II. Insertion of 

CF3-alkyne 1 and reductive elimination subsequently afford the 

cycloadduct 5. In the carbocyclization, CH3CN may act as a ligand.11  
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Table 4. Iron-catalyzed [2+2+2] Carbocyclization of CF3-Alkynes 1 

with Symmetrical Diynes 4a 

 

Entry 1 4 yield (%)b  

1 1a: Ar = 4-MeC6H4 
    

4a 

92 

2 

 
1c: Ar = 4-ClC6H4 4a 90 

3 1f: Ar = Ph 4a 92 

4 1g: Ar = 4-PhC6H4 4a 90 

5 1h: Ar = 4-MeOC6H4 4a 94 

6 1j: Ar = 3-MeC6H4 4a 88 

7 1m: Ar = 2-MeOC6H4 4a 82 

8 1n: Ar = 4-CF3C6H4 4a 94 

 9c 1h 

4b 

97 

 10d 1h 

 

 
              

4c  

79 

 
 

 11c 

 

 

1h 

 

 
            

4d  

75 
 

 12e 

 

 

1h 

          
4e  

76 

 

aUnder air. bIsolated yield. c24 h. dFeI2 (25 mol%). e48 h. 

 
Scheme 2. Proposed Mechanism  

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

We demonstrated the iron-catalyzed [2+2+2] intermolecular 

cyclotrimerization of trifluoromethyl-substituted internal alkynes to 

give the corresponding trifluoromethylated benzene derivatives in 

high yield with excellent regioselectivity. We also succeeded in the 

iron-catalyzed [2+2+2] carbocyclization of the CF3-alkyne with 1,6-

diynes. A key intermediate in the selective iron-catalyzed [2+2+2] 

cycloadditions would be a ferracyclopentadiene intermadiate. 
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