This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A simple one pot synthesis of cubic Cu_5FeS_4

Prashant Kumar, Meenaskhi Gusain, Pandian Senthil Kumar, Sitharaman Uma and Rajamani Nagarajan*

Received (in XXX, XXX) Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

Reaction of CuCl, FeCl_3 and thiourea in ethylene glycol under refluxing conditions yielded micro flower shaped cubic Cu_5FeS_4 as confirmed from high resolution PXRD, SEM with EDX, UV-Visible, Raman spectroscopy and magnetic measurements at room temperature.

In addition to embracing a special status among copper-iron minerals, and serving as copper ore, compositions belonging to $\text{Cu}-\text{Fe-S}$ family exhibit interesting properties ranging from earth advanced functional materials. Presence of both Cu and Fe in the same crystal lattice imparts tuneable electrical and magnetic properties such as dilute magnetic semiconducting (DMS) behaviour. Additional control of properties can be achieved by varying the chemical composition/structural arrangements. Since both the metal ions present in $\text{Cu}-\text{Fe-S}$ are earth abundant, they are projected to be low cost alternative for various I-III-VI systems (such as Cu-In-S, Cu-Ag-S, Ag-In-S, Ag-Ga-S). CuInS_2 shows band gap of 1.5 eV in the visible region and therefore have been extensively studied as photovoltaic materials. On the other hand, the optical band gap for CuFeS_2 (0.6 eV) does not lie in the range suitable for photovoltaic applications and coerced reseachers to explore and identify other compositions in $\text{Cu}-\text{Fe-S}$ system, whose band gap is suitable to be used as photovoltaic materials. Plass and coworkers reported the optical band gap of nano particles of CuFeS_2 obtained by the reaction of Cu(acac)_2, Fe(acac)_3, and elemental S in dodecanethiol and oleic acid to be 1.25 eV for the first time. However, bulk solution phase synthesis of CuFeS_2 is essential to further study their properties as well as to examine their photovoltaic functions. To the best of our knowledge, except the report of Plass and coworkers, synthesis reports for CuFeS_2 are mostly indirect by copper enrichment or by the solid state reaction of binary sulphides at high temperatues for longer durations.

7 Existence of large number of chemical compositions, unquenchable (and even moderate) temperature phases, presence of the metal ions, that can show variable oxidation states; and significant difference in chalcophilic character of Cu and Fe, might be the major hurdles behind the less exploration of synthetic strategy for Cu-Fe-S compositions in general and CuFeS_2 in particular. Specific composition targeted synthetic strategy in desired symmetry in Cu-Fe-S system is still a challenging task. Additional difficulty arises from the polymorphic arrangements existing in CuFeS_4 (as high, intermediate, and low bornite). The high-temperature polymorph possesses antifluorite-type structure, consisting of a random distribution of six metal cations and two vacancies in the eight tetrahedral interstices of a cubic close-packed sulphur framework and such an arrangement is stable above 270°C. Based on the single crystal data, Morimoto reported that cubic symmetry of CuFeS_4 results from the twinning of domains with rhombohedral symmetry in eight different orientations. In this rhombohedral structure, all the metal atoms are positioned in three out of four tetrahedral units in a cubic close packed sulphur sub-lattice as in the case of rhombohedral CuS_2 (Cu_3S_2). The intermediate and low forms can be described as superstructures of the high temperature cubic form due to increase in the ordering of vacancies and the metal atoms with reducing temperature. Given these complexities, phase selective, direct, reproducible, rapid and one-pot synthesis of CuFeS_4 is justified. As cubic CuFeS_4 and rhombohedral CuFeS_4 (Cu_3S_2) phases exhibit almost similar kind of atomic and vacancy ordered arrangements, it can be conceptually conceived that a solution based synthetic strategy producing CuFeS_4 (Cu_3S_2) reliably and reproducibly may be suitable for easy stabilization of CuFeS_4 based on the kinetics and energy considerations. Also, it can be conceived that if ionized iron species can be introduced during the formation of CuS_2 (Cu_3S_2), probability of inclusion of iron in it will be quite high. Following our extensive research on copper sulphides and copper containing ternary sulphides, it was quite clear that CuS_2 can be easily realized from the reaction of copper salts with thiourea in ethylene glycol and therefore the introduction of iron during its formation leading to CuFeS_4 has been studied and the results are reported in this communication.

0.50 g (5 mmol) of freshly prepared CuCl, 0.81 g (5 mmol) FeCl_3 (Thomas Baker, 99%) and 0.76 g (10 mmol) thiourea (SRL, 98%) were refluxed together in ethylene glycol (100 mL) for 1.5 h. After the reaction, product in the form of suspension was separated by centrifugation. Finally, it was washed several times with d.d. water, absolute alcohol and CS_2. It was dried at room temperature. The phase composition and structure of the final products were examined from powder X-ray diffraction patterns using a Bruker D8 Discover X-ray diffractometer employing Cu K_α radiation ($\lambda = 1.5418$ Å) with a scan rate of 1.2 s/step and step size 0.02° at 298 K. Raman spectra of the samples, in compact form, were collected using a Renishaw spectrophotometer equipped with a microscope and operating with a laser of wavelength 514 nm. Magnetic measurements were carried out at 300 K using a Vibrating Sample Magnetometer (Microsense...
EV9). Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED) were carried out using FEI Technai G2 20 electron microscope operating at 200 kV. The morphology and elemental mapping of the final products was examined from SEM images obtained using FESEM. FEI Quanta 200F microscope equipped with EDX accessories. UV-Visible diffuse reflectance data of the samples were collected over the spectral range of 200-1000 nm using a Perkin Elmer Lambda 35 scanning double-beam spectrometer equipped with a 50 mm integrating sphere. Photoluminescence (PL) measurements were performed on a Horiba Jobin Yvon Fluorolog 3 Spectrofluorometer at room temperature.

In the PXRD pattern of the product from the reaction of CuCl, FeCl3 and thiourea in ethylene glycol, sharp reflections in the 2θ range of 10-70° were observed indicating high crystalline nature of the samples (Fig. 1 (a)). The presence of less number of reflections suggested the product to possess higher symmetry. The shift of the observed reflections towards higher 2θ values with respect to CuFeS4 (Cu13S) indicated possible inclusion of additional cation in it. Further, search-match of the JCPDS data symmetry (space group and therefore the observed peaks were indexed in cubic with respect to CuFeS4). Such a deconvolution was not observed in the Raman spectrum (inset of Fig. 1(b)). Such a deconvolution was not observed in the Raman spectrum of CuFeS4 obtained in the present set of reactions. Inset in Fig. 2(a) shows the deconvolution of the Raman spectrum. JCPDS cards for CuFeS4 and CuFeS4 (Cu13S) are provided for easy comparison.

The nanosheets intersected with each other resulting in a net like structure with porous surfaces. Interestingly, 3D flower structures were assembled by a large number of nanosheets with an average microflower morphology have earlier been observed for CuS and SnS2 obtained in ethyleneglycol and polyethyleneglycol, respectively. It is therefore reasonable to state that ethylene glycol solvent system used in the current study obtained microflower morphology may be The emission spectrum of the sample at an excitation wavelength of 500 nm showed low intense signal centered at 750 nm, such emission characteristics were not observed or reported earlier for Cu-S compositions.

![Fig. 1](image1.png)

The shift of the observed reflections towards higher 2θ values was evident (inset of Fig. 1(b)). Such a deconvolution was not observed in the Raman spectrum of CuFeS4 obtained in the present set of reactions. Inset in Fig. 2(a) shows the deconvolution of the Raman spectrum. JCPDS cards for CuFeS4 and CuFeS4 (Cu13S) are provided for easy comparison.

![Fig. 2](image2.png)

A low magnification FESEM image of CuFeS4 is presented in Fig. 2(a) showing uniform flower like structure with an average diameter of 10 µm. In the selected area electron diffraction (SAED) pattern recorded from the high resolution TEM showed well defined spots that were indexed corresponding to [000], [444], [440], [331], [311] planes of the cubic cell (inset of Fig. 2 (a)). On higher magnification, micro-flower morphology consisting of a hierarchical structure was observed (Fig. 2(b)). The nanosheets intersected with each other resulting in a net like structure with porous surfaces. Interestingly, 3D flower structures were assembled by a large number of nanosheets with an average microflower morphology have earlier been observed for CuS and SnS2 obtained in ethyleneglycol and polyethyleneglycol, respectively. It is therefore reasonable to state that ethylene glycol solvent system used in the current study obtained microflower morphology may be The emission spectrum of the sample at an excitation wavelength of 500 nm showed low intense signal centered at 750 nm, such emission characteristics were not observed or reported earlier for Cu-S compositions.

![Fig. 3](image3.png)
thickness of 14 nm. EDX analysis of the sample revealed Cu: Fe: S as 4.9: 1.4: 3.8, closely matching with the expected ratio between copper, iron and sulphur (inset of Fig. 2(b)). Such (inset of Fig. 3(a)). However, emissions in this range are usually observed for non-stoichiometric copper containing I-III-VI$_2$ compounds, thereby suggesting the possibility of iron incorporation in the Cu-S system. Paramagnetic behaviour of the sample (inset of Fig. 3(a)), observed at room temperature also offered additional support for the presence of magnetic Fe$^{3+}$ ion in the copper. Copper sulphide (Cu$_x$S) compositions are known to show weak paramagnetism only for $x \approx 1-1.12^{17}$. Also, iron sulphide compositions, synthesized by the reaction of FeCl$_3$ with thiourea were reported to exhibit ferromagnetic behaviour25 and not a simple paramagnetic behaviour. From the UV-Visible spectroscopy data (shown in Fig. 3(b)), band gap value of 1.25 eV was deduced for Cu$_2$FeS$_4$, which was quite comparable with the reported value2.

To answer whether the reaction of other iron salts such as Fe(NO$_3$)$_3$·9H$_2$O or Fe$_2$(SO$_4$)$_3$ with CuCl and thiourea could yield Cu$_2$FeS$_4$ or any other ternary composition, experiments were performed under identical conditions taking them as iron sources. PXRD patterns of the products from these reactions showed the formation of binary sulphides of copper and iron (Fig. S4† ESI). These results hinted regarding the possible mechanism of formation of copper rich Cu$_2$FeS$_4$ from the reaction of CuCl, FeCl$_3$ and thiourea. Independent reactions of CuCl with thiourea and FeCl$_3$ with thiourea by polyol process have been reported to yield copper rich Cu$_{1.8}$S and Fe$_{1.8}$S, respectively26. The occurrence of these two species in higher symmetry along with the highly cation fluidic character of Cu$_{1.8}$S possibly might have promoted the formation of copper rich cubic Cu$_2$FeS$_4$.27 Also, the existence of Fe$^{2+}$ and Fe$^{3+}$ in Fe$_3$S$_4$ increases the probability of cation exchange with Cu$^{2+}$ and Cu$^{3+}$ present in Cu$_2$S$_3$ (Cu$_{1.8}$S).

![Image](image_url)

Conclusion

High bornite Cu$_2$FeS$_4$ was synthesized in pure form by adopting a target oriented approach, derived from isostuctural binary copper sulphide following a single step and one pot strategy. As the reactions are simple and scalable, they can easily be implemented under industrial conditions for viable applications.

Acknowledgement

The authors thank DST (Nanomission) and DST (SR/S1/PC-07/2011(G)), New Delhi, Govt of India, for the financial support to carry out this work.

Notes and references