

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

A table of contents entry

Electrochemical methods, including cyclic voltammetry, chronoamperometry, and chronopotentiometry, combined with molecular dynamic simulation are used to study the electrodeposition mechanism.

RSC Advances Accepted Manuscript

Electrodeposit Copper from alkaline cyanide-free baths containing 5, 5'- dimethylhydantoin and citrate as complex agents

4

⁵ Jie Zhang, Anmin Liu, Xuefeng Ren, Jinqiu Zhang, Peixia Yang and Maozhong An¹

6 State Key Laboratory of Urban Water Resource and Environment, School of Chemical

Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China

8

9

10 Abstract:

An alkaline cyanide-free bath containing 5, 5'- dimethylhydantoin (DMH) and citrate as the 11 complex agents was investigated and developed for copper electrodeposition on carbon steel 12 substrate. The cathodic electrodeposition process was studied by electrochemical measurements 13 including cyclic voltammetry, chronoamperometry, chronopotentiometry, and cathodic 14 polarization on the platinum and glass carbon disk electrodes. Copper layers were characterized 15 with SEM for surface morphology, XRD for crystal structure, and three qualitative methods for 16 adhesion evaluation. On the basis of the analysis of cyclic voltammetry with various switch 17 potentials, the discharge processes in the solutions with only DMH, only citrate, and both as the 18 complex agents have the typical two steps. The discharge processes of both copper-DMH and 19 copper-citrate complexes are irreversible according to the cyclic voltammetry with various scan 20 rates, which is combined with sample current voltammetry to get the kinetic parameters. Diffusion 21 22 coefficients were calculated from the chronoamperometry according to Contrell equation. The

¹ Corresponding author at: State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, No. 92 Xidazhijie Street, Nangang District, Harbin, 150001, China. Tel.: +86-451-86418616. Fax: +86-451-86418616.

E-mail address: mzan@hit.edu.cn (Maozhong An)

23	nucleation and crystal growth processes on the glass carbon electrode in these three solutions
24	show an agreement with the progressive nucleation process of SH models. Molecular dynamic
25	simulation reveals that the plane of the heterocycle of all the four DMH molecules simulated are
26	parallel to the Fe (111) surface and the interaction energy between various molecules and Cu (111)
27	as well as Fe (111) surface were compared. DMH molecules adsorbed on the carbon steel
28	electrode desorb at the initial stage of electrodeposition, which was determined by potential vs.
29	time curves. The concentration of DMH and $\mathrm{K_2CO_3}$ as well as the value of pH have a crucial
30	effect on the surface morphology, the preferable crystal orientation, and the adhesion of the copper
31	layers electroplated on carbon steel substrate. The electrodeposited copper layers had good
32	adhesion with the carbon steel substrate and the average grain size is about 30 nm. The optimum
33	bath is composed of 0.1 M CuSO ₄ , 0.2 M DMH, 0.3 M citrate, and 0.3 M K_2CO_3 at pH 9 ${\sim}10.5$
34	and 50°C.

Keywords: Copper electrodeposition, Alkaline cyanide-free, 5, 5'-dimethylhydantoin, Sample
 current voltammetry, Cyclic voltammetry

37

1 Introduction

Alkaline cyanide baths are still used to electroplate copper that has many applications for the metal-finishing industry ¹. In recent decades many different alternative electrolytes, such as solutions containing amine–ammonia, chloride, citrate, EDTA, glycerolate, phosphate, pyrophosphate, tartrate, and triethanolamine ¹, sorbitol ^{2, 3}, tartrate ⁴, and glycine ^{5, 6}, have been proposed and studied around the world to replace cyanide baths for its environment issues. Owing to economic, chemical, environmental or some other limitations, the majority of these electrolyte systems, however, cannot take place of the cyanide baths totally.

Our research group has developed cyanide-free baths for gold and silver electroplating by using 46 5, 5' – dimethylhydantoin (DMH) as one of the complex agents 7,8 . From previous studies, we 47 find that the features of complexation and adsorption of DMH are two key factors that influence 48 the cathodic deposition processes of gold and silver. In addition, the nature of gold, silver, and 49 copper is similar to some degree. To our knowledge, two patents ^{9,10}, whose statements are very 50 vague, have claimed to use DMH as one optional agent for copper electroplating, but no related 51 literatures or detailed studies has been found. Therefore, we are interested to investigate solutions 52 containing DMH from the electrochemical point of view and develop a potentially robust bath. 53

In order to obtain copper layers with good adhesion on carbon steel substrate, one key point is to prevent the formation of a copper immersion coating on the steel substrate. However, that is not the only factor decreasing the adhesion except for poor cleaning and pretreatment ¹¹. As steel substrate is very easy to be oxidized in air and water, the thin passive film that forms before the electrolytic cell is powered on also plays a significant role in decreasing the adhesion between copper electrodeposits and steel substrate ¹¹⁻¹³. Hydantoin and its derivatives that are, as a rule,

60	used as drugs can coordinate with many metal ions, including Au, Ag, Co, Ni, Cu, and Zn ions ^{14,}
61	¹⁵ . The formation of copper-DMH complex may prevent the immersion coating. By forming an
62	adsorbed layer on metal surface, some organic molecules containing polar groups such as organic
63	N, amine, S, and OH groups can inhibit corrosion of iron in acid ¹⁶ . Hydantoin also has a polar
64	group (N-heterocyclic) and some hydantoin derivatives have been confirmed to be able to inhibit
65	corrosion of iron in acid solution ^{17, 18} . So we suppose that DMH may also be adsorbed on the
66	carbon steel surface, which can influence the electrodeposition process so that the adhesion
67	between electrodeposits and the steel substrate will be enhanced. Molecular dynamic simulation
68	is able to predict and investigate the adsorption behavior and the interaction energy of organic
69	molecules on metal surfaces ^{19, 20} . Although with DMH as the only complex agent the immersion
70	coating could be prevented efficiently at high concentration ratio of DMH to copper ions, the
71	current efficiency (CE) in our experiments was too low to be acceptable. For this reason we chose
72	citrate as the second complex, which can coordinate stably with cupric ions and has be studied
73	widely ²¹⁻²⁴ .

In the present work we investigated the cathodic discharge processes and kinetic features of solutions in the presence of only DMH, only citrate, and both as complex agents with cyclic voltammetry and sample current voltammetry. Chronopotentiometry and chronoamperometry were employed to explore the initial process of the electrodeposition, including the nucleation growth and desorption of DMH molecular, whose adsorption behavior on steel substrate was revealed by using molecular dynamic simulation. Cathodic polarization was demonstrated by potentiodynamic cathodic polarization curves on the platinum rotating disk electrode. The CE of

RSC Advances Accepted Manuscript

- 81 the baths and the surface morphology, crystal structure, and the adhesion of copper layers
- ⁸² electrodeposited on carbon steel substrate were also discussed.

83 **2** Experimental

84 2.1 Preparing baths and electrochemical measurements

All reagents were of analytical grade. Distilled water was used throughout. The baths were composed of $CuSO_4 \cdot 5H_2O$ as the main salt, DMH and citrate (potassium citrate) as complex agents, and K_2CO_3 as the buffer. Sulphuric acid and sodium hydroxide solutions were used to adjust the pH of the baths. The composition of the main solutions in the experiments is presented in Table 1. The pH was 9 and the temperature 50°C if not mentioned specifically.

90

Table 1 the Composition of main solutions used in this work

Solution NO	Concentration (N	Concentration (M)					
Solution NO.	$CuSO_4\cdot 5H_2O$	DMH	citrate	K_2CO_3			
Sp1	0.1	0.0	0.6	0.3			
Sp2	0.1	0.2	0.6	0.3			
Sp3	0.1	0.5	0.6	0.3			
Sp4	0.1	0.5	0.0	0.3			
Sp5	0.1	0.5	0.3	0.3			
S1	0.1	0.0	0.3	0.3			
S2	0.1	0.2	0.3	0.3			
S3	0.1	0.4	0.3	0.3			
S4	0.1	0.2	0.1	0.3			
S5	0.1	0.2	0.5	0.3			
S6	0.1	0.2	0.3	0.0			
S7	0.1	0.2	0.3	0.5			

91	All electrochemical measurements were conducted in a typical three-electrode cell connected to
92	a potentiostat/galvanostat. A glass carbon (GC) and platinum (Pt) electrode ($\phi =$ 3 mm) and a
93	carbon steel disk (ϕ = 5 mm) embedded in Teflon was used as the work electrode for cyclic
94	voltammetry, chronoamperometry, and chronopotentiometry measurements. A glass carbon and a
95	platinum rotating disk electrode (RDE, $\phi = 5$ mm) as the work electrodes for polarization curves

The deposition/stripping method based on constant-current chronopotentiometry ²⁵⁻²⁷ was 99 employed to estimate the current efficiency. Firstly, copper electrodeposition was performed at 100 constant cathodic current density for 10 minutes. Then stripping was carried out at constant anodic 101 current density to oxidize the electrodeposits in the electrolyte containing 300 g/L NH₄NO₃. The 102 potential was monitored as a function of time when stripping (One example of the potential vs. 103 time curves obtained by oxidizing the copper deposits is shown in Figure S1 of the Supplementary 104 Materials). The time at which the potential rose to 1.0 V vs. SCE was chosen as the end point of 105 the oxidization process for all experiments. The CE was calculated by using equation(1). 106

107
$$CE = \frac{i_a \times t_a}{i_c \times t_c}$$
(1)

Where i_a and i_c are anodic oxidation and cathodic reduction current, respectively. t_a and t_c are the time used for oxidation and reduction, respectively. Here the CE of the oxidation process was assumed to be 100%.

A cell consisting of a copper sheet $(5 \times 5 \text{ cm})$ as the anode and a carbon steel sheet $(3 \times 3 \text{ cm})$ as the cathode was employed for electroplating experiments. All electroplating experiments were performed at galvanostatic conditions with relative strong mechanical agitation (around 200 rpm with an agitator blade).

115 2.2 Molecular dynamic simulation

Molecular dynamic simulations were realized in simulation boxes with periodic boundary conditions using Materials Studio (from Accelrys Inc). The boxes consisted of a surface (cleaved

along the (111) plane for ferrum and along the (111) plane for copper) and a liquid phase. The liquid phase contained water molecules with density of 1 g/cm³ and several organic molecules in every box. All molecular dynamic simulations were carried out at 323 K, NVT ensemble, and COPMASS force field with a time step of 1 fs and simulation time of 500 ps. The interaction energy $E_{interaction}$ between the metal surface and one organic molecule was calculated by the equation(2):

$$E_{\text{int}\,eraction} = \frac{1}{n} (E_{total} - E_{polymer} - E_{surface}) \tag{2}$$

¹²⁵ Where E_{total} is the total energy of the metal crystal together with the adsorbed organic molecules, ¹²⁶ E_{surface} and E_{polymer} the total energy of the metal surface and free organic ions, respectively, and *n* is ¹²⁷ the number of the organic molecules simulated in the box. The binding energy is the negative ¹²⁸ value of the interaction energy.

129 2.3 Characterizing copper layers

124

Environmental scanning electron microscope (SEM, Quanta 200F) was employed to observe the surface morphology and cross-sections of copper layers. Crystal structure was revealed by X-ray diffraction (XRD, PANalytical X'Pert PRO).

It is very difficult to measure adhesion quantitatively and "yes or no" test procedure is used in many cases even today ¹². Bend test, cross-hatch test, and thermal shock test can be utilized to evaluate the adhesion of electroplated copper layers on carbon steel substrate ¹². In this work, the sample sheet was bent to and fro through an angle of $\pm 90^{\circ}$ until it was broken into two parts for bend test. A harden steel engraver with angel of 30 degree was used to cross-hatch a mesh pattern of 1 to 3 mm in length for cross-hatch test. For thermal shock test samples were heated in an oven to 250°C and then immersed into cool water (25°C) suddenly. The carbon steel substrate was

polished to a mirror finish, then degreased, and activated in weak acid solution before electrodeposition. After electroplating copper in the investigated baths for 30 minutes, electrodeposition of another 30 minutes was performed in a typical sulfate baths to make the copper layers thick enough. Then the adhesion was evaluated with the three methods mentioned above.

3 Results and discussion

Three types of electrochemical measurements including cyclic voltammetry, 146 chronoamperometry, and chronopotentiometry were employed to analyse the cathodic discharge 147 process of copper in three solutions, Sp4 with only DMH, Sp3 with only citrate, and Sp1 with both 148 DMH and citrate as the complex agents. Cyclic voltammetry with various switch potentials and 149 various scan rates were realized to investigate the reactions and their kinetic features. The sample 150 current voltammetry with the simple analysis method, proposed by Michael V. Mirkin and Allen J. 151 Bard ²⁸, were used to obtain the kinetic parameters of the Pt or GC electrode in the solution with 152 only DMH or only citrate as the complex agent. Diffusion coefficient was calculated by fitting the 153 current vs. time curves according to Contrell equation. Nucleation was compared with the 154 nucleation models proposed by Scharifker and Hills, which is relatively simple and used most 155 frequently ^{29, 30}. 156

157 3.1 Cyclic voltammetry for the discharge processes

158 3.1.1 Various switch potentials

Cyclic voltammograms of the Pt electrode from 1.0 V to various switch potentials (-0.40, -0.60, -0.80, -1.00, -1.10, -1.15, -1.30, and -1.50 V) *vs*. SCE in solution Sp4 with only DMH as the complex agent is shown in Figure 1. All the potential scan was initially swept toward the

162	negative direction from the rest potential at the scan rate of 50 mV/s. In the range from 1.0 V to –
163	1.5 V in Figure 1 (a), three cathodic peaks (C1 (- 0.20 V), C2 (-0.85 V), C3 (- 1.24 V)), and five
164	anodic peaks (A1 (- 0.27 V), A2 (- 0.17 V), A3 (- 0.04 V), A4 (0.23 V), A5 (0.70 V)) can be
165	observed. The peak C1 shifts negatively in the 2^{nd} cycle comparing with the 1^{st} cycle, which is
166	attributed to the copper deposited on the Pt electrode but not stripped totally in the 1st cycle, as
167	copper covering the Pt electrode was observed macroscopically after five cycles. When the switch
168	potential is -0.40 V, -0.60 V, and -0.80 V, the curves have only one cathodic peak C1 and one
169	anodic peak A4 in Figure 1 (b). The anodic A1 appears when the scan switches at -1.00 V, and the
170	anodic A2 appears when the scan switches at -1.10 . A3 appears in the curves with the switch
171	potential of -1.15 V. The curves with the switch potential of -1.30 has all the five anodic peaks.
172	We assume that the main copper-DMH species is $[Cu(DMH^{-})_3]^{-}$ in the solution Sp4, as the
173	three copper-DMH complexes are $[Cu(DMH^-)]^+$, $[Cu(DMH^-)_2]$, and $[Cu(DMH^-)_3]^-$, of which the
174	formation constants ($\log_{10}(\beta)$) are 4.3, 8.2, 12.1, respectively ¹⁴ and the pH of the solution Sp4 was
175	9. Although no report about complexation between Cu^+ and DMH except one patent 10 , which
176	gives no definite data, has been found, here we assume that the coordination of Cu^+ and DMH
177	forms [Cu(DMH ⁻)]. According to all the results above, we can conclude that the main
178	copper-DMH species is discharged by two steps, although the voltammograms have three cathodic
179	peaks. The first cathodic peak C1 is referred to the first discharge step from Cu^{2+} to Cu^{+} as
180	equation(3). Corresponding to the C1, the anodic peak A4 is attributed to the oxidation of Cu^+ .
181	The second cathodic peak C2 is related to the second discharge step from Cu^+ to Cu^0 as
182	equation(4), and the anodic peak A1 is attributed to the oxidation of Cu^0 . Different to the related
183	report of literatures ³¹ , a sharp cathodic peak, C3, appears after the second one. This behaviour

may be related to a catalytic reaction. The small amount of copper electrodeposited at C2 accelerates the discharge of Cu^+ . Because the second cathodic peak C2 is more like a platform, indicating the diffusion of Cu^+ did not reach limitation after peak C2. Moreover, the much larger area at the anodic peaks of the curves with peak C3 means that much more copper is deposited at peak C3. The anodic peaks A2, A3, and A5, which are not easy to define, may be attributed to the production of hydroxides or oxides that may be adsorbed or forming soluble species ³².

¹⁹⁰
$$\left[\operatorname{Cu}\left(\mathrm{DMH}^{-}\right)_{3}\right]^{-} + e^{-} \rightarrow \left[\operatorname{Cu}\left(\mathrm{DMH}^{-}\right)\right] + 2\mathrm{DMH}^{-}$$
(3)

$$\left[\operatorname{Cu}\left(\mathrm{DMH}^{-}\right)\right] + e^{-} \to \operatorname{Cu}^{0} + \mathrm{DMH}^{-}$$
(4)

Cyclic voltammograms of the GC electrode from 1.0 V to various switch potentials (-1.00, -192 1.30, -1.35, -1.40, and -1.5 V) vs. SCE in solution Sp4 with only DMH as the complex agent is 193 shown in Figure 2. All the potential scan started in the negative direction from the rest potential at 194 the scan rate of 50 mV/s. The voltammogram with the potential range from 1.0 V to -1.5 V vs. 195 SCE in Figure 2 (a) has two cathodic peaks (C1 (-0.30 V), C2 (-1.45 V)), and four anodic peaks 196 (A1 (-0.30 V), A2 (-0.20 V), A3 (-0.02 V), A4 (0.15 V)). Not like that on the Pt electrode, the 197 peak C1 does not shift in the 2nd cycle comparing with the 1st cycle. But the initial point of the 198 second peak C2 shifts positively, which also is attributed to the copper deposited but not stripped 199 totally in the 1st cycle. The voltammogram has a large peak separation and crossover on the 200 cathodic branches, indicating the presence of nucleation and growth processes ²⁹, whereas the 201 voltammogram on the Pt in Figure 1 does not have this feature. When the switch potential is -1.00202 V and -1.30 V, the curves have only one cathodic peak C1 and one anodic peak A4 in Figure 2 (b). 203 The anodic A1 and A2 appear when the scan switches at -1.35 V, and the anodic A3 appears when 204 the scan switches at -1.40, at the same time the crossover related to the nucleation also appears. 205

206	From these results, the discharge process of the main copper-DMH species on the GC electrode
207	also has two steps but is different to that on the Pt electrode. The cathodic peak C1 and the anodic
208	peak A4 are referred to the first step, Cu^{2+} to Cu^{+} as equation(3), The cathodic peak C2 and the
209	anodic peaks A1 and A2 are attributed to the second step, Cu^+ to Cu^0 as equation(4). Similar to the
210	condition on the Pt electrode the anodic peak A3 may be attributed to the production of hydroxides
211	or oxides.
212	Cyclic voltammograms of the GC electrode from 1.0 V to various switch potentials (– 0.60 , –
213	0.93, -1.35 , and -1.5 V) vs. SCE in solution Sp1 with only citrate as the complex agent is shown
214	in Figure 3. All the potential scan started in the negative direction from the rest potential at the
215	scan rate of 50 mV/s. The voltammogram with the potential range from 1.0 V to -1.5 V vs. SCE in
216	Figure 3 (a) has one big cathodic peaks (C3 (- 1.20 V)) and four small cathodic peaks (C1 (-
217	0.925 V), C2 (- 0.99 V), C4 (- 1.33 V), C5 (- 1.60 V)) and four anodic peaks (A1 (- 0.285 V),
218	A2 (-0.09 V), A3 (-0.00 V)). No peak shift can be observed in the 2 nd cycle comparing with the
219	1^{st} cycle. The peak A2 can be observed in all the three curves with the switch potentials of – 0.60,
220	-0.93, -1.35 V in the zoom view of Figure 3 (b). The peak of A1 and A3 cannot be observed
221	clearly in the curves with the switch potentials of -0.60 , -0.93 , thus it is not easy to determine
222	whether the two curves has the two peaks. The curves with the switch potential of -1.35 V have
223	all the three anodic peaks, which can be observed clearly in Figure 3 (b).
224	The cathodic peak C1, C3, C4, and C5 is very small and difficult to define, here we only discuss
225	the predominant cathodic peak C2. According to the reports of Rode, S., et al ²² , the predominant

5.1, and the discharge process of the $[Cu_2(Cit_2H_{-2})]^{4-}$ has two steps with an adsorbed blocking

226

copper-citrate species is the $[Cu_2(Cit_2H_{-2})]^{4-}$ dimer with the formation constant $(log10(\beta))$ of

228

229

230

231

232

247

248

249

RSC Advances

intermediate, $[Cu_2(Cit_2H_{-2})]_{ads}^{6-}$. Considering the discussion of the results in Figure 1 and 2, it	
can be inferred that the anodic peaks A2 and A3 in Figure 3 (b) are referred to the oxidation of Cu^+	
and the peak A1 to the oxidation of Cu^0 . In the voltammogram with the switch potential of -0.60	
V, although no obvious cathodic peak can be observed, but the anodic peak proves that the first	
discharge step exists as equation(5). Therefore, the discharge of $[Cu_2(Cit_2H_{-2})]^{4-}$ in our	
experiments also has the two steps. The cathodic peak C2 and the anodic peak A1 are attributed to	
the reaction demonstrated by equation(6). In addition, the cyclic voltammetry at various scan rates	
combining with the sample current voltammetry confirms that the discharge in this work accords	
with the mechanism proposed by Rode, S., et al.	
$\left[\operatorname{Cu}_{2}\left(\operatorname{Cit}_{2}\operatorname{H}_{-2}\right)\right]^{4-} + 2e^{-} \rightarrow \left[\operatorname{Cu}_{2}\left(\operatorname{Cit}_{2}\operatorname{H}_{-2}\right)\right]^{6-}_{ads} $ (5)	
$[Cu_{2}(Cit_{2}H_{-2})]_{ads}^{6-} + 2e^{-} + 2H_{2}O \rightarrow 2Cu + 2Cit^{3-} + 2OH^{-} $ (6)	
Cyclic voltammograms of the GC electrode from 1.0 V to -1.25 and -1.5 V vs. SCE in	
solution Sn3 with both DMH and citrate as the complex agents is shown in Figure 4. All the	

has the two steps. The cathodic peak C2 and the anodic peak A1 are attributed to	233
onstrated by equation(6). In addition, the cyclic voltammetry at various scan rates	234
he sample current voltammetry confirms that the discharge in this work accords	235
sm proposed by Rode, S., et al.	236
$[Cu_{2}(Cit_{2}H_{-2})]^{4-} + 2e^{-} \rightarrow [Cu_{2}(Cit_{2}H_{-2})]^{6-}_{ads} $ (5)	237
$[Cu_{2}(Cit_{2}H_{-2})]_{ads}^{6-} + 2e^{-} + 2H_{2}O \rightarrow 2Cu + 2Cit^{3-} + 2OH^{-} $ (6)	238
mograms of the GC electrode from 1.0 V to - 1.25 and - 1.5 V vs. SCE in	239
h both DMH and citrate as the complex agents is shown in Figure 4. All the	240
rted in the negative direction from the rest potential at the scan rate of 50 mV/s.	241
aks (C1 (-0.90 V) and C2 (-1.40 V), four anodic peaks (A1 (-0.26 V), A2 ($-$	242
0.05), and A4 (- 0.17)), and a nucleation crossover are observed in the	243
with the range from 1.0 V to -1.5 V. Whereas only one cathodic peak C1 and two	244
t in the voltammogram with the range from 1.0 V to -1.25 V . These results	245
predominant cupric complexes also discharge by two steps with C1 and A3. A4	246

ts 4 referred to Cu^{2+} to Cu^{+} and C2 and A1, A2 referred to Cu^{+} to Cu^{0} . This agrees with the discharge processes of cupric complexes in solution with only DMH or citrate as the complex, as the feature of the voltammogram in Figure 3 is very close to the synthesis of the ones in Figure 1(a) and Figure

2 (a). In addition, Peak C1 shifts negatively and peak C2 is smoother in the 2nd cycle comparing
with that in the 1st cycle in Figure 3, which is also observed in the curves obtained from the former
two solutions. This results from that the surface of the electrode is changed by the potential scan in
the 1st cycle.

254 3.1.2 Various scan rates

Voltammetry measurements at various scan rates were conducted in the three solutions, Sp4, 255 Sp1, and Sp3. The results are presented in Figure 5. To keep consistency of the electrode surface in 256 the experiments of this part, the electrode were pretreated by voltammetry until no peak shift 257 occurs in the last two cycles before every voltammetry measurement was performed. Figure 5 (a) 258 and (b) show the voltammograms at various scan rates of the Pt and GC electrode, respectively, in 259 solution Sp4 with only DMH as the complex agent. Figure 5 (c) and (d) show the voltammograms 260 of the GC electrode in solution Sp1 and Sp3, respectively. The potential scan in Figure 5 (a) and (b) 261 falls in the range in which only the first step discharge can happens, and the potential scan in 262 Figure 5 (c) and (d) falls in the range of the two step discharge. All the voltammograms in the four 263 figures have the features of the irreversibility reaction: the relationship of the peak current density 264 (i_p) and the square root of the scan rate $(v^{1/2})$ is linear, and the peak potential E_p shifts negatively 265 with the increase of the scan rate. But of the four plots of $i_p vs. v^{1/2}$ only the one in Figure 5 (c) has 266 the intercept of zero, and the diffusion coefficient calculated from the voltammetry according to 267 equation(7) is not in accord with the results from chronoamperometry (see Figure 3). The transfer 268 coefficients (α) listed in Figure 3 was also calculated from the cyclic voltammetry according to 269 equation(8) (detail data is listed in table S1 of the supplementary materials). The α calculated from 270 the cyclic voltammetry of the Pt electrode in solution Sp4 with only DMH as the complex agent is 271

287

288

RSC Advances

in accord with the value from the sample current voltammetry. The α calculated from the cyclic 272 voltammetry of the GC electrode in solution Sp1 with only citrate as the complex agent is also 273 very close to the one from sample current voltammetry, when the number of transfer electron n is 274 2, which confirms the validity of equation(5). These results allow us to speculate that the reaction 275 of copper-DMH complex on the GC electrode is much more complex than that in equation(3), 276 considering that the α calculated from the cyclic voltammetry of the GC electrode in solution Sp4 277 is a half of the one from sample current voltammetry when n = 1. By the way, no significant data 278 was obtained from the polarization curves on a GC rotating disk electrode with the slow san rate 279 of 1 mV/s. The electrodeposition process on the GC electrode seems controlled by the charge 280 transfer process in solution Sp4 and Sp3 while exhibits features of the diffusion control in solution 281 Sp1 (see Figure S2 to S5 of the supplementary materials). The data from solution Sp1 was used 282 to calculate the diffusion coefficient based on the kinematic viscosity of 0.01 cm²/s according to 283 the Koutecky' -Levich equation, which, however, departures largely to the one from the cyclic 284 voltammetry. The value, 61.12×10^{-7} cm² · s⁻¹, obtained from the rotating disk electrode is more 285 than that reported, $21.30 \times 10^{-7} \text{ cm}^2 \cdot \text{s}^{-1 33}$. 286

$$j = 0.04858FC_o^* D_o^{1/2} v^{1/2} \left(\frac{\alpha F}{RT}\right)^{1/2} \tag{7}$$

$$|E_p - E_{p/2}| = \frac{1.857RT}{\alpha nF} \tag{8}$$

²⁸⁹ Where *j* is the current density, *F* the Faraday Constant, C_0^* the mole concentration of the ²⁹⁰ electroactive species, assumed to be 0.1 M in this work, D_0 the diffusion coefficient of the ²⁹¹ electroactive species, v the scan rate, *R* the gas constant, *T* the thermodynamic temperature, E_p the ²⁹² peak potential, and $E_{p/2}$ is the potential where the current is at half the peak value.

RSC Advances Accepted Manuscript

293 3.2 Chronoamperometry

²⁹⁴ 3.2.1 Sample current voltammetry for kinetic parameters

Chronoamperometry was used to get the sample current voltammograms (The original current 295 density vs. time curves are presented in figure S6, to S8 of the supplementary materials). The 296 sample current voltammogram of the Pt electrode in solution Sp4 is shown in Figure 6 (a) (and the 297 ones of the GC electrode in solution Sp4 and Sp2 is presented in Figure S9 and S10 of the 298 supplementary materials). The kinetic parameters based on the database proposed by Mirkin, M. V. 299 and A. J. Bard²⁸ are presented in Table 2. Simple linear interpolation and the temperature 300 coefficient, 298/T, for $E_{1/4}-E_{1/2}$ and $E_{1/2}-E_{3/4}$ have been employed in the analysis. Figure 6 (b) is 301 the Tafel curve based on the data of the sample current voltammogram in Figure 6 (a). The α 302 calculated from the Tafel curve is very close to the ones from the database, which confirms the 303 validity of the analysis proposed by Mirkin, M. V. and A. J. Bard. However, the conditional 304 (formal) potential E° calculated may be invalid, as they are smaller than the rest potentials of the 305 systems. The standard rate constant k° was calculated by using equation(9)²⁸. 306

307

 $k^{0} = \lambda \sqrt{D_{0} / (\pi t)} \tag{9}$

308

Where λ is the dimensionless rate constant, $\lambda = k^{\circ}/D_0$ and t is the time at which the current

	1	3

⁰⁹ density is used for the sample current voltammogram.

310 311

Table 2 Kinetic parameters calculated from the sample current voltammetry based on the database proposed by Mirkin, M. V. and A. J. Bard

	FF								
$E_{1/4}-E_{1/2}$ $E_{1/2}-E_{3/4}$ λ k° cm/s $n\Delta E^{\circ}$ E° (mV) α α_{Tafel} α_{Tafel}						$\alpha_{\rm CV}$			
	(mV)	(mV)			(mV)				
Pt in Sp4	42	43	0.17	1.04×10^{-5}	72	-0.02	0.65	0.61	0.64
GC in Sp4	67	66	0.20	1.23×10^{-5}	106	0.01	0.41	0.41	0.20
GC in Sp1	84	81	0.20	5.10×10^{-5}	128	-0.48	0.34	0.30	0.34

^{*} $D_{Cu^{2+}}$ (10⁻⁷ cm² · s⁻¹): 3.54 for Pt electrode in Sp4, 3.61 for GC electrode in Sp4, and 61.12 for GC electrode in Sp1. α_{Tafel} was obtained from the data of sample current voltammetry according to Tafel equation. α_{CV} was calculated from the voltammetry in Figure 5 according to equation(1.8), of which the number of transfer electron n = 1 for Pt electrode in Sp4, n = 1 for Pt electrode in Sp4, n = 2 for GC electrode in Sp1.

Obviously, the Pt and GC electrode in solution Sp4 with only DMH as the complex agent have different α value, indicating different discharge mechanisms on the two electrodes. This is in accord with the results of the cyclic voltammetry, as the cyclic voltammograms on the two electrodes have different shapes.

316 3.2.2 Contrell equation fitting for diffusion coefficient

The plots of *j* vs. $t^{-1/2}$ of the Pt and GC electrodes in solution Sp4 with only DMH as the 317 complex agent is shown in Figure 7. The current vs. time curves with the potential stepping from 318 0.2 V to -0.16 V vs. SCE was used to fitting the plots of *i* vs. $t^{-1/2}$, and equation(10) and (11) are 319 the two equations derived from the intercepts and slopes of the two plots. Theoretic curves based 320 on equation(10) and (11) match very well with the curves measured as shown in the zoom view of 321 Figure 7. The diffusion coefficients, calculated from the two plots according to Contrell equation ^{34,} 322 ³⁵, is very close and listed in Table 3. No significant data was obtained from the current vs. time 323 curves of the GC electrode in solution Sp1 because the nucleation feature appears early at the 324 relative small step potential (see Figure S8 of the supplementary materials). 325

$$j = 19.063 + 32.417t^{1/2} \tag{10}$$

$$i = 20.839 + 32.727t^{1/2} \tag{11}$$

	5	5	1
$D_{Cu^{2+}} (10^{-7} \text{ cm}^2 \cdot \text{s}^{-1})$	Pt in Sp4	GC in Sp4	GC in Sp1
Cyclic voltammetry	1.59	7.06	181.60
Chronoamperometry	3.54	3.61	_
RDE	_	-	61.12

Table 3 Diffusion coefficients calculated from cyclic voltammetry and chronoamperometry

329 3.2.3 Nucleation modelling

326

327

328

Potentiostatic current transients presented in Figure 8 were recorded in the potential ranges of the electrochemical deposition of copper on the GC electrode from solutions Sp4 (Figure 8 (a)), Sp1 (Figure 8 (b)), and Sp3 (Figure 8 (c)). The potential range used agrees with the results of the

previous cyclic voltammetry. All the current transients have the following characteristic features: an abrupt drop followed by an increase in the cathodic current density up to a maximum j_{max} at

 t_{max} , which is related with the crystal nucleation and growth processes, then a decaying in the current density after t_{max} , converging to the limiting current density corresponding to linear diffusion of the electroactive species to a planar electrode, and a bigger j_{max} and a shorter t_{max} with a more negative step potential.

333

334

The SH nucleation models classify the nucleation and crystal growth in three dimensions 339 (3D-dc) controlled by diffusion into two types: the instantaneous process (equation(12)) with 340 simultaneously activated active sites followed by a slow growth of nuclei, and the progressive 341 process (equation(13)) with continually formed active sites followed by a fast growth of nuclei ³⁶. 342 ³⁷. The comparisons of the experimental curves to the dimensionless theoretical curves of the three 343 solutions are presented in Figure 8 (A), (B), and (C). At all step potentials in this work, the curves 344 (-1.300 to -1.388 V) in Figure 8 (A) from solution Sp4 with only DMH as the complex agent 345 and the curves (-1.25 to - 1.35 V) in Figure 8 (B) from solution Sp3 with both DMH and citrate 346 as the complex agents show a great agreement with the progressive nucleation process before t_{max} . 347 while departure downward after t_{max} , which becomes stronger with a more negative step potential. 348 According to Floate, S., et al ³⁷, the concomitant hydrogen evolution or the rapid replenishment of 349 electroactive species through hemi-spherical diffusion to growth centres may contribute to the 350 departure. The former exerts a greater effect with more negative step potential while the latter 351 influences more with less negative step potential. No departure is observed in the curves (-1.300)352 to -1.388 V) in Figure 8 (C) from solution Sp4 with only citrate as the complex agent, which also 353 exhibits an agreement with the progressive nucleation process. It can be concluded that DMH 354

358

359

have a stronger influence on the nucleation and crystal growth process of copper on the GC
 electrode in solution Sp3 with both DMH and citrate as the complex agents in the experimental
 composition.

$$\left(\frac{j}{j_m}\right) = 1.9542 \left(\frac{t}{t_m}\right)^{-1} \left\{1 - \exp\left[-1.2564\left(\frac{t}{t_m}\right)\right]\right\}^2$$
(12)

$$\left(\frac{j}{j_m}\right) = 1.2254\left(\frac{t}{t_m}\right)^{-1}\left\{1 - \exp\left[-2.3367\left(\frac{t}{t_m}\right)\right]\right\}^2$$
(13)

3.3 The adsorption of DMH molecules on steel substrate

361 3.3.1 Molecular dynamic simulation

Molecular dynamic simulations were conducted to reveal the adsorption behaviours of DMH 362 and citrate acid molecules on the Fe (111) and Cu (111) surface. All the simulations had run for 363 500 ps in which the computed systems had reached a steady state (as shown by the energy and 364 potential vs. time curves in supplementary materials). The results are shown in Figure 9 and the 365 interaction energy $E_{\text{interaction}}$ between the organics and the metal surface are listed in Table 4. All 366 DMH molecules simulated, which are placed randomly in the boxes before computing, get close 367 to the surface of Cu (111) and Fe (111) at the end of the simulation. Two of the four DMH 368 molecules simulated have the planes of their heterocycle parallel to the Cu (111) surface, and the 369 other two make the planes of their heterocycle perpendicular to the Cu (111) surface. While the 370 planes of the heterocycle of all the four molecules simulated are parallel to the Fe (111) surface. 371 The adsorption behaviours simulated of DMH⁻ (DMH molecule lacking one proton), citrate acid 372 molecule (Cit), Cit (citrate acid molecule lacking three protons), and hydrogen cyanide molecule 373 on Fe (111) and Cu (111) surface are not presented in the paper (See Figure S14 to S23 of 374 supplementary materials). According to Table 4, both DMH and DMH⁻ have a stronger adsorption 375 on Fe (111) surface than that on Cu (111), surface and both Cit and Cit also have a stronger 376

adsorption on Fe (111) surface than that on Cu (111) surface. In fact, Cit and Cit did not get close

RSC Advances Accepted Manuscript

378	to the surface of Cu (111) at the end of the simulation and the E_{binding} between Cit ⁻ and Cu (111)						
379	surface is negative. In addition, neutral molecules, no matter DMH or Cit, have a larger E_{binding}						
380	than molecules with r	negative charge on b	both the Fe (111) a	nd Cu (111) surface.			
381	Table 4 Interaction e	energy between the or	rganic molecules ar	nd metal surfaces invo	olved in Molecular		
382		d	lynamic simulation				
		Etotal (kJ/mol)	E _{surface} (kJ/mol)	Epolymer (kJ/mol)	Ebinding (kJ/mol)		
	DMH on Fe (111)	259862399.10	259865287.90	-1554.32	333.64		
	DMH^{-} on Fe (111)	255802131.80	255802937.10	231.43	259.16		
	Cit on Fe (111)	259863609.30	259865356.90	-1013.50	183.53		
	Cit ⁻ on Fe (111)	259867179.60	259865287.90	1744.84	-36.70		
	HCN on Fe (111)	259865055.30	259865356.90	42.18	42.97		
	DMH on Cu (111)	2078040.71	2080417.59	-1554.00	205.72		
	DMH^{-} on Cu (111)	2080252.76	2080417.59	266.67	107.88		

2080417.59

2080417.59

2080417.59

2079465.50

2083831.67

2080139.38

-923.67

3294.77

43.83

7.10

-29.83

40.25

38

377

3.3.2 Chronopotentiometry 383

Cit on Cu (111)

Cit⁻ on Cu (111)

HCN on Cu (111)

Chronopotentiometry was used to investigate the initial stage of copper electrodeposition 384 process on the carbon steel substrate in S2. The potential vs. time curves obtained from S2 at 385 various current densities and from background solutions with and without DMH are shown in 386 Figure 10. The background solution is composed of 0.0 or 0.2 M DMH, 0.3 M citrate, and 0.3 M 387 K₂CO₃. These curves (10, 15, 20, 25 mA/cm²) are generally characterized by five stages: (1) an 388 abrupt potential drop which can be ascribed to the ohmic potential drop, (2) a slow decrease of the 389 potential which can be attributed to the charging of the double-layer capacitance, (3) a negative 390 potential peak, (4) another slow decrease of the potential which can be ascribed to the decrease of 391 the concentration of the reactant at the interface caused by the decay of the diffusion process, and 392 lastly (5) a potential platform at which copper electrodeposition and hydrogen evolution occur 393 simultaneously. But the curves obtained at 5 mA/cm² does not have the fifth stage and ends at a 394

³⁹⁵ potential platform at which only the discharge of copper complexes occurs. The results indicate ³⁹⁶ that there is a strong hydrogen evolution when copper is electrodeposited galvanostatically at ³⁹⁷ above 10 mA/cm².

The negative potential peak, as observed clearly from the inset in Figure 10, at the third stage 398 may be ascribed to the reduction of the passive film on the surface of the steel electrode ^{13, 38, 39} or 399 the desorption of DMH molecules adsorbed on the steel electrode. The latter assumption is 400 confirmed by the potential curves from the background solutions without and with DMH (curve (a) 401 and (b) figure 5), as the potential vs. time curve (b) from the background solution with DMH also 402 has a negative potential peak initially although the peak value is lower than that of the curves from 403 the solution containing cupric ions. However, no negative potential peak can be observed in the 404 curve (a) from the background solution without DMH. 405

406

3.4 Cathodic polarization curves

The cathodic polarization curves with the Pt RDE as the work electrode at 300 rpm were 407 obtained from alkaline DMH/citrate baths with various compositions and conditions. The scan rate 408 for all curves was 1 mV/s. Cathodic polarization curves for copper electrodeposition with the 409 effect of adding increasing amounts of DMH and citrate are shown in Figure 11 (a) and (b), 410 respectively. Two reduction waves and a peak around -0.65 V can be observed in curves from 411 solutions in the presence of DMH. The peak current density of the first wave, associating with the 412 discharge of copper-DMH complex according to the cyclic voltammograms, rises with the 413 increment of the DMH concentration, while that descends with increasing the citrate 414 concentration. 415

416	Figure 11 (a) shows how the polarization is influenced by increasing the amount of DMH in
417	solutions (Sp2, Sp3). In the solution (Sp1) in the absence of DMH there is no significant current
418	before about – 0.95 V, indicating a big overpotential. The current density rises linearly between –
419	0.95 to $-1.35V$ with increasing cathodic potential and then reaches the limiting current plateau.
420	However, the extent of the cathodic polarization falls with increasing the DMH concentration.
421	According to literature reports $^{14, 22}$, the stability constants (log10 (β)) of copper-DMH and
422	copper-citrate complexes in our experimental conditions were very close. Therefore, with adding
423	DMH into solutions, there was a competition between DMH and citrate to coordinate with cupric
424	ions, as the stability constants of the two complexes were so similar. These results demonstrate
425	that it is easier to discharge the copper-DMH complex than the copper-citrate complex. It can also
426	be observed that increasing DMH concentration decreases the limiting current density, indicating
427	that copper-DMH complex diffused slower than copper-citrate complex, in agreement with the
428	previous results.
429	The effect of the citrate concentration (Sp3, Sp4, Sp5) on cathodic polarization is given in
430	Figure 11 (b). Both the cathodic polarization and the limiting current density are decreased
431	significantly with addition of citrate. This results from a more difficult discharge as more

Figure 11 (b). Both the cathodic polarization and the finiting current density are decreased significantly with addition of citrate. This results from a more difficult discharge as more copper-citrate complexes formed. Figure 11 (c), with data from solution S2 at 50°C, shows that the overpotential decreases a little when pH is raised from 8.5 to 9, but no significant difference is observed in the limiting current density at various pH (8.5, 9, 10.5). The influence of temperature on cathodic polarization measured in solution S2 at pH 9 is shown in Figure 11 (d). The polarization falls and the limiting current density rises with the increment of temperature from 25 **RSC Advances Accepted Manuscript**

to 60 °C. This trend can be ascribed to the effect of temperature on the diffusion coefficient, which goes up with increasing temperature.

439 3.5 Current efficiency

The CE as a function of current density at 40 and 50 °C is presented in Figure 12. The 440 investigated bath has a CE above 70% at 50 °C, which is similar to the CE of classical cyanide 441 baths¹. The CE of the solution S2 in Figure 12 (a) falls with increasing the current density from 5 442 to 15 mA/cm², then keeps stable from 15 to 25 mA/cm², and lastly tends to fall again after 25 443 mA/cm². This trend is expected due to simultaneous hydrogen evolution reaction which is 444 enhanced by increasing current density and confirmed by the set of potential vs. time curves in 445 Figure 10. Comparing curve (a) at 50°C with (b) at 40°C in Figure 12 shows that the CE increases 446 with evaluating temperature because of the influence of temperature on the diffusion coefficient. 447 This result is in correspondence to the data in Figure 11. 448

449 3.6 Characteristics of copper electrodeposits

450 3.6.1 Morphology

The surface morphology of copper layers electrodeposited for 30 min at 15 mA/cm² from 451 solutions with various concentrations of DMH, citrate, and K₂CO₃ and at various pH was observed 452 by using SEM and the images are given in Figure 13 (More images are presented in Figure S11 453 and S12, and the thickness of the layers calculated from the cross-sectional SEM images like 454 Figure 15 are listed in table S2 of supplementary materials). The surface of the copper layer 455 obtained from S1 that did not contain DMH is dark and rough in Figure 13 (1), and clusters with 456 cracks in between can be observed. That is because the citrate concentration is too low to reduce 457 free cupric ions to an adequately low level by coordinating. With addition of DMH into the bath 458

459	(S2), the cracks between the clusters disappear and the layer becomes finer with small islands
460	dispersing on the surface in Figure 13 (2). The small islands, which can also be observed on the
461	other layers, may be ascribed to the discharge of one species which are easily reduced. The layer is
462	denser and smoother but too thin (2.50 um) when the DMH concentration is 0.4 M.
463	From the images of Figure 13 (3) and (4), with increasing the citrate concentration the copper
464	layer is first compact with tremendous amounts of small islands on the surface, and then has some
465	dents that may be attributed to hydrogen evolution, and lastly become very smooth. And the
466	thickness of the layer increases at first and then decreases on further addition of citrate, which is
467	related to the coordinating environment in the solution. The K_2CO_3 concentration also has a
468	significant effect on the surface morphology in Figure 13 (5) and (6). The layer become smoother
469	with addition of K_2CO_3 , compared with that obtained from S6 without K_2CO_3 . When the K_2CO_3
470	concentration is at 0.5 M, the dents become holes and the islands are more disperse, which is
471	attributed to strong hydrogen evolution. And the thickness decreases with the increase of the
472	K_2CO_3 concentration. These results indicate that K_2CO_3 also influences the coordination
473	environment and the electrodeposition process. On the other hand, the layer becomes smoother
474	and the thickness increases with increasing pH. The amount of islands is small but some dents can
475	be observed at pH 9. In addition, the image of the copper layer electroplated from the bath with
476	only DMH as complex agent is not presented, because to prevent the immersing coating of copper,
477	adequate amount of DMH has to been used, but no copper layer can be obtained in a large current
478	density range (5~ 40 mA/cm ²) even at the DMH concentration of 0.4 M.

479 3.6.2 Crystal strucutre

480	XRD was used to reveal the structure and calculate the average crystal sizes of the copper layers
481	electroplated from different baths and at different pH. The main peaks in the spectra match very
482	well with the pattern of a standard powder copper sample (PDF#4-0836) (see the Figure S14 of
483	supplementary materials), indicating that the copper layer has a crystalline cubic structure. The
484	average crystal size calculated from the intensity of peak (a) and (b) by using Scherrer equation is
485	about 30 nm (see table S5 of supplementary materials) 40 , which is nearly 70% smaller compared
486	to those (91 nm) reported for copper electrodeposits obtained from an additive-free acid copper
487	sulfate bath ⁴¹ . The copper layer deposited from solution with only citrate as the complex agent
488	prefers orientation (111) in the crystals in Figure 14 (a). With addition of DMH into the solution,
489	orientation (111) of the crystals becomes preferable in orientation (200). This result agrees with
490	Figure 14 (b), in which the peak of orientation (111) becomes reversely stronger than that of
491	orientation (200) with the increase of the citrate concentration from 0.1 M to 0.5 M. The behaviors
492	of the crystal orientation with changing solution compositions confirm the competitive
493	relationship between DMH and citrate in coordination with cupric ions, as more citrates can form
494	more copper-citrate complex, which predominate the discharge and produce more crystals with
495	orientation (111). Although not changed, the preferable crystal orientation (200) becomes stronger
496	with the increase of the concentration K_2CO_3 while weaker with the increase of pH. This indicates
497	that more K ₂ CO ₃ and lower pH enhance the discharge of copper-DMH.

498 3.6.3 Adhesion on steel substrate

The influence of the concentration of DMH, citrate, and K_2CO_3 and the value of pH on the adhesion of copper layers electrodeposited on carbon steel substrate was investigated with three qualitative methods and the results are listed in Table 5. The copper layers obtained from solutions

RSC Advances Accepted Manuscript

502	without DMH did not pass the bend test. This may result from the immersion coating of copper on
503	steel substrate, as the citrate concentration was too low to prevent the contact replacement reaction
504	by coordinating with cupric ion. The adhesion was good in the investigated range (0.1 to 0.5 M) of
505	the citrate concentration. In the solution with high concentration of K_2CO_3 (0.5 M), the adhesion
506	was also not good enough to pass the bend test, which may be ascribed to the strong hydrogen
507	evolution as demonstrated in Figure 13 (6) $^{42, 43}$. The copper layers obtained at pH 8.5 detached
508	from the substrate at bend test because copper ions also could not coordinate with DMH and
509	citrate very well at low pH condition. In addition, the cross-sectional SEM image of the copper
510	layer electroplated from S2 at 15 mA/cm ² is given in Figure 15 (see more in Figure S12 of
511	supplementary materials). No slit can be observed at the joint area, which further confirms the
512	good adhesion of copper layer on the carbon steel substrate.

513

Table 5 the adhesion of the copper layers electrodeposited from various solutions

DMH (M)		Citrate (Citrate (M)		$K_2CO_3(M)$		pН	
0.0	no	0.1	yes	0.1	yes	8.5	no	
0.2	yes	0.3	yes	0.3	yes	9	yes	
0.4	yes	0.5	yes	0.5	no	10.5	yes	

514 4 Conclusions

We have use cyclic voltammetry, chronoamperometry, chronopotentiometry, and cathodic polarization to study the electrodeposition of copper in solution with only DMH, only citrate, and both as the complex agents. Molecular dynamic simulation reveals the adsorption behaviour and interaction energy of DMH, citrate acid, and HCN molecules on Cu (111) and Fe (111) surface. Copper layers were characterized by SEM for surface morphology, XRD for crystal structure, and three qualitative methods for adhesion evaluation.

521	Cyclic voltammetry study at various switch potentials and at various scan rates shows that the
522	discharge process on the Pt or GC electrode in the solutions with only DMH, only citrate, and both
523	as the complex agents has two steps and is irreversible. Kinetic parameters are obtained easily
524	from the sample current voltammograms with the results in correspondence to the ones from
525	cyclic voltammetry. The different transfer coefficients α obtained from the Pt and GC electrode in
526	solution with only DMH as the complex agent indicates different discharge mechanism, which is
527	also revealed by cyclic voltammetry as cyclic voltammograms of the two systems have two
528	different shapes.
529	The analysis of chronoamperometry on the Pt and GC electrode in solution with only DMH as
530	the complex agent gives two almost identical results, 3.54×10^{-7} and 3.61×10^{-7} cm ² \cdot s ⁻¹ . At the
531	same time, the theoretic current density vs. time curves with the fitted results based on the Contrell
532	equation match very well with the experimental curves. All the three systems with only DMH,
533	only citrate, and both as the complex agents have the progressive nucleation process of SH,
534	according to the comparison of the experimental curves to the dimensionless theoretical curves.
535	Moreover, DMH have a stronger influence on the nucleation and crystal growth process of copper

⁵³⁶ on the GC electrode in solution Sp3 with both DMH and citrate as the complex agents in the ⁵³⁷ experimental composition.

Additionally, DMH molecules adsorb on the Fe (111) surface with the plane of the heterocycle parallel to the Fe (111) surface revealed by molecular dynamic simulation. DMH and citrate acid, no matter with or without negative charge, adsorb stronger on Fe (111) than on Cu (111). DMH molecules show larger interaction energy than citrate acid molecule on both Fe (111) and Cu (111). Chronopotentiometry study shows that DMH molecules adsorbed on carbon steel electrode desorb

543	at the initial stage of electrodeposition. These confirm that DMH act not only as the complex
544	agent, but also the inhibiters by adsorbing on the substrate surface, which can prevent the
545	passivation of the steel substrate.
546	The concentration of DMH and K ₂ CO ₃ and the value of pH have a crucial effect on the adhesion,
547	the morphology, and preferable crystal orientation of the copper layers electroplated on carbon
548	steel substrate. The baths have a current efficiency more than 80% at 10 mA/cm ² according to the
549	deposition/stripping method based on constant-current chronopotentiometry.
550	Finally, the optimum bath composition and conditions for copper electroplating on carbon steel
551	substrate are as follows: 0.1 M CuSO ₄ , 0.2 M DMH, 0.3 M citrate, and 0.3 M K ₂ CO ₃ , pH = $9 \sim 10$,
552	at 50°C, current density range from 5 to 25 mA/cm ² , and with strong agitation. Copper layers with
553	average grain size of around 30 nm and good adhesion can be electroplated on carbon steel
554	substrate from the baths. As the study in this paper almost focuses on the electrodeposition
555	mechanism, more work about specific technologies and applications is needed in the further study.
556	We suggest the following studies: longer-term deposition, thicker deposit, and bath ageing studies,
557	Hull cell studies to determine acceptable electroplating ranges of current density for various
558	operating conditions and bath compositions, controlled hydrodynamic studies using rotating disc
559	and cylinder electrodes, and Haring-Blum throwing power studies.
560 561	Acknowledgements
562	The authors are grateful for financial support from the State Vay Laboratory of Urban Water
563 564	Resource and Environment (Harbin Institute of Technology) (2012DX03).
565 566	References
567	
568	1. F. A. Lowenheim, <i>Modern Electroplating</i> , 5th, J. Wiley & Sons, New York, USA, 2010.
569	2. Z. A. Hamid and A. A. Aal, Surface & Coatings Technology, 2009, 203, 1360-1365.

27

570 571	3.	L. L. Barbosa, M. R. H. de Almeida, R. M. Carlos, M. Yonashiro, G. M. Oliveira and I. A. Carlos, <i>Surface & Coatings Technology</i> , 2005, 192, 145-153.
572 573	4.	C. N. Tharamani, B. N. Maruthi and S. M. Mayanna, <i>Transactions of the Institute of Metal Finishing</i> , 2002, 80, 37-39.
574 575	5.	J. C. Ballesteros, E. Chainet, P. Ozil, Y. Meas and G. Trejo, <i>International Journal of Electrochemical Science</i> , 2011, 6, 1597-1616.
576 577	6.	J. C. Ballesteros, E. Chainet, P. Ozil, G. Trejo and Y. Meas, <i>Journal of Electroanalytical Chemistry</i> , 2010, 645, 94-102.
578	7.	Y. Xiaowei, A. Maozhong, Z. Yunwang and Z. Lin, <i>Electrochimica Acta</i> , 2011, 58, 516-522.
579 580	8.	A. M. Liu, X. F. Ren, M. Z. An, J. Q. Zhang, P. X. Yang, B. Wang, Y. M. Zhu and C. Wang, Scientific Reports, 2014, 4.
581	9.	US Pat., US20110180415 A1, 2011.
582	10.	US Pat., US5750018 A, 1998.
583 584	11.	A. Gerasimenko, M. Kirvoruchko and V. Korzhavina, <i>Protection of Metals</i> , 2000, 6, 1597-1616.
585	12.	N. Kanani, Electroplating: Basic Principles, Processes and Practice, Elsevier Science, 2004.
586 587	13.	S. B. Feng, S. B. Shang, X. Bao, L. T. Feng, J. W. Zhang and Z. H. Li, <i>Acta PhysChim. Sin.</i> , 2005, 21, 463-467.
588	14.	G. Z. Pavlovich and R. G. Luthy, Water Research, 1988, 22, 327-336.
589 590	15.	K. Oyaizu, Y. Ohtani, A. Shiozawa, K. Sugawara, T. Saito and M. Yuasa, <i>Inorganic Chemistry</i> , 2005, 44, 6915-6917.
591	16.	R. W. Revie, Corrosion and Corrosion Control, Wiley, 2008.
592 593	17.	L. H. Madkour, A. M. Hassanein, M. M. Ghoneim and S. A. Eid, <i>Monatshefte fuer Chemie</i> , 2001, 132, 245-258.
594	18.	A. O. Yüce and G. Kardaş, Corrosion Science, 2012, 58, 86-94.
595 596	19.	C. Wang, M. An, P. Yang and J. Zhang, <i>Electrochemistry Communications</i> , 2012, 18, 104-107.
597	20.	S. Monti, C. Li and V. Carravetta, Journal of Physical Chemistry C, 2013, 117, 5221-5228.
598 599	21.	F. I. Lizama-Tzec, L. Canché-Canul and G. Oskam, <i>Electrochimica Acta</i> , 2011, 56, 9391-9396.
600 601	22.	S. Rode, C. Henninot, C. C. Vallieres and M. Matlosz, <i>Journal of the Electrochemical Society</i> , 2004, 151, C405-C411.
602 603	23.	T. A. Green, A. E. Russell and S. Roy, <i>Journal of the Electrochemical Society</i> , 1998, 145, 875-881.

604	24.	E. Beltowska-Lehman and P. Ozga, <i>Electrochimica Acta</i> , 1998, 43, 617-629.
605	25.	US Pat., US4595462 A, 1986.
606 607	26.	P. Bos and E. V. Dalen, <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1968, 17, 21-30.
608 609	27.	A. Plankova, K. M. Matar, P. Rauko and L. Novotny, <i>Journal of Pharmacy and Pharmaceutical Sciences</i> , 2010, 13, 391-399.
610	28.	M. V. Mirkin and A. J. Bard, Anal Chem, 1992, 64, 2293-2302.
611	29.	B. Scharifker and G. Hills, <i>Electrochimica Acta</i> , 1983, 28, 879-889.
612	30.	M. E. Hyde and R. G. Compton, Journal of Electroanalytical Chemistry, 2003, 549, 1-12.
613 614	31.	R. Drissi-Daoudi, A. Irhzo and A. Darchen, <i>Journal of Applied Electrochemistry</i> , 2003, 33, 339-343.
615 616	32.	A. Ramos, M. Miranda-Hernandez and I. Gonzalez, <i>Journal of the Electrochemical Society</i> , 2001, 148, C315-C321.
617 618	33.	R. Y. Ying, P. K. Ng, Z. Mao and R. E. White, <i>Journal of The Electrochemical Society</i> , 1988, 135, 2964-2971.
619 620	34.	A. J. Bard and L. R. Faulkner, <i>Electrochemical Methods: Fundamentals and Applications</i> , Wiley, 2000.
621 622	35.	H. A. Laitinen and I. M. Kolthoff, <i>Journal of the American Chemical Society</i> , 1939, 61, 3344-3349.
623	36.	D. Grujicic and B. Pesic, <i>Electrochimica Acta</i> , 2002, 47, 2901-2912.
624 625	37.	S. Floate, M. Hyde and R. G. Compton, <i>Journal of Electroanalytical Chemistry</i> , 2002, 523, 49-63.
626	38.	K. Ogura and H. Wada, Electrochimica Acta, 1980, 25, 913-917.
627 628	39.	A. J. Davenport, J. A. Bardwell and C. M. Vitus, <i>Journal of the Electrochemical Society</i> , 1995, 142, 721-724.
629	40.	S. Ghosh and S. Roy, Surface and Coatings Technology, 2014, 238, 165-173.
630	41.	A. Ibañez and E. Fatás, Surface and Coatings Technology, 2005, 191, 7-16.
631	42.	J. Gui and T. M. Devine, Corrosion Science, 1995, 37, 1177-1189.
632 633 634	43.	J. Banaś, U. Lelek-Borkowska, B. Mazurkiewicz and W. Solarski, <i>Electrochimica Acta</i> , 2007, 52, 5704-5714.
635		
636		

637 List of figure captions:

Figure 1. Cyclic voltammograms of the Pt electrode in solution Sp4 with only DMH as the complex agent. (a) In the range from 1.0 V to -1.5 V vs. SCE and (b) In the range from 1.0 V to various switch potentials vs. SCE. The scan rate is 50 mV/s. The blue dash line signed by "Empty with DMH" in (a) was obtained from the background solution composed with 0.2 M DMH and 0.3 M K₂CO₃ at pH = 9 and 50°C.

643

Figure 2. Cyclic voltammograms of the GC electrode in solution Sp4 with only DMH as the complex agent. (a) In the range from 1.0 V to -1.5 V *vs*. SCE and (b) In the range from 1.0 V to various switch potentials *vs*. SCE. The scan rate is 50 mV/s.

647

Figure 3. Cyclic voltammograms of the GC electrode in solution Sp1 with only citrate as the complex agent. (a) In the range from 1.0 V to -1.5 V vs. SCE and (b) In the range from 1.0 V to various switch potentials vs. SCE. The scan rate is 50 mV/s.

651

Figure 4. Cyclic voltammograms of the GC electrode in solution Sp3 with both DMH and citrate as the complex agents in the range from 1.0 V to -1.25 V and -1.5 V vs. SCE. The scan rate is 50 mV/s.

654

Figure 5. Cyclic voltammograms at various scan rates. (a) The Pt electrode in solution Sp4 with only DMH as the complex agent, (b) The GC electrode in solution Sp4 with only DMH as the complex agent, (c) The GC electrode in solution Sp1 with only citrate as the complex agent, (d) The GC electrode in solution Sp3 with both DMH and citrate as the complex agents. The insets are $j_p vs. v^{1/2}$ lines fitted from the peak of cathodic current density at various scan rates.

660

Figure 6. (a) The sample current voltammogram of the Pt electrode in the solution Sp4 with only DMH as the complex agent. (b) The E *vs*. Inj curves fitted from the data of the sample current voltammetry.

663

Figure 7. The j vs. $t^{1/2}$ line fitted according Contrell equation from the j vs. time curves obtained from solution Sp4 with only DMH as the complex agent. (a) On the Pt electrode and (b) On the GC electrode with the potential changed from 0.2 V to -0.16 vs. SCE.

667

Figure 8. The chronoamperometry at various step potentials and the corresponding dimensionless experimental curves with their theoretical curves for instantaneous and progressive nucleation processes of the GC electrode in different solutions. (a) and (A) In solution Sp4 with only DMH as the complex agent, (b) and (B) In solution Sp1 with only citrate as the complex agent, (c) and (C) In solution Sp3 with both DMH and citrate as the complex agents.

673

Figure 9. The front and top views of the simulated behaviors of DMH on Cu (111) (A and a) and Fe (111) (B and b) surfaces.

676

Figure 10. Potential *vs.* time curves of a carbon steel electrode as a function of step-current in S2 and cupric ions free solutions. Curve (a) was obtained from the background solution consisting of 0.3 M citrate, and 0.3 M K₂CO₃. Curve (b) from the background solution consisting of 0.2 M DMH, 0.3 M citrate, and 0.3 M K₂CO₃. All solutions were at pH 9 and 50°C.

681

Figure 11. Cathodic polarization curves as a function of (a) citrate, (b) DMH, (c) pH, and (d) temperature with the Pt RDE as the work electrode at 300 rpm and scan rate of 1 mV/s. (a) and (b) were obtained from S1, S2, S3, S4, S5 at pH 9 and 50°C, (c) at various pH from solution S2 at 50°C, and (d) at various temperatures from solution S2 at pH 9.

686

Figure 12. CE as a function of current density at various solutions and conditions with pH 9. (a) S2 at 50°C, (b) S2 at 40°C, (c) 0.1 M Cu2+, 0.4 M DMH, and 0.3 M K₂CO₃ at 50°C and pH 9.

689

Figure 13. SEM images illustrating the morphology of copper layers electrodeposited from various solutions at pH 9 and 50°C: (1) S1, (2) S2, (3) S4, (4) S5, (5) S6, and (6) S7, and from S2 with various pH at 50°C: (7) pH 8.5, and (8) pH 10.5.

693

⁶⁹⁴ Figure 14. XRD patterns of the copper layers corresponding to the images in figure S11. The copper

- ⁶⁹⁵ layers were electroplated from various solutions at pH 9 and 50°C: (1) S1, (2) (5) and (8) S2, (3) S3, (4) ⁶⁹⁶ S4, (6) S5, (7) S6, and (9) S7, and from S2 with various pH at 50°C: (10) pH 8.5, (11) pH 9, and (12)
- ⁶⁹⁷ pH 10.5.
- 698

Figure 15. Cross-sectional SEM image of the copper layer electrodeposited from S2 at 15 mA/cm^2 for 30 min.

701

1868x784mm (72 x 72 DPI)

1854x782mm (72 x 72 DPI)

1865x767mm (72 x 72 DPI)

218x178mm (300 x 300 DPI)

1860x1546mm (72 x 72 DPI)

1905x778mm (72 x 72 DPI)

1871x779mm (72 x 72 DPI)

1896x2334mm (72 x 72 DPI)

1143x570mm (72 x 72 DPI)

213x173mm (300 x 300 DPI)

1888x1541mm (72 x 72 DPI)

878x1425mm (72 x 72 DPI)

302x278mm (86 x 86 DPI)