

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/advances

| 1  | The Magnetism of $Fe_4N/Oxides$ (MgO, BaTiO <sub>3</sub> , BiFeO <sub>3</sub> ) Interfaces           |
|----|------------------------------------------------------------------------------------------------------|
| 2  | From First-Principles Calculations                                                                   |
| 3  |                                                                                                      |
| 4  | Nan Feng <sup>1</sup> , Wenbo Mi <sup>1,*</sup> , Xiaocha Wang <sup>2</sup> , Haili Bai <sup>1</sup> |
| 5  |                                                                                                      |
| 6  | <sup>1</sup> Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation             |
| 7  | Technology, Faculty of Science, Tianjin University, Tianjin 300072, China                            |
| 8  |                                                                                                      |
| 9  | <sup>2</sup> Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of              |
| 10 | Electronics Information Engineering, Tianjin University of Technology, Tianjin                       |
| 11 | 300384, China                                                                                        |
|    |                                                                                                      |

<sup>\*</sup>Author to whom all correspondence should be addressed.

E-mail: miwenbo@tju.edu.cn

## 1

## ABSTRACT

2

The geometry, bonding, electronic and magnetic properties of Fe<sub>4</sub>N/Oxides (MgO, 3 BaTiO<sub>3</sub> and BiFeO<sub>3</sub>) interfaces with different configurations are performed using the 4 first-principles calculations. The n- and p-type doping of MgO are induced in 5 Fe<sup>I</sup>Fe<sup>II</sup>/MgO and (Fe<sup>II</sup>)<sub>2</sub>N/MgO interfaces, respectively. The metallic characters are 6 induced in BaTiO<sub>3</sub> by contact with  $Fe^{I}Fe^{II}$  termination, followed by *p*-type doping in 7  $(Fe^{II})_2N/BaO$  interface and *n*-type doping in  $(Fe^{II})_2N/TiO_2$  interface. The interfacial 8 dipole due to charge rearrangement may induce the Fermi level pinning in Fe<sub>4</sub>N/MgO 9 and (Fe<sup>II</sup>)<sub>2</sub>N/BaTiO<sub>3</sub> systems. The deposition of Fe<sub>4</sub>N on BiFeO<sub>3</sub> leads to a metallic 10 11 character of BiFeO<sub>3</sub> with the total magnetic moments of 0.33-1.54  $\mu_B$ . The different 12 electronic and magnetic characters are governed by interfacial bonding between Fe<sub>4</sub>N 13 and oxides. These findings are useful for the future design of Fe<sub>4</sub>N/oxides based 14 spintronics devices.

15

16 Keywords: Fe<sub>4</sub>N; Oxides; Electronic Structure; Magnetic Properties

17 **PACS:** 73.20.-r, 73.21.Ac, 74.20.Pq, 75.70.Cn

## **1. INTRODUCTION**

2

Spintronics has the potential to give rise to the new-generation memory devices due to 3 4 the possibility to manipulate the electron spin and charge degrees of freedom simultaneously.<sup>1</sup> From both fundamental and applications points of view, most of the 5 interest currently focuses on systems like magnetic multilayers and dilute magnetic 6 semiconductors, and so on.<sup>2-5</sup> Among them, the large tunneling magnetoresistance 7 8 (TMR) observed in Magnetic tunnel junctions (MTJs) has attracted great interest due to its practical applications in spintronics devices, such as the magnetic sensors and 9 magnetic random access memories.<sup>6,7</sup> MTJs are composed of two ferromagnetic 10 electrodes separated by a thin insulating barrier layer. The ferromagnetic electrode 11 12 serves as a spin-polarized injection source. The first understanding of TMR is the well-known Julliere's formula of TMR= $2P^2/(1+P^2)$ , where P is the spin polarization 13 of the ferromagnetic electrodes. Therefore, an electrode with a larger spin polarization 14 can result in a larger TMR. However, the potential barrier between the ferromagnetic 15 16 electrodes and insulator barrier can affect the magnitude and TMR sign, i.e., TMR also strongly depends on the mechanism of interfacial bonding. Therefore, it is 17 18 important to study the electronic transport properties of the ferromagnet/insulator 19 interfaces. Herewith, we focus on Fe<sub>4</sub>N as an electrode because it has a large saturation magnetization, low coercivity and high chemical stability. The spin 20 polarization and Curie temperature ( $T_{\rm C}$ ) of bulk Fe<sub>4</sub>N are almost -100% and 761 K.<sup>8,9</sup> 21 A TMR of -18.5% and -75% has been reported in the Fe<sub>4</sub>N/MgO/CoFeB MTJs 22

Page 4 of 4

fabricated by sputtering.<sup>10,11</sup> A negative spin polarization is observed in the monolayer MoS<sub>2</sub> by contact with  $Fe^{I}/Fe^{II}$  termination and *p*-type doping by contact with N termination of Fe<sub>4</sub>N.<sup>12</sup> Therefore, Fe<sub>4</sub>N is considered as a promising material for the practical application in spintronics devices.

5 Giant TMR has been observed in the CoFeB/MgO/CoFeB junctions with a TMR of 260% and 355% at room temperature,<sup>13,14</sup> which accelerates the application 6 development for the MgO-based MTJs, because of their suitability to mass production. 7 Besides the need for a large TMR, electrically controllable functionally is also highly 8 desirable. The magnetoelectric coupling between the ferroelectricity and 9 10 ferromagnetism allows the electric (magnetic) field control of magnetic (electric) properties. Since a prototype single-phase multiferroic material suitable for industrial 11 12 applications has not been emerged so far, the composite multiferroics, where a 13 ferroelectric or multiferroic layer is interfaced with a ferromagnetic layer, has been intensively studied.<sup>15,16</sup> BaTiO<sub>3</sub> is a prototypical perovskite-like ferroelectric oxide,<sup>17</sup> 14 which shows a high ferroelectric  $T_{\rm C}$  of 400 K. The magnetoelectric effect between 15 ferromagnet and BaTiO<sub>3</sub> has been studied.<sup>18-21</sup> Otherwise, bulk BiFeO<sub>3</sub> is the only 16 known single-phase multiferroic material with a high ferroelectric  $T_{\rm C}$  of 1103 K and 17 high G-type antiferromagnetic Néel temperature of 643 K.<sup>22,23</sup> Béa and Ju have used 18 the multiferroic BiFeO<sub>3</sub> epitaxial films as a tunnel barrier in MTJ.<sup>24,25</sup> The magnetic 19 configuration in MTJ can be changed from parallel to antiparallel as an electric field 20 is applied due to the strong ferroelectricity with a large spontaneous electric 21 polarization in BiFeO<sub>3</sub>. Therefore, it is interesting to combine these materials to form 22

Page 5 of 45

#### **RSC Advances**

| 3  | MgO, BaTiO <sub>3</sub> and BiFeO <sub>3</sub> are three typical materials for different kinds of tunnel                |
|----|-------------------------------------------------------------------------------------------------------------------------|
| 4  | barrier, traditional, ferroelectric, multiferroic, respectively, which can be used for                                  |
| 5  | classic, ferroelectric and spin filter junctions. The purpose of this work is to give a                                 |
| 6  | clear picture of the interfacial coupling mechanism at the $Fe_4N/Oxides$ (MgO, BaTiO <sub>3</sub>                      |
| 7  | and BiFeO <sub>3</sub> ) interfaces and its effect on the magnetic and electronic properties of the                     |
| 8  | interfaces. Meanwhile, one can determine which oxide can be a reasonable insulating                                     |
| 9  | barrier in MTJs with $Fe_4N$ as an electrode. Our results demonstrate that the <i>n</i> - and                           |
| 10 | <i>p</i> -type MgO are induced in the $Fe^{I}Fe^{II}/MgO$ and $(Fe^{II})_2N/MgO$ interfaces, respectively.              |
| 11 | The metallic characters are induced in BaTiO <sub>3</sub> by contact with Fe <sup>I</sup> Fe <sup>II</sup> termination, |
| 12 | whereas the <i>p</i> -type doping in $(Fe^{II})_2N/BaO$ interface and <i>n</i> -type doping in                          |
| 13 | $(Fe^{II})_2N/TiO_2$ interface appear. The large deviation of the calculated Schottky barrier                           |
| 14 | heights at the $Fe_4N/MgO$ and $(Fe^{II})_2N/BaTiO_3$ interfaces from the prediction of the                             |
| 15 | classical Schottky barrier heights suggests the presence of Fermi level pinning by the                                  |
| 16 | formation of interfacial dipole. The deposition of $Fe_4N$ on $BiFeO_3$ can result in a                                 |
| 17 | metallic BiFeO <sub>3</sub> . The different interfacial bonding between the $Fe_4N$ and oxides leads                    |
| 18 | to the different electronic and magnetic properties.                                                                    |

19

# 2. CALCULATION DETAILS AND MODEL

21

22

20

Our first-principles calculations are based on density functional theory<sup>26</sup> and

| 1  | projector augmented wave methods <sup>27</sup> as implemented in Vienna Ab initio Simulation                                                      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Package. <sup>28</sup> The Perdew-Burke-Ernzerhof <sup>29</sup> spin-polarized generalized gradient                                               |
| 3  | approximations are used as exchange-correlation potential. The projector augmented                                                                |
| 4  | wave potentials are used to describe the electron-ion interaction with the following                                                              |
| 5  | valence-electron configurations: Fe $3d^74s^1$ , N $2s^22p^3$ , Mg $2p^63s^2$ , O $2s^22p^4$ , Ba $5p^66s^2$ ,                                    |
| 6  | Ti $3d^34s^1$ , Bi $6s^26p^3$ . In all the supercells of Fe <sub>4</sub> N/oxides studied here, a 15-Å vacuum                                     |
| 7  | space in z-direction is introduced to separate the interaction between periodic images.                                                           |
| 8  | The plane-wave cutoff is set to 500 eV and the Brillouin-Zone samplings with $9 \times 9 \times 9$                                                |
| 9  | and $9 \times 9 \times 1$ k mesh are used for bulk Fe <sub>4</sub> N, oxides and Fe <sub>4</sub> N/oxides interfaces,                             |
| 10 | respectively. All structures are fully optimized until the force on each atom is less than                                                        |
| 11 | 0.01 eV/Å and total energy is converged to $10^{-5}$ eV. Since the magnetic oxides are                                                            |
| 12 | generally thought to be strongly correlated materials, as for the calculations of the                                                             |
| 13 | electronic structure of BiFeO <sub>3</sub> and Fe <sub>4</sub> N/BiFeO <sub>3</sub> interface, a density function plus $U$                        |
| 14 | scheme is employed to account for the strong electron correlations, in which an                                                                   |
| 15 | effective on-site interaction parameter $U_{\text{eff}}=U-J$ incorporates the on-site Coulomb (U)                                                 |
| 16 | and the exchange interaction $(J)$ . An equivalent interpretation of this scheme would be                                                         |
| 17 | to consider J=0 and treat $U_{\text{eff}}=U$ as only parameter in this work. We set only U=4.5                                                    |
| 18 | eV for Fe $d$ orbital in BiFeO <sub>3</sub> component based on our previous electronic structural                                                 |
| 19 | calculations of bulk BiFeO <sub>3</sub> and Fe <sub>3</sub> O <sub>4</sub> /BiFeO <sub>3</sub> superlattice. <sup>30</sup> We have confirmed that |
| 20 | our adopted $U$ value is sufficient to describe the magnetic moment of Fe atoms,                                                                  |
| 21 | antiferromagnetic ordering, ferroelectricity and the density of states of bulk BiFeO <sub>3</sub> .                                               |
| 22 | Bulk Fe <sub>4</sub> N has a cubic perovskite-type structure ( $Pm3m$ ) with a lattice constant                                                   |

| 1  | of $a=3.795$ Å. In its lattice, two types of Fe atoms occupy the corner (Fe <sup>I</sup> ) and                                 |
|----|--------------------------------------------------------------------------------------------------------------------------------|
| 2  | face-centered sites (Fe <sup>II</sup> ), and N atom locates at the body-centered position. Fe <sup>I</sup> atom                |
| 3  | is surrounding by 12 Fe <sup>II</sup> atoms with a distance of $a/\sqrt{2}$ as the nearest neighbors, Fe <sup>II</sup>         |
| 4  | atom has two N atoms at $a/2$ as the nearest neighbors and 12 Fe <sup>I</sup> atoms as the second                              |
| 5  | nearest neighbors. <sup>31</sup> For MgO, BaTiO <sub>3</sub> and BiFeO <sub>3</sub> , we study the rocksalt structure          |
| 6  | with a space group of $Fm3m$ , cubic perovskite structure with space group $Pm3m$ and                                          |
| 7  | tetragonal structure with space group P4mm, respectively. MgO consists of two                                                  |
| 8  | interpenetrating face-centered cubic lattices of Mg and O atoms. In the cubic unit cell                                        |
| 9  | of BaTiO <sub>3</sub> , there is one Ba atom at the origin $(0.0, 0.0, 0.0)a$ , one Ti atom at the body                        |
| 10 | center $(0.5, 0.5, 0.5)a$ and three O atoms at the three face centers $(0.5, 0.5, 0.0)a$ , $(0.0, 0.0)a$                       |
| 11 | (0.5, 0.5)a and $(0.5, 0.0, 0.5)a$ . The experimental lattice parameters of MgO and                                            |
| 12 | BaTiO <sub>3</sub> are 4.211 and 4.010Å, respectively, <sup>32,33</sup> i.e., the lattice mismatches with Fe <sub>4</sub> N    |
| 13 | $(3.795\text{\AA})$ are 10.4% and 5.5%, respectively. Even though the large lattice mismatch is                                |
| 14 | present, the epitaxial $Fe_4N/MgO$ heterostructures have been fabricated                                                       |
| 15 | experimentally. <sup>34</sup> We choose a tetragonal ferroelectric BiFeO <sub>3</sub> as substrate mainly                      |
| 16 | because the $Fe_4N(001)$ can nicely match with (001) plane of the tetragonal structure                                         |
| 17 | with a mismatch of about 3.6%. Furthermore, based on the experimental results, the                                             |
| 18 | tetragonal BiFeO <sub>3</sub> is stabilized by being placed on the lattice-matched substrates and                              |
| 19 | its spontaneous polarization (63.2 $\mu\text{C/cm}^2)$ is significantly higher than that of                                    |
| 20 | rhombohedral structure (6.61 $\mu$ C/cm <sup>2</sup> ). <sup>35</sup> The tetragonal BiFeO <sub>3</sub> has a lattice constant |
| 21 | of $a=3.935$ Å and $c/a=1.016$ . <sup>36</sup> The primitive cell of tetragonal BiFeO <sub>3</sub> contains one                |
| 22 | molecule with one Bi atom sitting at $(0.0, 0.0, 0.0)a$ , one Fe atom at $(0.5, 0.5, 0.41)a$ ,                                 |

one axial O1 atom at (0.5, 0.5, -0.12)a and two equatorial O2 atoms at (0.0, 0.5, 0.34)a and (0.5, 0.0, 0.34)a. The antiferromagnetic character of G-type or C-type has not been clear in the tetragonal phase film. In this work, we only consider the G-type antiferromagnetic tetragonal BiFeO<sub>3</sub>, where the Fe atoms are coupled ferromagnetically within the (111) planes and antiferromagnetically between adjacent planes.<sup>37</sup>

7 The Fe<sub>4</sub>N/oxides interfaces are simulated by building up supercells consisting  $Fe_4N(001)$  layers on the top of oxide(001) layers. For the lattice mismatch, we adopt 8 9 the average lattice constant of  $Fe_4N$  and oxides for the *ab*-plane of our supercells. For Fe<sub>4</sub>N/BaTiO<sub>3</sub> interface, the in-plane lattice constant is 3.902 Å, which is smaller than 10 the theoretical lattice constant of the cubic phase of  $BaTiO_3$  (4.010 Å). By analogy 11 12 with  $Fe/BaTiO_3$  multilayers,  $BaTiO_3$  in our calculations is also assumed to have a tetragonal structure, which is well known experimentally to be stable at room 13 temperature.<sup>18,38,39</sup> We choose  $Fe^{I}Fe^{II}$  and  $(Fe^{II})_2N$  surface terminations of  $Fe_4N(001)$ 14 at interfaces, respectively. As for oxides, the MgO, BaO, TiO<sub>2</sub>, BiO and FeO<sub>2</sub> 15 terminations are considered. For Fe<sub>4</sub>N/MgO supercells: models a and b contain the 16 interface of Fe<sup>I</sup>Fe<sup>II</sup>-MgO and (Fe<sup>II</sup>)<sub>2</sub>N-MgO, respectively. For Fe<sub>4</sub>N/BaTiO<sub>3</sub>(BiFeO<sub>3</sub>) 17 supercells: model a contains the Fe<sup>I</sup>Fe<sup>II</sup>-BaO(BiO) interface; model b contains the 18 Fe<sup>I</sup>Fe<sup>II</sup>-TiO<sub>2</sub>(FeO<sub>2</sub>) interface; model c contains the (Fe<sup>II</sup>)<sub>2</sub>N-BaO(BiO) interface; 19 model d contains the  $(Fe^{II})_2N$ -TiO<sub>2</sub>(FeO<sub>2</sub>) interface, see Fig. 1. 20

21 The most stable structure among the different interfaces is determined by 22 calculating the cohesive energy between Fe<sub>4</sub>N and oxides,  $E_{coh} = E_{comb} - E_{Fe_4N} - E_{oxide}$ ,

where  $E_{comb}$ ,  $E_{Fe,N}$  and  $E_{oxide}$  represent the total energy of the relaxed Fe<sub>4</sub>N/oxides 1 interfaces, Fe<sub>4</sub>N and oxide slabs, respectively. For further illustrating the detailed 2 nature of the charge transfer at the Fe<sub>4</sub>N/oxides interfaces, we calculate the charge 3 density difference, which is obtained by subtracting the charge densities of the 4 isolated  $Fe_4N$  and oxide slabs from the total charge density in the supercells. The 5 6 electronic structures of the isolated  $Fe_4N$  and oxide slabs are calculated by freezing 7 the atomic positions of the respective components as obtained in the supercells. To 8 have a quantitative picture, the induced charge transfer q is estimated by integrating 9  $\Delta \rho(z)$  over the full z range, where  $\Delta \rho(z)$  is the plane-averaged charge density 10 difference along the direction perpendicular to the interfaces. The work function (W)is defined by the lowest energy required to remove an electron deep inside bulk. It is 11 defined as  $W = V(\infty) - E_F$ , where  $V(\infty)$  is the electrostatic potential in the middle of 12 the vacuum region and  $E_F$  is Fermi energy of the slab. Taking (Fe<sup>II</sup>)<sub>2</sub>N/MgO and 13  $(Fe^{II})_2N/TiO_2$  as examples, the dipole correction has been checked, and the detailed 14 15 results indicate that it has only negligible influence on the electronic structure and magnetism of Fe<sub>4</sub>N/oxides interfaces. 16

17

18

## **3. RESULTS AND DISSCUSIONS**

19

For bulk Fe<sub>4</sub>N, we obtain a lattice constant of 3.795 Å, which agrees well with the experimental value.<sup>8</sup> The calculated average magnetic moments of Fe<sup>I</sup>, Fe<sup>II</sup> and N are 2.95, 2.31 and 0.02  $\mu_{\rm B}$ , respectively, which are in accordance with previous

40-44 -

| 1  | theoretical and experimental results. <sup>10</sup> The shaded plots in Fig. 2 present the partial                    |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 2  | density of states (PDOSs) for bulk Fe <sub>4</sub> N and MgO. The shaded plots for bulk are also                      |
| 3  | used in other figures. For Fe <sup>I</sup> , Fe <sup>II</sup> and N [Fig. 2(a)], a distinct spin splitting of Fe d    |
| 4  | states appears, which induces the ferromagnetism. The DOS of Fe <sub>4</sub> N at $E_F$ is mainly                     |
| 5  | from the minority spin channel. From $-8.5$ to $-5$ eV, the N p states strongly hybridize                             |
| 6  | with the $\text{Fe}^{\text{II}} d$ states to form covalent bonds, whereas in the same energy region the               |
| 7  | $Fe^{I} d$ states show hardly any hybridization with N. Thus, the $Fe^{II}$ magnetic moment is                        |
| 8  | smaller than Fe <sup>I</sup> . The bulk band gaps in our calculation are 4.5, 1.7 and 1.9 eV for                      |
| 9  | three oxides, respectively, which shows a good agreement with previous                                                |
| 10 | calculations. <sup>45,32,30</sup> The gap is somewhat lower than the experimental band gap of 7.8                     |
| 11 | eV for MgO, 3.2 eV for BaTiO <sub>3</sub> , and 2.5 eV for BiFeO <sub>3</sub> . <sup>46,32,47</sup> The origin of the |
| 12 | discrepancy may be well known as the failures of density functional theory in                                         |
| 13 | correctly describing the excited states, the band gaps are strongly underestimated even                               |
| 14 | for insulators. We believe that the results presented here are nevertheless likely to be                              |
| 15 | qualitatively correct. The calculated Fe magnetic moment in bulk $BiFeO_3$ is ±4.18                                   |
| 16 | $\mu_B$ /atom, which is identical to the previous reported value. <sup>36</sup>                                       |
|    |                                                                                                                       |

Usually, the appearance of Fe magnetic moments in  $Fe_4N$  is attributed to the symmetry breaking: N is located at the body-centered position of the nonmagnetic face-centered cubic Fe. Therefore, the enhancement of Fe magnetic moments should also be related to the symmetry. Since the magnetic moment mainly originates from the unpaired *d* electrons and the hybridization between Fe and other atoms can reduce the amount of unpaired *d* electrons, it is the hybridization that determines the spin

| 1  | polarization of Fe <sub>4</sub> N layer. <sup>48</sup>                                                             |
|----|--------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                    |
| 3  | 3.1 Fe <sub>4</sub> N/MgO Interfaces                                                                               |
| 4  |                                                                                                                    |
| 5  | Initially we examine the energetic stability and the equilibrium geometry of the                                   |
| 6  | Fe <sub>4</sub> N/MgO interfaces. The calculated interfacial cohesive energies are $-1.72$ and $-$                 |
| 7  | 1.28 eV for models a and b, respectively, indicating that the former is more stable.                               |
| 8  | The equilibrium bond length of $\text{O-Fe}^{I}(\text{Fe}^{II})$ is 2.34(2.02) Å for model a, while that of        |
| 9  | Mg(O)-Fe <sup>II</sup> (N) is 4.13(3.76) Å for model b, confirming that the (Fe <sup>II</sup> ) <sub>2</sub> N-MgO |
| 10 | interaction is weak and the $Fe_4N$ lattice structures are perturbed upon the presence of                          |
| 11 | MgO for both the systems due to the relatively large lattice mismatch.                                             |
| 12 | In Table I, the magnetic moments of $Fe_4N$ and MgO in the $Fe_4N/MgO$ interfaces                                  |
| 13 | are presented. As compared to bulk Fe <sub>4</sub> N, the magnetic moment of Fe <sub>4</sub> N decreases by        |
| 14 | 13.7% for model a, while it slightly increases for model b. The broken symmetry at a                               |
| 15 | surface or interface <sup>49</sup> makes the Fe magnetic moments in layers I and III increase as                   |
| 16 | compared to bulk. However, the strong hybridization between Fe and MgO can                                         |
| 17 | weaken it. Therefore, the Fe magnetic moments in layer I are slightly smaller than                                 |
| 18 | layer III. Fig. 2 shows the PDOSs of models a-b. The label I, for example, refers to                               |
| 19 | layer I, as defined in Fig. 1, and $\mathrm{Fe}^{\mathrm{II}}$ denotes Fe atoms at the face-centered sites         |
| 20 | (which will be distinguished by numbers in round brackets). The same definition is                                 |
| 21 | used in other figures. For model a, the Fe <sup>I</sup> magnetic moment in layer I is almost                       |
| 22 | identical with layer III. A smaller Fe <sup>II</sup> magnetic moment in layer I can be attributed to               |

| 1  | the strong hybridization with O in layer I in the energy range from $-7.61$ to $-5.65$ eV.           |
|----|------------------------------------------------------------------------------------------------------|
| 2  | A large overlap can be seen in the energy range from $-2.34$ to $6.70$ eV, as shown in               |
| 3  | Figs. 2(a) and (b). Smaller/larger Fe <sup>II</sup> magnetic moments in layer II are the             |
| 4  | consequence of stronger/weaker hybridization with N in layer II in the energy range                  |
| 5  | from $-3.66 \text{ eV}$ to $E_F$ . The hybridization induces a small magnetic moment of 0.02 $\mu_B$ |
| 6  | in MgO for model a. For model b, the hybridization appears between N in layer I and                  |
| 7  | O in layer I, whereas Fe <sup>II</sup> has hardly any hybridization with O because of the large      |
| 8  | distance. The reduced Fe <sup>I</sup> magnetic moment in layer II is due to the appearance of        |
| 9  | hybridization with N in layers I and III in the energy range from $-2.81$ to $4.44$ eV. As           |
| 10 | N in layers I and III strongly hybridize with $Fe^{II}$ in layer II in the energy range from –       |
| 11 | 6.77 to $-3.36 \text{ eV}$ , Fe <sup>II</sup> magnetic moment is slightly smaller than bulk.         |

12 Fig. 3 gives the band structures for the spin-unpolarized MgO and the supercells, 13 demonstrating the changes of the electronic states in MgO upon interface formation. 14 The red color represents the contribution of MgO in the supercells. We observe that the band gap of MgO decreases to 3.93 and 3.53 eV for models a and b, respectively. 15 The  $E_{\rm F}$  of the supercell always lies in the band gap of MgO, resulting in the formation 16 of a Schottky barrier at the interface. The barrier height is defined by the energy 17 18 difference between the metal's Fermi level and the semiconductor's VB maximum 19 (p-type barrier) or CB minimum (n-type barrier). Figs. 3(b)-(e) show that the n-type  $(\Phi_{B,n})$  and p-type  $(\Phi_{B,p})$  Schottky barrier heights, which are calculated to be 1.02 and 20 0.76 eV for models a and b, respectively. A classical Schottky junction fulfills 21  $\Phi_{B,n} = \Phi_M - \chi_s, \Phi_{B,p} = E_g - \Phi_{B,n}$ , where  $E_g$  and  $\chi_s$  are the band gap and electron 22

| 1  | affinity of the semiconductor, and $\Phi_M$ is the work function of the metal. Due to the              |
|----|--------------------------------------------------------------------------------------------------------|
| 2  | above mentioned limitation of the generalized gradient approximation to reproduce                      |
| 3  | the band gap, we use the experimental value for the band gap as a good approximation.                  |
| 4  | From the vacuum potential and $E_{\rm F}$ , we have obtained a value of $\Phi_{\rm M}$ = 4.30, 4.55 eV |
| 5  | for $Fe^{I}Fe^{II}$ - and $(Fe^{II})_2N$ -terminated surface of $Fe_4N(001)$ , respectively. The work  |
| 6  | function of MgO(001) is about 4.77 eV, so the derived $\chi_s$ is about 0.87 eV and is                 |
| 7  | consistent with a reported value of 0.85 eV. $^{46}$ This leads to $\Phi_{B,n}{=}3.43$ eV and          |
| 8  | $\Phi_{B,p}$ =4.12 eV, respectively, which deviates from the value derived from the band               |
| 9  | structure, reflecting a rather strong Fermi level pinning. It is well known that the TMR               |
| 10 | is a spin-dependent tunneling effect. The appearance of Schottky barriers at                           |
| 11 | $Fe_4N/MgO$ interfaces verifies that the electron from $Fe_4N$ electrode must tunnel                   |
| 12 | through MgO insulating layers, which is a necessary condition for the presence of                      |
| 13 | TMR effects in the previous reported Fe <sub>4</sub> N/MgO/CoFeB MTJs. <sup>10,11</sup>                |

14 The charge transfer at the interfaces is quantified by charge density difference calculations (see Fig. 1), showing that charge is lost from the Fe<sup>II</sup> and O atoms, while 15 it accumulates in the Fe<sup>II</sup>-O bond region, reflecting the covalent bonding across the 16 17 interface for model a. It is worth noting that some extra charge accumulates around N. 18 For model b, the depleted charge from N and O mainly concentrates at the N-O region. 19 The plane-averaged charge difference analysis is performed to zoom into the details at 20 the interfacial region. Both the charge depletion and accumulation can be observed at 21 the interface, suggesting the interfacial charge redistribution, that is, the formation of 22 the interfacial electric dipole. Therefore, the formation of Fermi level pinning may be

**RSC Advances Accepted Manuscript** 

as a result of the presence of interfacial dipole effect.<sup>50</sup> The metal induced gap states<sup>51</sup> 1 and surface states<sup>52</sup> also may have contributions to the Fermi level pinning. 2 3 Furthermore, the charge redistribution in model a is much more pronounced than model b, resulting in a stronger interaction. 4 5 6 3.2 Fe<sub>4</sub>N/BaTiO<sub>3</sub> Interfaces 7 The cohesive energies and bond lengths in four models of the  $Fe_4N/BaTiO_3$ 8 interfaces are listed in Table II. The stability order is found to be b < c < a < d, see Fig. 1. 9 The energetically favorable case is d, i.e., the interfacial  $Fe^{II}(N)$  located on the top of 10 O(Ti). The large  $E_{coh}$ =-2.31 eV is from the strong Ti-N bonds with a bond strength of 11 12 2.03 Å. Table III gives the magnetic moments of Fe<sub>4</sub>N and BaTiO<sub>3</sub> in the Fe<sub>4</sub>N/BaTiO<sub>3</sub> 13 systems, the Fe<sub>4</sub>N magnetic moments are subject to reductions of 0.63%, 3.65% and 14 4.69% as compared to bulk Fe<sub>4</sub>N for models b-d, respectively. However, the Fe<sub>4</sub>N 15 magnetic moment in model a is slightly enhanced by 2.23%. The Fe magnetic 16 moments in layers I are different from layer III, reflecting the interfacial coupling 17 18 with  $BaTiO_3$ . Except for model a, the Fe magnetic moments in layer I are slightly 19 enhanced as compared to bulk, as previously demonstrated that in the Fe/BaTiO<sub>3</sub> superlattice and Fe<sub>3</sub>O<sub>4</sub>/BaTiO<sub>3</sub> heterostructure.<sup>18,19</sup> The Fe magnetic moment in layer 20 21 II is smaller than bulk due to the enhanced hybridization with the nearest N.

Fig. 4 gives the PDOSs of models a-b. For model a, as can be seen from Figs. 4(a)

22

| 1  | and (b), the $Fe^{I}$ in layer I hybridizes with O in layer I in the energy range from $-2.60$                                                                           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | to $-1.66 \text{ eV}$ and $E_{\text{F}}$ to 4.15 eV. Furthermore, the hybridization between Fe <sup>I</sup> and N in                                                     |
| 3  | layer II appears in the energy range from $-3.13$ to $-1.51$ eV, which reduces the                                                                                       |
| 4  | magnetic moment, as shown in Table III. The Fe <sup>II</sup> strongly hybridizes with O in the                                                                           |
| 5  | energy range from $-7.43$ to $-0.65$ eV and $E_{\rm F}$ to 4.15 eV, resulting in a larger Fe <sup>II</sup>                                                               |
| 6  | magnetic moment than bulk, but smaller than layer III. The PDOS indicates that the                                                                                       |
| 7  | $Fe^{II}$ in layer II strongly hybridizes with N in layer II over a wide energy range from –                                                                             |
| 8  | 5.18 to 4.84 eV, resulting in a reduced Fe <sup>II</sup> magnetic moment as compared to bulk.                                                                            |
| 9  | The induced magnetic moments of interfacial O and Ba are about 0.11 and 0.02 $\mu_B,$                                                                                    |
| 10 | respectively and are parallel to that of Fe <sup>I</sup> /Fe <sup>II</sup> . By contrast, the magnetic moment of                                                         |
| 11 | Ti is 0.05 $\mu_B$ and antiparallel to Fe <sup>I</sup> /Fe <sup>II</sup> , which is attributed to that the hybridization                                                 |
| 12 | with $Fe^{I}/Fe^{II}$ in the energy range from the $-0.55$ to 1.91 eV makes the minority-spin                                                                            |
| 13 | states of Ti have a greater occupation than the majority-spin states. Strong orbital                                                                                     |
| 14 | overlap between $Fe^{I}/Fe^{II}$ and O, Ti induces a metallic character of $BaTiO_3$ . To analyze                                                                        |
| 15 | the case of the spin polarization (P) at $E_{\rm F}$ , P is defined as                                                                                                   |
| 16 | $P = \left[ N_{\uparrow}(E_F) - N_{\downarrow}(E_F) \right] / \left[ N_{\uparrow}(E_F) + N_{\downarrow}(E_F) \right], \text{ in terms of the total DOS in the majority}$ |
| 17 | spin $N_{\uparrow}$ and minority spin channels $N_{\downarrow}$ , respectively. We find $P=-27.5\%$ deriving from                                                        |
| 18 | Fig. 4(b) and the value has the same sign of spin-polarization with Fe <sub>4</sub> N, indicating                                                                        |
| 19 | that the carrier polarization is not inversed. The PDOS of model b is shown in Figs.                                                                                     |
| 20 | 4(c) and (d). As compared to model a, Fe <sup>I</sup> in layer I shows hardly any hybridization                                                                          |
| 21 | with N in layer II, so its magnetic moment is larger than that in model a. The                                                                                           |
| 22 | enhanced hybridization between Fe <sup>I</sup> in layer III and N in layer II makes its magnetic                                                                         |

**RSC Advances Accepted Manuscript** 

moment smaller than bulk. The hybridization between the Fe<sup>I</sup>/Fe<sup>II</sup> and Ti appears in the energy range from -0.84 to  $E_{\rm F}$  and causes a charge redistribution between majority- and minority-spin states, giving rise to a large antiparallel magnetic moment on the interfacial Ti atom ( $-0.25 \mu_{\rm B}$ ). The induced O magnetic moment ( $0.05 \mu_{\rm B}$ ) is relatively small because of less hybridization with Fe<sup>I</sup>/Fe<sup>II</sup> in the same energy range.

6 The *P* is found to be -9.6%.

1

2

3

4

5

Fig. 5 gives the PDOSs of models c-d. For model c, it is clear that the N 7 8 electronic states are similar in layers I and III due to the weak interactions with BaTiO<sub>3</sub>. The Fe<sup>II</sup> magnetic moment in layer I slightly decreases as compared to layer 9 10 III, which can be attributed to the hybridization with O in layer I in the energy range from -2.57 to 0.22 eV, as shown in Figs. 5(a) and (b). The Fe<sup>I</sup> magnetic moment in 11 12 layer II decreases because of the enhanced hybridization with N in layer I in the 13 energy range from -3.02 to 3.02 eV. The weak interfacial bonding induces a small O magnetic moment of 0.01  $\mu_B$ . For model d, the interfacial bonding is similar to model 14 b. One can see the hybridization between  $Fe^{II}$  in layer I and O in layer I in the energy 15 16 range from -8.05 eV to  $E_F$ , as shown in Figs. 5(c) and (d). The hybridization induces an O magnetic moment of 0.04  $\mu_B$ . The induced magnetic moment of Ti atom is -0.03 17  $\mu_{\rm B}$ , which is ascribed to the hybridization with Fe<sup>II</sup> in the energy range from -1.66 to 18 19 0.67 eV. In the energy range from -7.84 to -0.78 eV, the hybridization appears between N in layer I and Ti in layer I. The magnetic moments obtained for BaTiO<sub>3</sub> in 20 21 models a-d are 0.08, -0.19, 0.01 and 0.07  $\mu_B$ , respectively.

22

Fig. 6 shows the spin-polarized band structures of the Fe<sub>4</sub>N/BaTiO<sub>3</sub> interfaces.

| 1  | Energy level splitting occurs between the majority and minority spin channels near $E_{\rm F}$ ,   |
|----|----------------------------------------------------------------------------------------------------|
| 2  | which induces magnetic moments of BaTiO <sub>3</sub> . For model a, the majority and minority      |
| 3  | spin CB minimum shifts down across $E_{\rm F}$ , showing a metallic feature. For model b, the      |
| 4  | interaction between $Fe_4N$ and $BaTiO_3$ is weak as compared to model a, the induced              |
| 5  | metallicity is not apparent. The $BaTiO_3$ in model c can be regarded as <i>p</i> -type doping     |
| 6  | with a gap of 1.91 eV, as $E_F$ of the supercell locates at VB maximum of BaTiO <sub>3</sub> . As  |
| 7  | for model d, $E_{\rm F}$ is situated at the position of 0.72 eV above VB maximum and 0.10 eV       |
| 8  | below CB minimum of BaTiO <sub>3</sub> , indicating the <i>n</i> -type doping. Meanwhile, the band |
| 9  | gap decreases to 0.80 eV and a $\Phi_{B,n}$ of 0.10 eV is observed. The work functions of          |
| 10 | BaO- and TiO <sub>2</sub> -terminated (001) surfaces are well established as 2.37 and 5.40 eV, so  |
| 11 | the electron affinities are 0.77 and 3.80 eV, respectively. The classical Schottky barrier         |
| 12 | heights are $-0.58$ and $0.77$ eV, which are different from the values derived from the            |
| 13 | band structure.                                                                                    |
|    |                                                                                                    |

The charge density differences for the Fe<sub>4</sub>N/BaTiO<sub>3</sub> interfaces are also shown in 14 Fig. 1. For model a, Fe<sup>II</sup> in layer I and Ti in layer II lose charge, while a slight but 15 significant accumulation around the interfacial O atom and some extra charge is also 16 found to accumulate around interfacial Fe<sup>I</sup> atom, which indicates that the interfacial 17 bonding between the Fe<sup>I</sup>Fe<sup>II</sup> and BaO surface takes on the ionic nature. As for model 18 b, charge is lost from Fe<sup>II</sup> and Ti atoms, while it accumulates in the Fe<sup>II</sup>-Ti bond 19 region, reflecting a covalent bonding across the interface. The charge density 20 difference plot in model c shows that the charge density distribution at the 21 (Fe<sup>II</sup>)<sub>2</sub>N-BaO interfacial layer is small, reflecting that the interfacial interaction is 22

| rather weak. We can see charge accumulation around the interfacial $Fe^{II}$ atoms and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| charge depletion at O atoms. Therefore, the p-type doping of BaTiO <sub>3</sub> on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $(Fe^{II})_2N$ -terminated surface of Fe <sub>4</sub> N(001) is due to the electron transfer from BaTiO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| to $Fe_4N$ . The charge density difference map in model d demonstrates that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| electronic interactions at the $(Fe^{II})_2N$ -TiO <sub>2</sub> interfacial layer are characterized by strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| covalent bonding among Fe <sup>II</sup> , O, N, and Ti. The interfacial charge redistribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| occurs in models c and d, indicating that the Fermi level pinning may originates from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| the dipole effect that exists at $(Fe^{II})_2N/BaTiO_3$ interfaces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3.3 Fe <sub>4</sub> N/BiFeO <sub>3</sub> Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 3.3 Fe <sub>4</sub> N/BiFeO <sub>3</sub> Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <b>3.3 Fe<sub>4</sub>N/BiFeO<sub>3</sub> Interfaces</b><br>The models b, c and d in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> interfaces have a positive cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| <b>3.3 Fe<sub>4</sub>N/BiFeO<sub>3</sub> Interfaces</b><br>The models b, c and d in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> interfaces have a positive cohesive<br>energy, implying the formation of these interfaces is an endothermic process and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| <b>3.3 Fe<sub>4</sub>N/BiFeO<sub>3</sub> Interfaces</b><br>The models b, c and d in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> interfaces have a positive cohesive<br>energy, implying the formation of these interfaces is an endothermic process and<br>thermodynamically unstable. It is also indicated by the large distance between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| <b>3.3 Fe<sub>4</sub>N/BiFeO<sub>3</sub> Interfaces</b><br>The models b, c and d in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> interfaces have a positive cohesive<br>energy, implying the formation of these interfaces is an endothermic process and<br>thermodynamically unstable. It is also indicated by the large distance between the<br>Fe <sub>4</sub> N and BiFeO <sub>3</sub> (see the respective bond lengths in Table II). The strongest cohesion                                                                                                                                                                                                                                                                                                                                                                                   |  |
| <b>3.3 Fe<sub>4</sub>N/BiFeO<sub>3</sub> Interfaces</b><br>The models b, c and d in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> interfaces have a positive cohesive<br>energy, implying the formation of these interfaces is an endothermic process and<br>thermodynamically unstable. It is also indicated by the large distance between the<br>Fe <sub>4</sub> N and BiFeO <sub>3</sub> (see the respective bond lengths in Table II). The strongest cohesion<br>between the Fe <sub>4</sub> N and BiFeO <sub>3</sub> is exhibited by model a, i.e., the BiO-terminated                                                                                                                                                                                                                                                                         |  |
| <b>3.3 Fe<sub>4</sub>N/BiFeO<sub>3</sub> Interfaces</b><br>The models b, c and d in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> interfaces have a positive cohesive<br>energy, implying the formation of these interfaces is an endothermic process and<br>thermodynamically unstable. It is also indicated by the large distance between the<br>Fe <sub>4</sub> N and BiFeO <sub>3</sub> (see the respective bond lengths in Table II). The strongest cohesion<br>between the Fe <sub>4</sub> N and BiFeO <sub>3</sub> is exhibited by model a, i.e., the BiO-terminated<br>surface with interfacial Fe <sup>1</sup> (Fe <sup>II</sup> ) lying on the top of the interfacial Bi(O1) atoms, as                                                                                                                                                    |  |
| <b>3.3 Fe<sub>4</sub>N/BiFeO<sub>3</sub> Interfaces</b><br>The models b, c and d in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> interfaces have a positive cohesive<br>energy, implying the formation of these interfaces is an endothermic process and<br>thermodynamically unstable. It is also indicated by the large distance between the<br>Fe <sub>4</sub> N and BiFeO <sub>3</sub> (see the respective bond lengths in Table II). The strongest cohesion<br>between the Fe <sub>4</sub> N and BiFeO <sub>3</sub> is exhibited by model a, i.e., the BiO-terminated<br>surface with interfacial Fe <sup>I</sup> (Fe <sup>II</sup> ) lying on the top of the interfacial Bi(O1) atoms, as<br>given in Fig. 1.                                                                                                                                |  |
| <b>3.3 Fe<sub>4</sub>N/BiFeO<sub>3</sub> Interfaces</b><br>The models b, c and d in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> interfaces have a positive cohesive<br>energy, implying the formation of these interfaces is an endothermic process and<br>thermodynamically unstable. It is also indicated by the large distance between the<br>Fe <sub>4</sub> N and BiFeO <sub>3</sub> (see the respective bond lengths in Table II). The strongest cohesion<br>between the Fe <sub>4</sub> N and BiFeO <sub>3</sub> is exhibited by model a, i.e., the BiO-terminated<br>surface with interfacial Fe <sup>I</sup> (Fe <sup>II</sup> ) lying on the top of the interfacial Bi(O1) atoms, as<br>given in Fig. 1.<br>Table IV gives the magnetic moments of Fe <sub>4</sub> N and BiFeO <sub>3</sub> in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> |  |

- as compared to bulk Fe<sub>4</sub>N for models a-d, respectively. The PDOSs of models a-b are
- addressed in Fig. 7. For model a, as can be shown in Figs. 7(a) and (b) that the

| 1  | hybridization between $Fe^{I}$ in layer I and Bi in layer I in the energy range from $-2.62$           |
|----|--------------------------------------------------------------------------------------------------------|
| 2  | to 0.82eV and the enhanced hybridization between $Fe^{I}$ and N in layer II reduce the $Fe^{I}$        |
| 3  | magnetic moment. The hybridization between $Fe^{II}$ in layer I and O1 in layer I in the               |
| 4  | energy range from $-1.09$ to 2.10 eV makes the spin splitting of Fe between the                        |
| 5  | majority and minority spin channels become stronger, resulting in a larger $\mathrm{Fe}^{\mathrm{II}}$ |
| 6  | magnetic moment than bulk, but smaller than layer III. The enhanced hybridization                      |
| 7  | between $Fe^{II}$ in layer II and N in layer II in the energy range from $-4.24$ to $4.10 \text{ eV}$  |
| 8  | leads to a smaller Fe <sup>II</sup> magnetic moment as compared to bulk. The PDOS of O1 on all         |
| 9  | the atomic layers is relatively symmetrical, in accord with the reduced O1 magnetic                    |
| 10 | moment. Furthermore, there are two kinds of O1 atoms in layer I with different                         |
| 11 | magnetic moments, which is due to the facts that O1 with a larger magnetic moment                      |
| 12 | has a weaker hybridization with Bi in layer I than O1 with a smaller magnetic                          |
| 13 | moment. The Fe magnetic moments in $BiFeO_3$ on all the atomic layers have only a                      |
| 14 | small change as compared with bulk BiFeO <sub>3</sub> . Figs. 7(c) and (d) show the PDOS of            |
| 15 | model b. The reduction of the electronic states of Fe in layer I indicates that the                    |
| 16 | corresponding Fe magnetic moment decreases as compared to bulk BiFeO <sub>3</sub> , due to the         |
| 17 | hybridization with $\text{Fe}^{II}$ in layer I in the energy range from $-3.76$ to $-1.38$ eV. The     |
| 18 | electronic states of Fe in layer V have a strong spin-splitting behavior and produce                   |
| 19 | spin-polarized carriers at Fermi level, leading to a local net magnetic moment of 1.01                 |
| 20 | $\mu_B.$ The Fe(4) magnetic moment is reduced to $-3.11~\mu_B,$ which is from the enhanced             |
| 21 | hybridization with O2 in layer V as compared to bulk BiFeO3. The Fe <sup>II</sup> -Fe interfacial      |
| 22 | bonding induces no significant Bi magnetic moment (0.01 $\mu_B$ ).                                     |

| I  | Fig. 8 shows the PDOSs of models c and d. In model c, the hybridization                                                 |
|----|-------------------------------------------------------------------------------------------------------------------------|
| 2  | between Fe <sup>II</sup> in layer I and Bi in layer I appears in the energy range from -0.14 to 4.92                    |
| 3  | eV. The Fe <sup>II</sup> -Bi interfacial bonding makes the Fe <sup>II</sup> magnetic moments on all the                 |
| 4  | atomic layers decrease, where the magnetic moments of $\mathrm{Fe}^{\mathrm{II}}$ further away from the                 |
| 5  | interface are larger, as shown in Table IV. The electronic states of Fe of $BiFeO_3$ in                                 |
| 6  | layers II and IV show a strong spin-splitting, resulting in a local net magnetic moment                                 |
| 7  | of –0.83 and 0.60 $\mu_B$ , respectively, which can be ascribed to the interfacial bonding.                             |
| 8  | There are two kinds of Fe atoms with different magnetic moments in layers II and IV,                                    |
| 9  | which may be from the facts that Fe atoms with small magnetic moments have a                                            |
| 10 | stronger hybridization with the nearest O2 atom near $E_{\rm F}$ . There are two kinds of O1                            |
| 11 | atoms with different magnetic moments on all the atomic layers, which may be due to                                     |
| 12 | the facts that O1 with small magnetic moments have a stronger hybridization with the                                    |
| 13 | nearest Bi atoms. The hybridization between Fe <sup>I</sup> in layer II and N in layers I, III in the                   |
| 14 | energy range from $-4.46$ to $-0.80$ eV makes the Fe <sup>I</sup> magnetic moment decrease. For                         |
| 15 | model d, the hybridization between Fe <sup>I</sup> in layer II and N in layers I, III in the energy                     |
| 16 | range from $-4.14$ to $1.73$ eV reduces the Fe <sup>I</sup> magnetic moment. The hybridization                          |
| 17 | appears between Fe <sup>II</sup> in layers I, III and O2 in layer I, resulting in a slight increase of                  |
| 18 | corresponding $\mathrm{Fe}^{\mathrm{II}}$ magnetic moments as compared to bulk. The reduced $\mathrm{Fe}^{\mathrm{II}}$ |
| 19 | magnetic moment in layer II is attributed to the enhanced hybridization with N in                                       |
| 20 | layers I, III in the energy range from $-8.16$ to $-3.80$ eV and the hybridization with O2                              |
| 21 | in layer I. The Fe <sup>II</sup> -O2 interfacial bonding makes the O2 magnetic moment in layer I                        |
| 22 | up to 0.13 $\mu_B.$ The Fe magnetic moments of BiFeO3 in layers I and III have only a                                   |

| 1 | small change, but that of Fe(4) in layer V reduced to $-3.65 \mu_B$ and the net Fe magnetic         |
|---|-----------------------------------------------------------------------------------------------------|
| 2 | moment is 0.51 $\mu_B$ because of a stronger hybridization with O2 in layer V. The total            |
| 3 | magnetic moments of BiFeO3 in models a-d are –0.33, 1.54, 0.59 and –0.46 $\mu_B,$                   |
| 4 | respectively. Strong orbital hybridization induces a metallicity of BiFeO3. The spin                |
| 5 | polarization can be derived from Figs. 7 and 8 as $P=33.3\%$ , $-34.5\%$ , $-19.9\%$ and $-7.7\%$   |
| 6 | for BiFeO <sub>3</sub> in models a-d, respectively. The change in the sign of the spin polarization |
| 7 | at $E_{\rm F}$ is related to the hybridization mentioned above.                                     |

8 The band structures of the  $Fe_4N/BiFeO_3$  systems are plotted in Fig. 9. The 9 majority and minority spin bands are asymmetric for  $BiFeO_3$  in four models. For 10 models a, c and d,  $BiFeO_3$  bands strongly hybridize with  $Fe_4N$ , inducing a metallic 11 character of  $BiFeO_3$ . For model b, the weak interaction between  $Fe^IFe^{II}$  and  $FeO_2$  also 12 induces the metallicity of  $BiFeO_3$ . Therefore,  $BiFeO_3$  cannot be used for the tunnel 13 barrier in MTJs with  $Fe_4N$  as an electrode.

The charge redistribution between  $Fe_4N$  and  $BiFeO_3$  is also shown in Fig. 1, showing the formation of bonds. Since there is no obvious charge density accumulation in  $Fe^{I}$ -Bi,  $Fe^{II}$ -O1, or  $Fe^{II}$ -Fe bonding regions, we obtain an ionic-like bonding picture for modes a-b, with the charge transfer and polarization. In model c, a depletion of  $Fe^{II}$  charge density on all the atomic layers is observed and the charge from  $Fe^{II}$  atom in layer I is transferred more to Bi in layer I. For model d, clearly, there is significant charge transfer from O2 in layer I to  $Fe^{II}$  in layer I.

21

22

4. CONCLUSION

| 1  |                                                                                                                      |
|----|----------------------------------------------------------------------------------------------------------------------|
| 2  | The main findings of our first-principles calculations on the $Fe_4N$ /Oxides                                        |
| 3  | interfaces can be summarized as follows: (1) The deposition of $Fe_4N$ on MgO can                                    |
| 4  | lead to <i>n</i> - and <i>p</i> -type doping of MgO, depending on the $Fe^{I}Fe^{II}$ and $(Fe^{II})_{2}N$ contacted |
| 5  | terminations of Fe <sub>4</sub> N(001), respectively. (2) Both effects are found in BaTiO <sub>3</sub> , where       |
| 6  | in contact with Fe <sup>I</sup> Fe <sup>II</sup> termination gives rise to metallic characters, whereas in contact   |
| 7  | with $(Fe^{II})_2N$ termination preserves semiconducting characters. Furthermore, <i>p</i> -type                     |
| 8  | doping is found in $(Fe^{II})_2N/BaO$ interface and <i>n</i> -type doping in the $(Fe^{II})_2N/TiO_2$                |
| 9  | interface. Magnetic moments of 0.01-0.19 $\mu_B$ are detected. (3) We assume that the                                |
| 10 | dipole effect which exists at the Fe <sub>4</sub> N/MgO and $(Fe^{II})_2N/BaTiO_3$ interfaces may cause              |
| 11 | Fermi level pinning so that the calculated Schottky barrier heights are different from                               |
| 12 | classical Schottky barrier heights. (4) The deposition of $Fe_4N$ on $BiFeO_3$ can lead to                           |
| 13 | conductive BiFeO3 with total magnetic moment of 0.33-1.54 $\mu_B.$ The different                                     |
| 14 | electronic and magnetic characters are a consequence of interfacial bonding between                                  |
| 15 | $Fe_4N$ and oxides. We hope that the work described here can serve as a theoretical                                  |
| 16 | foundation for further experimental investigation on Fe <sub>4</sub> N/oxides based spintronics                      |
| 17 | devices.                                                                                                             |
| 18 |                                                                                                                      |
| 19 | ACKNOWLEDGEMENTS                                                                                                     |
| 20 |                                                                                                                      |
| 21 | W. B. M. was supported by the National Natural Science Foundation of China                                           |
| 22 | (51171126), Key Project of Natural Science Foundation of Tianjin City                                                |
|    |                                                                                                                      |

- 1 (12JCZDJC27100), Program for New Century Excellent Talents in University
- 2 (NCET-13-0409) and Scientific Research Foundation for the Returned Overseas
- 3 Chinese Scholars, State Education Ministry of China.

**RSC Advances Accepted Manuscript** 

## 1 **REFERENCES**

2

- 3 1 S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. von Molnar, M. Roukes, A.
- 4 Chtchelkanova and D. Treger, *Science*, 2001, **294**, 1488.
- 5 2 C. Chen and W. Hsueh, *Appl. Phys. Lett.*, 2014, **104**, 042405.
- 6 3 G. Xing, J. Yi, F. Yan, T. Wu and S. Li, *Appl. Phys. Lett.*, 2014, **104**, 202411.
- 7 4 J. Lee, G. Xing, J. Yi, T. Chen, M. Lonescu and S. Li, Appl. Phys. Lett., 2014, 104,

8 012405.

- 9 5 D. Wang, G. Xing, F. Yan, Y. Yan and S. Li, *Appl. Phys. Lett.*, 2014, **104**, 022412.
- 10 6 I. Zutić, J. Fabian and S. Sarma, *Rev. Mod. Phys.*, 2004, **76**, 323.
- 11 7 E. Tsymbal, O. Mryasov and P. LeClair, J. Phys.: Condens. Matter, 2003, 15, R109.
- 12 8 S. Kokado, N. Fujima, K. Harigaya, H. Shimizu and A. Sakuma, *Phys. Rev. B*, 2006,
- 13 **73**, 172410.
- 14 9 S. Nagakura, J. Phys. Soc. Jpn., 1968, 25, 488.
- 15 10 K. Sunaga, M. Tsunoda, K. Komagaki, Y. Uehara and M. Takahashi, J. Appl. Phys.,
- 16 2007, **102**, 013917.
- 17 11 Y. Komasaki, M. Tsunoda, S. Isogami and M. Takahashi, J. Appl. Phys., 2009, 105,
- 18 07C928.
- 19 12 N. Feng, W. Mi, Y. Cheng, Z. Guo, U. Schwingenschlögl and H. Bai, ACS Appl.
- 20 *Mater. Interfaces*, 2014, **6**, 4587.
- 21 13 J. Hayakawa, S. Ikeda, F. Matsukura, H. Takahashi and H. Ohno, Jpn. J. Appl.
- 22 *Phys.*, Part 2 2005, **44**, L587.

- 1 14 S. Ikeda, J. Hayakawa, Y. Lee, R. Sasaki, T. Meguro, F. Matsukura and H. Ohno,
- 2 Jpn. J. Appl. Phys., Part 2 2005, 44, L1442.
- 3 15 W. Eerenstein, M. Wiora, J. Prieto, J. Scott, N. Mathur, *Nat. Mater.*, 2007, 6, 348.
- 4 16 H. Tian, T. Qu, L. Luo, J. Yang, S. Guo, H. Zhang, Y. Zhao, J. Li, Appl. Phys. Lett.,
- 5 2008, **92**, 063507.
- 6 17 R. Cohen, *Nature*, 1992, **358**, 136.
- 7 18 C. Duan, S. Jaswal and E. Tsymbal, *Phys. Rev. Lett.*, 2006, **97**, 047201.
- 8 19 M. Niranjan, J. Velev, C. Duan, S. Jaswal and E. Tsymbal, *Phys. Rev. B*, 2008, 78,

9 104405.

- 10 20 K. Yamauchi, B. Sanyal and S. Picozzi, Appl. Phys. Lett., 2007, 91, 062506.
- 11 21 J. Dai, H. Zhang and Y. Song, J. Magn. Magn. Mater., 2012, **324**, 3937.
- 12 22 W. Choi, D. Jeong, S. Seo, Y. Lee, T. Kim, S. Jang, H. Lee and K. Myung-Whun,
- 13 *Phys. Rev. B*, 2011, **83**, 195113.
- 14 23 J. Garcia-Barriocanal, J. Cezar, F. Bruno, P. Thakur, N. Brookes and C. Utfeld, Nat.
- 15 *Commun.*, 2010, **1**, 82.
- 16 24 H. Béa, M. Bibes, S. Cherifi, F. Nolting and B. Warot-Fonrose, Appl. Phys. Lett.,
- 17 2006, **89**, 242114.
- 18 25 S. Ju, T. Cai, G. Guo and Z. Li, J. Appl. Phys., 2008, **104**, 053904.
- 19 26 W. Kohn and L. Sham, *Phys. Rev.*, 1965, **140**, A1133.
- 20 27 P. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- 21 28 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 22 29 J. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.

- 1 30 H. Yang, C. Jin, W. Mi, H. Bai and G. Chen, J. Appl. Phys., 2012, 112, 063925.
- 2 31 P. Mohn and S. Mater, J. Magn. Magn. Mater., 1999, 191, 234.
- 3 32 M. Nolan and G. Watson, Surf. Sci., 2005, 586, 25.
- 4 33 J. Padilla and D. Vanderbilt, *Phys. Rev. B*, 1997, **56**, 1625.
- 5 34 W. Mi, Z. Guo, X. Feng and H.Bai, *Acta Mater.*, 2013, **61**, 6387.
- 6 35 J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V.
- 7 Vaithyanathan, D. Schlom, U. Waghmare, N. Spaldin, K. Rabe, M. Wutting and R.
- 8 Ramesh, *Science*, 2003, **299**, 1719.
- 9 36 H. Tütüncü and G. Srivastava, *Phys. Rev. B*, 2008, **78**, 235209.
- 10 37 D. Wang, W. Goh, M. Ning and C. Ong, *Appl. Phys. Lett.*, 2006, **88**, 212907.
- 11 38 N. Pertsev, A. Zembilgotov and A. Tagantsev, *Phys. Rev. Lett.*, 1998, **80**, 1988.
- 12 39 O. Diéguez, K. Rabe and D. Vanderbilt, *Phys. Rev. B*, 2005, **72**, 144101.
- 13 40 J. Von Appen and R. Dronskowski, *Angew. Chem. Int. Ed.*, 2005, 44, 1205.
- 14 41 R. Coehoorn, G. Daalderop and H. Jansen, *Phys. Rev. B*, 1993, **48**, 3830.
- 15 42 E. Zhao, H. Xiang, J. Meng and Z. Wu, *Chem. Phys. Lett.*, 2007, 449, 96.
- 16 43 Z. Lv, Y. Gao, S. Sun, M. Qv, Z. Wang, Z. Shi and W. Fu, J. Magn. Magn. Mater.,
- 17 2013, **333**, 39.
- 18 44 B. Frazer, *Phys. Rev.*, 1958, **112**, 751.
- 45 A. Schleife, F. Fuchs, J. Furthmüller and F. Bechstedt, *Phys. Rev. B*, 2006, 73,
  245212.
- 21 46 J. Dresner, J. Appl. Phys., 1977, 48, 4760.
- 22 47 R. Palai, R. Katiyar, H. Schmid, P. Tissot, S. Clark, J. Robertson, S. Redfern, G.

- 1 Catalan and J. Scott, *Phys. Rev. B*, 2008, **77**, 014110.
- 2 48 Y. Shi, Y. Du and G. Chen, *Solid State Commun.*, 2012, **152**, 1581.
- 3 49 Y. Shen, Annu. Rev. Phys. Chem., 1989, 40, 327.
- 4 50 R. Tung, *Phys. Rev. B*, 2001, **64**, 205310.
- 5 51 J. Tersoff, *Phys. Rev. Lett.*, 1984, **52**, 465.
- 6 52 D. Geppert, A. Cowley and B. Dore, J. Appl. Phys., 1966, **37**, 2458.

# 1 TABLE NOTES

2

3 TABLE I. The calculated magnetic moment  $m(\mu_B)$  of per atom in the Fe<sub>4</sub>N/MgO

supercell for models a and b as compared to bulk.

5

4

| Atom<br>Model | Layer | Fe <sup>I</sup> | Fe <sup>II</sup>   | Ν     | Mg | Ο                   |
|---------------|-------|-----------------|--------------------|-------|----|---------------------|
|               | Bulk  | 2.95            | 2.31               | 0.02  | 0  | 0                   |
|               | Ι     | 2.98            | -0.23              |       | 0  | (2)0.03<br>(6)-0.01 |
| а             | Π     | _               | (3)2.27<br>(4)2.35 | -0.02 | 0  | 0                   |
|               | III   | 2.97            | 2.84               |       | 0  | 0                   |
|               | Ι     |                 | 2.63               | -0.03 | 0  | 0                   |
| b             | II    | 2.73            | 1.33               |       | 0  | 0                   |
|               | III   | _               | 2.65               | -0.03 | 0  | 0                   |

## Page 29 of 45

## **RSC** Advances

1 **TABLE II.** Cohesive energy  $E_{coh}$  (eV) and optimized bond lengths d (Å) for the

2 
$$Fe_4N/BaTiO_3$$
 and  $Fe_4N/BiFeO_3$  interfaces.

3

| Interface               | Fe <sub>4</sub> N/BaTiO <sub>3</sub> |       |       |       | Fe <sub>4</sub> N/BiFeO <sub>3</sub> |      |      |      |
|-------------------------|--------------------------------------|-------|-------|-------|--------------------------------------|------|------|------|
| Interface               | а                                    | b     | с     | d     | а                                    | b    | с    | d    |
| Ba(Bi)-Fe <sup>I</sup>  | 2.90                                 |       |       | _     | 2.51                                 | _    |      | _    |
| O-Fe <sup>I</sup>       | 3.75                                 | 2.87  | _     | _     | 3.70                                 | 3.79 | _    | _    |
| Ti(Fe)-Fe <sup>I</sup>  | _                                    | 3.54  | _     | _     | _                                    | 3.76 | _    | _    |
| Ba(Bi)-Fe <sup>II</sup> | 3.58                                 | _     | 4.49  | _     | 3.33                                 | _    | 2.96 | _    |
| O-Fe <sup>II</sup>      | 1.89                                 | 3.13  | 4.55  | 2.13  | 1.95                                 | 3.67 | 3.59 | 3.03 |
| Ti(Fe)-Fe <sup>II</sup> | _                                    | 2.61  | _     | 2.91  | _                                    | 2.60 | _    | _    |
| Ba(Bi)-N                | _                                    |       | 4.62  | _     | —                                    | _    | 3.41 | 2.70 |
| O-N                     | —                                    | _     | 3.80  | 2.79  | _                                    | —    | 2.96 | 2.38 |
| Ti(Fe)-N                | —                                    | _     | _     | 2.03  | _                                    | —    | _    |      |
| $E_{ m coh}$            | -1.52                                | -0.73 | -0.92 | -2.31 | -1.07                                | 8.33 | 1.67 | 3.31 |

1 **TABLE III.** The calculated magnetic moment  $m(\mu_B)$  of per atom in the Fe<sub>4</sub>N/BaTiO<sub>3</sub>

supercell for models a-d as compared to bulk.

| -          |
|------------|
| · <b>,</b> |
| •          |
|            |

2

| Atom<br>Model | Layer | Fe <sup>I</sup> | Fe <sup>II</sup> | N     | Ba   | Ti    | 0     |
|---------------|-------|-----------------|------------------|-------|------|-------|-------|
|               | Bulk  | 2.95            | 2.31             | 0.02  | 0    | 0     | 0     |
|               | Ι     | 2.72            | 2.64             |       | 0.02 | —     | 0.11  |
| а             | II    | _               | 2.14             | 0.01  | _    | -0.05 | 0.01  |
|               | III   | 2.95            | 2.84             |       | 0    | _     | 0     |
|               | Ι     | 3.12            | 2.49             |       | _    | -0.25 | 0.05  |
| b             | II    | _               | 2.09             | -0.02 | 0    | _     | -0.01 |
|               | III   | 2.92            | 2.58             |       | _    | -0.02 | 0.01  |
|               | Ι     | _               | 2.49             | -0.03 | 0    | _     | 0.01  |
| с             | II    | 2.76            | 1.34             |       | _    | 0     | 0     |
|               | III   | _               | 2.51             | -0.03 | 0    | _     | 0     |
|               | Ι     | _               | 2.53             | 0     | _    | -0.03 | 0.04  |
| d             | II    | 2.81            | 1.08             |       | 0    | _     | 0.01  |
|               | III   | —               | 2.46             | -0.06 | —    | 0.01  | 0     |

## Page 31 of 45

## **RSC Advances**

1 **TABLE IV.** The calculated magnetic moment  $m(\mu_B)$  of per atom in the Fe<sub>4</sub>N/BiFeO<sub>3</sub>

2

supercell for models a-d as compared to bulk.

| $\sim$ |
|--------|
| ч.     |
| .,     |
|        |

|   | Layer | Fe <sup>I</sup> | Fe <sup>II</sup>       | Ν                | Bi                  | Fe                  | 01                  | O2    |
|---|-------|-----------------|------------------------|------------------|---------------------|---------------------|---------------------|-------|
|   | Bulk  | 2.95            | 2.31                   | 0.02             | 0                   | ±4.18               | -0.21               | 0     |
|   | Ι     | 2.39            | 2.63                   | _                | -0.20               | _                   | (3)0.03<br>(6)0.09  | —     |
|   | II    | —               | 2.11                   | 0.01             | —                   | (2)-4.15<br>(4)4.16 | —                   | -0.01 |
| а | III   | 2.96            | 2.88                   | —                | (2)0<br>(5)-0.01    | —                   | (2)-0.05<br>(5)0.05 | —     |
|   | IV    | —               | —                      | —                | —                   | (1)4.15<br>(3)-4.15 |                     | 0     |
|   | V     |                 | _                      | _                | (1)-0.01<br>(4)0.01 | _                   | (1)0.10<br>(4)-0.10 | —     |
|   | Ι     | 2.98            | 2.46                   | _                |                     | (3)3.86<br>(6)-3.82 |                     | 0     |
|   | II    | _               | (5/6)1.61<br>(7/8)1.68 | (1)-0.03<br>(2)0 | (2)-0.01<br>(4)0.01 | _                   | (2)-0.16<br>(4)0.16 | _     |
| b | III   | 2.92            | (2)2.74<br>(4)2.84     |                  | _                   | (2)-4.16<br>(5)4.17 | _                   | 0.01  |
|   | IV    | —               | _                      | _                | (1)0.01<br>(2)-0.01 | _                   | (1)0.17<br>(3)-0.01 | —     |
|   | V     | —               | _                      | _                |                     | (1)4.12<br>(4)-3.11 |                     | -0.32 |
|   | Ι     | _               | 0.95                   | -0.06            | -0.02               | _                   | (3)-0.17<br>(6)0.01 | _     |
|   | II    | 2.88            | 1.55                   | —                | —                   | (2)-4.20<br>(4)3.37 | _                   | -0.10 |
| c | III   | —               | 1.91                   | -0.07            | -0.01               | _                   | (2)0.11<br>(5)0.04  | —     |
|   | IV    | —               | _                      | _                |                     | (1)4.14<br>(3)-3.54 |                     | 0.03  |
|   | V     | —               | —                      | —                | -0.01               | _                   | (1)0.20<br>(4)0.12  | —     |
|   | Ι     |                 | 2.35                   | -0.04            | —                   | (3)4.19<br>(6)-4.13 |                     | 0.13  |
|   | II    | 2.79            | 0.91                   | _                | (2)0.01<br>(4)-0.01 | —                   | (2)0.13<br>(4)-0.13 | _     |
| d | III   | —               | 2.35                   | -0.03            |                     | (2)-4.16<br>(5)4.18 |                     | -0.01 |
|   | IV    |                 | _                      | _                | (1)-0.01<br>(3)0.01 | _                   | (1)0.02<br>(3)0.19  | —     |
|   | V     | _               | _                      | _                | —                   | (1)4.16<br>(4)-3.65 | —                   | 0.07  |

| 1  | FIGURE CAPTIONS                                                                                                               |
|----|-------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                               |
| 3  | Fig. 1 The top, middle, and bottom planes are the supercell structures of Fe <sub>4</sub> N/MgO,                              |
| 4  | Fe <sub>4</sub> N/BaTiO <sub>3</sub> and Fe <sub>4</sub> N/BiFeO <sub>3</sub> , respectively. The right side is corresponding |
| 5  | side view of the three dimensional charge density difference plots and                                                        |
| 6  | plane-averaged charge density difference along the vertical z-direction normal                                                |
| 7  | to the interface. Blue and yellow isosurfaces represent charge depletion and                                                  |
| 8  | accumulation in the space with respect to isolated Fe <sub>4</sub> N and oxides surface,                                      |
| 9  | respectively. Corresponding, blue color filled areas represent a charge                                                       |
| 10 | depletion region and yellow color filled areas represent a charge accumulation                                                |
| 11 | region. The areas between the green dashed lines are the interfacial regions.                                                 |
| 12 |                                                                                                                               |
| 13 | Fig. 2 PDOS obtained from fully relaxed models a and b in the Fe <sub>4</sub> N/MgO interfaces,                               |
| 14 | projected on different layers. (a) and (b) the PDOS of $Fe_4N$ and MgO for                                                    |
| 15 | model a, respectively; (c) and (d) the PDOS of $Fe_4N$ and MgO for model b,                                                   |
| 16 | respectively. The shaded plots are the DOS of atom in bulk crystal. Numbers                                                   |
| 17 | in brackets denote the atoms at different site. $E_{\rm F}$ is indicated by the vertical                                      |
| 18 | line and $E_{\rm F}$ is set at 0 eV.                                                                                          |
| 19 |                                                                                                                               |
| 20 | Fig. 3 (a) spin-unpolarized band structure of MgO; (b) and (c) the majority and                                               |
| 21 | minority spin band structure along high-symmetry direction in the                                                             |
| 22 | two-dimensional Brillouin zone for model a in the Fe <sub>4</sub> N/MgO interfaces,                                           |
|    |                                                                                                                               |

| 1  | respectively; (d) and (e) the majority and minority spin band structure along                        |
|----|------------------------------------------------------------------------------------------------------|
| 2  | high-symmetry direction in the two-dimensional Brillouin zone for model b in                         |
| 3  | the $Fe_4N/MgO$ interfaces, respectively. The red color indicates the MgO                            |
| 4  | contribution and gray denotes the Fe <sub>4</sub> N contribution. $E_F$ is set to zero.              |
| 5  |                                                                                                      |
| 6  | Fig. 4 PDOS obtained from fully relaxed models a and b in the $Fe_4N/BaTiO_3$                        |
| 7  | interfaces, projected on different layers. (a) and (b) the PDOS of $\mathrm{Fe_4N}$ and              |
| 8  | BaTiO <sub>3</sub> for model a, respectively; (c) and (d) the PDOS of $Fe_4N$ and $BaTiO_3$          |
| 9  | for model b, respectively. The shaded plots are the DOS of atom in bulk                              |
| 10 | crystal. $E_{\rm F}$ is indicated by the vertical line and $E_{\rm F}$ is set at 0 eV.               |
| 11 |                                                                                                      |
| 12 | Fig. 5 PDOS obtained from fully relaxed models c and d in the $Fe_4N/BaTiO_3$                        |
| 13 | interfaces, projected on different layers. (a) and (b) the PDOS of $\mathrm{Fe}_4 \mathrm{N}$ and    |
| 14 | $BaTiO_3$ for model c, respectively; (c) and (d) the PDOS of $Fe_4N$ and $BaTiO_3$                   |
| 15 | for model d, respectively. $E_{\rm F}$ is indicated by the vertical line and $E_{\rm F}$ is set at 0 |
| 16 | eV.                                                                                                  |
| 17 |                                                                                                      |
| 18 | Fig. 6 (a) spin-unpolarized band structure of $BaTiO_3$ ; (b)-(e) the band structure along           |
| 19 | high-symmetry direction in the two-dimensional Brillouin zone for models a-d                         |
| 20 | in the Fe <sub>4</sub> N/ BaTiO <sub>3</sub> interfaces, respectively; The top and bottom rows in    |
|    |                                                                                                      |
| 21 | (b)-(e) planes represent the majority and minority spin band structure,                              |

**RSC Advances Accepted Manuscript** 

| 1  | the Fe <sub>4</sub> N contribution. $E_{\rm F}$ is set to zero.                                          |
|----|----------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                          |
| 3  | Fig. 7 PDOS obtained from fully relaxed models a and b in the $Fe_4N/BiFeO_3$                            |
| 4  | interfaces, projected on different layers. (a) and (b) the PDOS of $\mathrm{Fe_4N}$ and                  |
| 5  | $BiFeO_3$ for model a, respectively; (c) and (d) the PDOS of $Fe_4N$ and $BiFeO_3$                       |
| 6  | for model b, respectively. The shaded plots are the DOS of atom in bulk                                  |
| 7  | crystal. Numbers in brackets denote the atoms at different site. $E_{\rm F}$ is indicated                |
| 8  | by the vertical line and $E_{\rm F}$ is set at 0 eV.                                                     |
| 9  |                                                                                                          |
| 10 | Fig. 8 PDOS obtained from fully relaxed models c and d in the $Fe_4N/BiFeO_3$                            |
| 11 | interfaces, projected on different layers. (a) and (b) the PDOS of $\mathrm{Fe_4N}$ and                  |
| 12 | $BiFeO_3$ for model c, respectively; (c) and (d) the PDOS of $Fe_4N$ and $BiFeO_3$                       |
| 13 | for model d, respectively. Numbers in brackets denote the atoms at different                             |
| 14 | site. $E_{\rm F}$ is indicated by the vertical line and $E_{\rm F}$ is set at 0 eV.                      |
| 15 |                                                                                                          |
| 16 | Fig. 9 (a) spin-unpolarized band structure of BiFeO <sub>3</sub> ; (b)-(e) the band structure along      |
| 17 | high-symmetry direction in the two-dimensional Brillouin zone for models a-d                             |
| 18 | in the Fe <sub>4</sub> N/BiFeO <sub>3</sub> interfaces, respectively; The top and bottom rows in (b)-(e) |
| 19 | planes represent the majority and minority spin band structure, respectively.                            |
| 20 | The red color indicates the $BiFeO_3$ contribution and gray denotes the $Fe_4N$                          |
| 21 | contribution. $E_{\rm F}$ is set to zero.                                                                |
| 22 |                                                                                                          |
|    | 34                                                                                                       |
|    |                                                                                                          |





Ш

- I-(2) - I-(6) - II - III

2

0

-2

10 0.7

0.0

-0.7

M

-10 -5 0 5 10 Energy (eV)

O-p

-10 -5 0 5 Energy (eV)

Ш

П

ļΠ

. III

+

Ń-p

1

0

-1

Fe<sup>"</sup>-d

ш

Ш

ļII

10

-10 -5 0 5 Energy (eV)

O-p

- 111

Fe<sup>"</sup>-d

- II-(3 - II-(4

- III `

N-p

Ш

10

-10 -5 0 5 Energy (eV)

1

0

-1

2

-2

-0.7



**RSC Advances Accepted Manuscript** 



\_\_10 \_\_ ₩ Г

В

\_\_10∟ W Г

B

\_\_\_10 L\_ W Г

В

Ŵ

В

-10 Ц Ц Ц Ц10 Ц ГХ WK Г LW Г







**RSC Advances Accepted Manuscript** 



B

В

Г

Г

-3

Т

Ŵ

ΨΓ

Г

W

Г

З

WΓ

В

В

Ŵ

Ψr

Г

3

В

В

Ŵ

Ŵ

B

В

6

Г Х М

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

7



Figure 7, Nan Feng et al.



6 7







-3

В

w

-3

I

В

w

W

В

W

I

В

# **Graphical Abstract and Research Highlights**

# **Graphical Abstract**



# Highlights

(1) *n*- and *p*-type doping of MgO are induced in contact with  $Fe^{I}Fe^{II}$  and  $(Fe^{II})_{2}N$ 

terminations of Fe<sub>4</sub>N, respectively.

- (2) The metallic characters are induced in BaTiO<sub>3</sub> by contact with  $Fe^{I}Fe^{II}$  termination, whereas *p*-type doping in  $(Fe^{II})_2N/BaO$  interface and *n*-type doping in  $(Fe^{II})_2N/TiO_2$  interface.
- (3) The interfacial dipole due to charge rearrangement may induce the Fermi level pinning in Fe<sub>4</sub>N/MgO and (Fe<sup>II</sup>)<sub>2</sub>N/BaTiO<sub>3</sub> interfaces.
- (4) The deposition of Fe<sub>4</sub>N on BiFeO<sub>3</sub> can result in a metallic BiFeO<sub>3</sub>.