This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Steam Explosion-Ionic Liquid Pretreatments on Wetland Lignocellulosic Biomasses of Phragmites (sp.) and Thalia dealbata for BioH$_2$ Conversion

Hongyun Peng, a Lingling Gao, a Mengjiao Li, a Yibin Shen, a Qiongqiu Qian b and Xia Li a

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

BioH$_2$ conversion from wetland lignocellulosic biomass is one of the promising alternatives to fossil fuels. Both Phragmites (sp.) and Thalia dealbata are holocelluloses-rich and lignin-rich wetland plants for biomass. Scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR) demonstrated alteration of lignocellulosic structures due to hemicelluloses removal by steam explosion (SE) pretreatment, and further disruption of cellulose crystallinity after treatment with SE followed by [Bmim]Cl (SE-[Bmim]Cl). Thermogravimetry/differential thermogravimetry (TG/DTG) displayed increase in amorphous cellulose and partially delignification in lignocellulosic structures as a consequence of SE-[Bmim]Cl. The pretreatment of both SE and SE-[Bmim]Cl led to lignocellulosic substrates with improved properties in terms of their conversion into glucose and bioH$_2$. Five-to-ten folds (by SE) and ten-to-twenty folds (by SE-[Bmim]Cl) glucose were released from the lignocellulosic substrates of both plants than those of contrast samples. Compared to Phragmites (sp.), the greater destruction in lignocellulosic structure of Thalia dealbata as consequences of SE and SE-[Bmim]Cl, increased the accessible surface area and disrupted the cellulose crystallinity much more thus efficient for bioH$_2$ conversion. The bioH$_2$ of 1.97±0.14 mmol H$_2$/g dry weight (DW) yielded after sludge anaerobic fermentation of Thalia dealbata treated with SE, and it increased to 4.79±0.86 mmol H$_2$/g DW after SE-[Bmim]Cl treatment; while for Phragmites (sp.) it was 1.45±0.42 and 2.75±0.76 mmol H$_2$/g DW after SE and SE-[Bmim]Cl pretreatment, respectively. Therefore, SE-[Bmim]Cl pretreatment can be developed for efficiently enhancing bioH$_2$ conversion from wetland plant Thalia dealbata.

Introduction

The extensive consumption of fossil fuel has created global environmental issues. Eutrophication becomes an environmental issue worldwide. Moreover, the increasingly worsening water quality induced by excessive nitrogen (N) and phosphorus (P) inputs speeds up water eutrophication. 1, 2 As an effective process for eutrophication treatment, the constructed wetland is in increasing operation to mitigate deteriorating wastewater pollutants and nutrients inputs. 3-6 However, a great number of lignocellulosic biomass are produced through wastewater treatment, which makes the constructed wetland becoming the cellulbiofuel production system, where high productive plant species are of great potential. 7 Green reed (Phragmites (sp.)) is a new variety of common reed (Phragmites australis). Not only both Phragmites species have approximately three to five times greater productivities than the dedicated biofuel crops switchgrass, but also they can reduce N use, thus can be used as the preferable wetland plants. 8-10 Water arum (Thalia dealbata) is another high productive wetland plant for N removal from wastewater in east China. 11, 12 With more requirements on renewable energy, the increasing attention focuses on harvest of the existing strands of wetland biomass for cellulbiofuel conversion. 13, 14

The big challenge in bioH$_2$ transformation from wetland biomass is the pretreatment of lignocellulosic substrates, which is strongly conditioned by bioaccessibility of cellulose. 15-17 Aim of pretreatment is to increase the accessibility of enzymes to cellulose through removing lignin and hemicelluloses components, and to reduce cellulose crystallinity in substrates. 18 Better pretreatment leading to solubilisation of cellulososes is also recommended as the efficient process for bioH$_2$ conversion. 19, 20 So the adequate pretreatment is of great interest to fractionate the lignocellulososes better. Steam explosion (SE) pretreatment can provide effective fractionation of lignocellulosic components and generate cellulose-rich fractions through hemicelluloses degradation due to destruction of cell-wall matrix. 21, 22 Furthermore, cellulose components can be dissolved without derivatization in high concentrations of ionic liquids (ILs), thus making SE and ILs the attractive biomass pretreatments. 23-28 In addition, compared to conventional pretreatments, the
advantages of SE and ILs hold a significantly lower environmental impact and less use of hazardous chemicals.

ILs are known to dissolve cellulose by effectively disrupting the complex network of non-covalent interactions between carbohydrates and lignin in biomass. The 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was found to be the most effective IL capable of dissolving up to 25% (w/w) cellulose due to chloride anion (Cl−) present responsible for dissolution of cellulose. 29 Cellulose was dissolved in [Bmim]Cl solution during the dissolution process as measured by high-resolution carbon-13 nuclear magnetic resonance (13C NMR), where no degradation of cellulose occurred. 23, 30-32 The addition of water, alcohol or acetone as anti-solvent resulted in a precipitation of cellulose from the [Bmim]Cl solution. 33, 34 The assistance of microwave irradiation can enhance efficiency of dissolution in ILs compared to ordinary thermal treatment. 35 In addition, ILs were recovered up to 97% (w/w) of the initial mass, it can be reused after pretreatment as in viewed that the pretreatment did not alter the 1H and 13C NMR spectra of the used ILs compared to the purity of ILs before pretreatments. 36 Therefore the objectives of this study (as illustrated in Scheme 1) are: (1) to perform the pretreatment with SE and IL ([Bmim]Cl as a solvent, with microwave-assistance) on lignocellulosic substrates of both Phragmites (sp.) and Thalia dealbata in constructed wetland; (2) to characterize the compositional (cellulose, hemicelluloses, lignin) and structural features (crystallinity of cellulose, lignin, surface area and porosity) of lignocellulosic substrates through scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), BET surface area and porosity, and thermogravimetry/differential thermogravimetry (TG/DTG); and (3) to evaluate enzymatic hydrolysis, sludge anaerobic fermentation and bioH2 yield with HPLC and GC measurements.

Chemical Composition of Wetland Lignocellulosic Biomass

Phragmites (sp.) and Thalia dealbata are large-biomass and fast-growth wetland plants in the subsystem of constructed wetlands located at Linan municipal wastewater treatment plant, Zhejiang Province, China. 10, 12 Phragmites (sp.) are planted once and can grow for many years with relatively low maintenance, while Thalia dealbata belongs to the annual grasses. The lignocellulosic components consist of cellulose, hemicelluloses and lignin accounting for 37-43%, 23-33% and 13-14% of the dried biomass, respectively, as listed in Table 1. Phragmites (sp.) stalk enriches higher contents of cellulose and hemicellulose as compared to Thalia dealbata stalk.

SE Pretreatment of Wetland Lignocellulosic Biomass

As seen in Fig. 2, slight increase in cellulose appeared in SE-pretreated Phragmites (sp.) lignocelluloses but not in SE-pretreated Thalia dealbata lignocelluloses than that of the raw material. Under lower steam pressure of 2.0 and 2.5 MPa, rising of residence time from 60s to 90s slightly decreased the cellulose and hemicelluloses removal much more than cellulose and lignin (Fig. 1 and Fig. 2). Lower steam pressure caused the slight removal of...
hemicelluloses, while higher steam pressure generated the significant removal of hemicelluloses from SE-pretreated lignocellulosic materials of both plants. The great hemicelluloses removal occurred at steam pressure of 3.0 MPa for *Phragmites* (sp.) while for *Thalia dealbata* it was at 2.5 MPa (Fig. 2, Table 1).

Enzymatic Hydrolysis of SE-pretreated Lignocellulosic Materials

Fig. 2 Contents of cellulose, hemicelluloses and lignin of the SE-pretreated stalk lignocellulosic materials from (a) *Phragmites* (sp.) and (b) *Thalia dealbata* under different steam pressure and residence time.

Enzymatic Hydrolysis of SE-pretreated Lignocellulosic Materials

The optimization of enzymatic saccharification was performed on SE-pretreated *Thalia dealbata* lignocellulosic (2.0-3.0 MPa, 90 s) as substrate. Low activities of enzymatic hydrolysis in raw material but considerably increased activities in SE-pretreated lignocellulosic materials under these pretreatment conditions. The optimal enzymatic hydrolysis appeared at substrate concentration of 40 g/L (Fig. 3a), enzyme concentration of > 20 FPU/g (sub) (Fig. 3b), pH 4.8 (Fig. 3c), 50 °C (Fig. 3d) and hydrolysis time of 24 h (Fig. 3e). Under the optimal hydrolysis conditions, the enzymatic hydrolysis rate of SE-pretreated lignocellulosic materials from both plants increased significantly, about ten times higher than those of the raw material (Fig. 4). Enzymatic hydrolysis highly depended on the nature of lignocellulosic substrates and SE-pretreated conditions. The rising of steam pressure and residence time presented the increased trends in enzymatic hydrolysis rate of SE-pretreated lignocellulosics, with that of *Thalia dealbata* increased faster than *Phragmites* (sp.). Compared to *Phragmites* (sp.), lignocellulosic components of *Thalia dealbata* were affected much more by SE pretreatment, facilitating the accessibility of cellulose in substrate. Enzymatic hydrolysis rate was around 61.3% for *Thalia dealbata* under 2.5 MPa, while it was 62.9% under high steam pressure of 3.0 MPa for *Phragmites* (sp.) (Fig. 4).
Lignocellulosic substrates present compositional and structural features limiting their accessibility of celluloses for bioH2 conversion. In this study, the optimization of microwave-assistant solubilisation in IL ([Bmim]Cl as solvent) was developed by using SE-pretreated Phragmites (sp.) lignocelluloses (3.0 MPa, 90 s) as substrate. This solubilisation in [Bmim]Cl depended on the nature of lignocellulosic materials and microwave conditions (microwave time, microwave power, and initial concentration of lignocelluloses in [Bmim]Cl). The optimal microwave-assisted [Bmim]Cl dissolution conditions were 400W, 40s and a 1/20 ratio of SE-pretreated lignocelluloses in [Bmim]Cl. The lignocellulosic structures may occur.

The raw material untreated with SE (Fig. 4) and then followed by microwave assisted-[Bmim]Cl treatment (Fig. 6) presented pretty low enzymatic hydrolysis rate at around 9%. To the contrary, a significant increase in enzymatic hydrolysis rate yielded in [Bmim]Cl-regenerated lignocelluloses of both plants. As compared to SE-pretreated material (Fig. 4), SE-[Bmim]Cl treatment led to 2 times enzymatic hydrolysis rate increase, reaching 110% and 130% of regenerated Phragmites (sp.) and Thalia dealbata lignocelluloses, respectively (Fig. 6). That meant all celluloses plus a part of hemicelluloses were hydrolyzed from [Bmim]Cl-regenerated lignocelluloses, resulting in ten-to-twenty-fold glucose released in hydrolysates. While cellulose partially hydrolyzed from SE-pretreated lignocelluloses, as evident by five-to-ten-fold glucose increased in hydrolysates (Table 2). The hydrolytic enzymes worked most efficiently for cellulose and less for hemicellulose, so that the enzymatic saccharification byproducts in the hydrolysates were mainly glucose with less xylose and cellobiose (Table 2).

Fig. 5 Optimization of microwave assisted-[Bmim]Cl dissolution of SE-pretreated Phragmites (sp.) lignocelluloses (3.0 MPa, 90 s) (a. Microwave time; b. Microwave power; c. Solid/liquid ratio of lignocelluloses in [Bmim]Cl).

Fig. 6 Enzymatic hydrolysis rates of [Bmim]Cl-regenerated lignocelluloses from (a) SE-pretreated Phragmites (sp.) and (b) SE-pretreated Thalia dealbata under different steam pressure and residence time.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cellulose (%)</th>
<th>Hemicellulose (%)</th>
<th>Lignin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water arum (Thalia dealbata)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>raw</td>
<td>37.7±0.3</td>
<td>24.3±1.2</td>
<td>14.6±0.3</td>
</tr>
<tr>
<td>SE-pretreated (2.5MPa)</td>
<td>37.2±0.6</td>
<td>5.7±0.8</td>
<td>14.8±0.3</td>
</tr>
<tr>
<td>[Bmim]Cl-regenerated (2.5MPa)</td>
<td>37.1±0.1</td>
<td>5.4±0.2</td>
<td>14.6±0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Glucose (% w/w biomass)</th>
<th>Xylose (% w/w biomass)</th>
<th>Cellobiose (% w/w biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalia dealbata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>raw</td>
<td>7.8±0.22</td>
<td>2.6±0.25</td>
<td>NR</td>
</tr>
<tr>
<td>SE-pretreated (2.5MPa)</td>
<td>38.6±7.49</td>
<td>0.38±0.19</td>
<td>NR</td>
</tr>
<tr>
<td>[Bmim]Cl-regenerated (2.5MPa)</td>
<td>72.1±0.20</td>
<td>0.62±0.15</td>
<td>2.59±0.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Glucose (% w/w biomass)</th>
<th>Xylose (% w/w biomass)</th>
<th>Cellobiose (% w/w biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phragmites (sp.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>raw</td>
<td>4.5±0.43</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>SE-pretreated (3.0MPa)</td>
<td>35.3±0.96</td>
<td>2.19±0.16</td>
<td>NR</td>
</tr>
<tr>
<td>[Bmim]Cl-regenerated (3.0MPa)</td>
<td>88.8±0.23</td>
<td>1.27±0.03</td>
<td>3.17±0.12</td>
</tr>
</tbody>
</table>

NR: No detected results.

Differences observed only by SE and SE-[Bmim]Cl pretreatments could be due to their significant difference on degradation process of substrates. Treatment with SE-[Bmim]Cl can depolymerize cellulose more efficiently through disrupting the intr- and inter- hydrogen bonds of cellulose molecules, resulting in the fragmental cellulose materials with highly...
amorphous structure.

BioH2 Fermentation

Thermophilic fermentation of lignocelluloses remained very slow or inhibited in general, as evident by the low bioH2 yield at 1.22 - 1.26 mmol H2/g dried weight (DW) of raw materials (Table 3). After SE pretreatment, bioH2 of 1.45 - 1.97 mmol H2/g DW was produced in lignocelluloses of both plants and it was increased to 2.75 - 4.79 mmol H2/g DW after SE-[Bmim]Cl treatment (Table 3).

Fig. 7 summarized material balance for pretreatment, saccharification and fermentation of both Thalia dealbata and Phragmites (sp.) in two scenarios (also illustrated in Scheme 1): (a) SE pretreatment and (b) SE-[Bmim]Cl pretreatment. On the basis of 100 g of plant biomass, the majority of hemicelluloses degraded, producing cellulose-rich lignocelluloses after SE pretreatment, and enhancing bioH2 yield after saccharification and fermentation (Table 1 and Fig. 7a). As compared to SE-pretreated samples, SE-[Bmim]Cl pretreatment on these cellulose-rich lignocelluloses resulted in enhanced bioH2 yield by above 2-fold (Table 3 and Fig. 7b), which could be attributed to 2-fold enhancements in both enzymatic hydrolysis rate and glucose released from [Bmim]Cl-regenerated lignocelluloses (Fig. 4 and Fig. 6, Table 2). SE-[Bmim]Cl pretreatment facilitated efficiently transformation of cellulose in substrate into soluble polysaccharide monomer sugars (i.e., glucose) with higher yield, causing a positive effect on bioH2 conversion (Table 2 and Table 3, Fig. 7b).

Table 3. Thermophilic fermentation of lignocellulosic substrates for 48 h BioH2 conversion

<table>
<thead>
<tr>
<th>Sample</th>
<th>BioH2 (mmol H2/g DW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalia dealbata</td>
<td></td>
</tr>
<tr>
<td>raw</td>
<td>1.22±0.25</td>
</tr>
<tr>
<td>SE-pretreated (2.5MPa)</td>
<td>1.97±0.14</td>
</tr>
<tr>
<td>[Bmim]Cl-regenerated (2.5MPa)</td>
<td>4.79±0.86</td>
</tr>
<tr>
<td>Phragmites (sp.)</td>
<td></td>
</tr>
<tr>
<td>raw</td>
<td>1.26±0.08</td>
</tr>
<tr>
<td>SE-pretreated (3.0MPa)</td>
<td>1.45±0.42</td>
</tr>
<tr>
<td>[Bmim]Cl-regenerated (3.0MPa)</td>
<td>2.75±0.76</td>
</tr>
</tbody>
</table>

After SE-[Bmim]Cl treatment, bioH2 yield converted from annual grasses Thalia dealbata was much higher than that from corn or rice straw. However the comparatively lower bioH2 yield of 2.75±0.76 mmol H2/g DW was converted from Phragmites (sp.) (Table 3). The utilization mechanism of lignocellulosomers could be different between Thalia dealbata and Phragmites (sp.). The lignocellulosic structures of Phragmites (sp.) exhibited more resistant to deconstruction than annual grasses Thalia dealbata. Therefore it need further elucidation of pretreatment by SE and SE-[Bmim]Cl on compositional and structural features of lignocelluloses during bioH2 conversion.
altered lignocellulosic structure and these alterations were probably attributed to the destroyed crystalline cellulose during its dissolution into [Bmim]Cl solution, leaving a highly homogeneous morphology on regenerated materials from [Bmim]Cl solution.

Compared to the raw material, SE pretreatment effectively shown to affect the bio-digestibility of lignocellulosic substrates. such as accessible surface area and pore volume have been increased significantly from both plants after SE pretreatment (Table 4). All images were taken at same scale (×500).

Table 4. Accessible surface area and pore volume of lignocellulosic materials.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>raw</th>
<th>SE-pretreated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalia dealbata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BET surface area (m²/g)</td>
<td>1.47</td>
<td>2.81</td>
</tr>
<tr>
<td>Langmuir surface area (m²/g)</td>
<td>2.46</td>
<td>5.04</td>
</tr>
<tr>
<td>BJH adsorption cumulative surface area of pores (m²/g)</td>
<td>1.57</td>
<td>2.78</td>
</tr>
<tr>
<td>BJH adsorption cumulative volume of pores (×10⁻³ cm³/g)</td>
<td>5.14</td>
<td>9.36</td>
</tr>
<tr>
<td>BJH adsorption average pore diameter (nm)</td>
<td>131.13</td>
<td>134.75</td>
</tr>
</tbody>
</table>

Phragmites (sp.)		
BET surface area (m²/g)	0.70	0.50
Langmuir surface area (m²/g)	0.95	0.65
BJH adsorption cumulative surface area of pores (m²/g)	0.27	0.27
BJH adsorption cumulative volume of pores (×10⁻³ cm³/g)	3.49	5.21
BJH adsorption average pore diameter (nm)	524.35	784.97

Accessible Surface Area and Porosity Analyses. Parameters such as accessible surface area and pore volume have been shown to affect the bio-digestibility of lignocellulosic substrates. Compared to the raw material, SE pretreatment effectively enhanced surface area (BET and Langmuir) in Thalia dealbata lignocellulosic, but slightly decreased surface area appeared in Phragmites (sp.) lignocellulosic (Table 4). SE pretreatment much more impacted lignocellulosic on Thalia dealbata than on Phragmites (sp.), which is consistent with SEM images (Fig. 6D and 6E). In addition, both BJH adsorption cumulative volumes and pore diameters increased significantly from both plants after SE pretreatment (Table 4). The raw and SE-pretreated Thalia dealbata lignocellulosic hold greater surface area (BET and Langmuir) and pore volume of cellulose compared to Phragmites (sp.), facilitating its bio-digestibility for enzymatic attack in the subsequent hydrolysis process and bioH₂ conversion. After SE-[Bmim]Cl treatment, the regenerated materials from [Bmim]Cl solution were fragmental celluloses with highly amorphous structure beneficial for bioH₂ conversion.

FTIR spectra. The strong band in IR spectra was representative at 3200-3600 cm⁻¹ range (assigned to axial deformation of O-H group), for Thalia dealbata and Phragmites (sp.), this peak in this study appeared around 3417 (or 3422 cm⁻¹). The band at 2921 (or 2918 cm⁻¹) represented axial deformation of C-H group. The band at 1735 cm⁻¹, assigned to carbonyl group (C=O) between hemicelluloses and lignin.
strengthened in the raw materials, while they were greatly reduced by both pretreatments. In addition, the weakened peak shapes and intensities at 1250 cm⁻¹ (assigned to hemicellulose) appeared after pretreatments. This could come from the significant removal of hemicelluloses by SE and SE-[Bmim]Cl treatments (Fig. 1 and Fig. 2). The band at 1631 cm⁻¹, assigned to absorbed water bending vibration, was significantly reduced by SE-[Bmim]Cl pretreatment which could be related to the decreased O-H group in substrate. The interaction between free Cl⁻ in [Bmim]Cl and O-H groups disrupted the hydrogen bonds present within and between the lignocellulosic substrates.

FTIR spectra at 1800-800 cm⁻¹ regions were characteristic of the cellulose structure. The bands at 1421 (or 1426 cm⁻¹) and 1250 cm⁻¹, assigned to CH₂ scissoring motion and C-O-C stretching in cellulose, respectively, are quite sensitive to the amount of crystalline and amorphous cellulose. The infrared ratio H1421/H896 (or H1426/H896) is commonly called lateral order indice (LOI) to determine the amount of crystalline cellulose. Total crystallinity index (TCI), the ratio of H1376/H2918 or H1376/H2921 (CH and CH₂ stretching), is also used to study the crystallinity changes.

Table 5. Crystallinity indices of lignocellulosic materials before and after treatment with SE and SE-[Bmim]Cl

<table>
<thead>
<tr>
<th>Substrates</th>
<th>LOI</th>
<th>TCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalia dealbata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>raw</td>
<td>4.12</td>
<td>1.11</td>
</tr>
<tr>
<td>SE-pretreated (2.5MPa)</td>
<td>5.53</td>
<td>1.22</td>
</tr>
<tr>
<td>[Bmim]Cl-regenerated (2.5MPa)</td>
<td>2.43</td>
<td>0.79</td>
</tr>
<tr>
<td>Phragmites (sp.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>raw</td>
<td>3.00</td>
<td>1.20</td>
</tr>
<tr>
<td>SE-pretreated (3.0MPa)</td>
<td>3.63</td>
<td>1.16</td>
</tr>
<tr>
<td>[Bmim]Cl-regenerated (3.0MPa)</td>
<td>2.34</td>
<td>0.80</td>
</tr>
</tbody>
</table>

As seen in Table 5, high values of LOI and TCI in the raw materials indicated that both Thalia dealbata and Phragmites (sp.) had high crystallinity of cellulose and ordered lignocellulosic structures before pretreatments. As compared to the raw material, pretreatment with SE dramatically increased the LOI values for both plants, while TCI values was slightly increased for Thalia dealbata but slightly decreased for Phragmites (sp.). Comparatively, SE-[Bmim]Cl treatment significantly decreased the values of both LOI and TCI for both plants. No destruction of cellulose crystallinity appeared by SE pretreatment, while the disruption of ordered lignocellulosic structures occurred by SE-[Bmim]Cl treatment. This was in good agreement with the observation from SEM images. During solubilisation in [Bmim]Cl, the cellululosic materials lost their crystalline structures and restructured themselves into mostly amorphous forms, which made structures of regenerated lignocellulosics less crystalline. Due to the disruption of ordered structure and reduction in crystallinity, SE-[Bmim]Cl pretreated materials became more susceptible to enzymatic attack in the subsequent hydrolysis process and bioH2 conversion (Table 2 and Table 3).

In addition, the peak intensities at 1250 cm⁻¹ (assigned to hemicellulose), 1160 cm⁻¹ (related to carbohydrates) and 1060 cm⁻¹ (assigned to cellulose) were weakened for Thalia dealbata but strengthened for Phragmites (sp.), suggesting the greater destruction in lignocellulosic structures of Thalia dealbata occurred by SE pretreatment. Furthermore, the fast decreased in values of both LOI and TCI by SE-[Bmim]Cl indicated the occurrence of greater disruption of cellulose crystallinity for Thalia dealbata. Therefore the increased amorphous cellulose in [Bmim]Cl-regenerated Thalia dealbata led to a better performance of enzymatic hydrolysis, resulting in bioH2 conversion with high yield (Table 3).

![Fig. 10 TG/DTG Curves of (a) Thalia dealbata (raw, SE-pretreated and [Bmim]Cl-regenerated Thalia dealbata (2.5MPa, 90s)) and (b) Phragmites (sp.) (raw, SE-pretreated and [Bmim]Cl-regenerated Phragmites (sp.) (3.0MPa, 90s)).](image)

TG/DTG Curves. Regarding the differences of lignocellulosic components between Phragmites (sp.) and Thalia dealbata, measurements of TG/DTG were performed. In general, the thermal decomposition of hemicelluloses and cellulose appeared at temperatures in the range of 150 ~ 350 °C and 275 ~ 350°C, respectively, while lignin was featured by gradual decomposition at the temperatures ranging from 250 to 500 °C. TG/DTG demonstrated in this study three distinct stages of weight loss for lignocellulosic substrates during thermal decomposition at the temperatures ranging from 250 to 500 °C.
The raw Phragmites (sp.) hemicelluloses had a more clean-cut separation between T_{shoulder} (300 °C, related to hemicelluloses) and T_{peak} (350 °C, related to cellulose) (Fig. 10). While the raw Thalia dealbata exhibited a wide peak at 300 °C stemming from the thermal decomposition of cellulose and the curve of hemicellulose was almost merged by that of cellulose, the similar behavior of lignocellulosic substrate was found in willow and hybrid poplar. As seen from the DTG curves (Fig. 10), the amount of both cellulose and hemicellulose in the raw Thalia dealbata was relatively smaller than those of the raw Phragmites (sp.), which was in good accordance with lignocellulosic components analysis (Table 1).

The degradation of Phragmites (sp.) occurred within a narrower range of temperatures (T_{peak}) than that of Thalia dealbata even after pretreatments with SE and SE-[Bmim]Cl. This was mainly caused by the different sorts of hemicelluloses and crystalline structures of cellulose as well as their variable distributions in plant species. No big changes occurred in T_{peak} of Phragmites (sp.) after pretreatments with SE and SE-[Bmim]Cl. In contrast, SE-pretreatment shifted T_{peak} of Thalia dealbata towards higher T (305 - 325 °C), further higher T_{peak} (338 °C) was reached by SE-[Bmim]Cl treatment (Fig. 8a). This could come from the increased cellulose contents through removal of hemicelluloses as a consequence of SE pretreatment, while SE-[Bmim]Cl treatment increased amorphous cellulose components, thus increasing solid thermostability. The enhanced thermal stability of SE-[Bmim]Cl pretreated biomass appeared at higher temperatures was in agreement with the results from Labbe et al. 2010 and Singh et al. 2010. In addition, the similar TG/DTG pattern occurred in regenerated materials of both plants after SE-[Bmim]Cl treatment, with T_{peak} around 338°C for Thalia dealbata and 350°C for Phragmites (sp.). This could be indicative of cellulose molecules of different polymerization degree, suggesting that higher polymerization degree of cellulose were in regenerated materials of Phragmites (sp.) than Thalia dealbata.

The presence of lignin was one of the most important factors affecting biotransformation of lignocellulosic substrates into bioH2. A broad peak ranged from 410 to 550 °C mainly corresponded to lignin which overlapped partially with those of hemicelluloses and cellulose. SE-pretreatment changed intensities of this wide peak and it was shifted towards higher T at 530 °C for Thalia dealbata but towards lower T at 485°C for Phragmites (sp.) (Fig. 10). This could be related to the formation of different thermolabile chemical bonds in lignin fractionation as a consequence of SE. Further higher T above 550 °C was reached for both plants as a consequence of SE-[Bmim]Cl (Fig. 10). The alteration of lignin structure occurred in [Bmim]Cl-regenerated materials which could be attributed to the partially dissolution of lignin components in [Bmim]Cl (delignification).

However, the structures and compositions of lignin in lignocellulosic substrates of both plants need be further elucidated before and after treatments. Furthermore, the combined [Bmim]Cl filtrates after use were concentrated and the regenerated [Bmim]Cl solvent was measured for the mass. The recovery rate of regenerated [Bmim]Cl solvent was as high as 91%, so that it can be reused for the dissolution of lignocellulosic substrates during bioH2 transformation. Future investigation will focus on more structural elucidation of lignin components in regenerated [Bmim]Cl solvent in order to produce high value products of phenol compounds.

Conclusions

Compared to Thalia dealbata, Phragmites (sp.) displayed higher levels of cellulose and hemicellulose in substrate with high polymerization degree of cellulose, but possessed the lower surface area and pores volume of cellulose. Pretreatments with SE and SE-[Bmim]Cl were performed on the lignocellulosic substrate of both wetland plants. The optimal cellulose-rich fractionation of Phragmites (sp.) lignocelluloses yielded as a consequence of SE pretreatment under steam pressure at 3.0 MPa, while for Thalia dealbata lignocelluloses it was under steam pressure at 2.5 MPa. Compared to Phragmites (sp.), SE pretreatment greatly destroyed lignocellulosic structure of Thalia dealbata through hemicellulosic removal, thus increasing the accessible surface area and pores volume of cellulose in substrate. Furthermore, pretreatment with SE-[Bmim]Cl on lignocellulosic structure of plants effectively disrupted crystalline structure of cellulose or even solubilize some lignin components, facilitating the formation of amorphous cellulose in regenerated materials with enhanced accessible surface area.

SE-[Bmim]Cl pretreatment led to lignocellulosic structures with improved properties efficient for their transformation into glucose and bioH2 with elevated yields. Most importantly, higher bioH2 conversion yielded from lignocelluloses of Thalia dealbata than Phragmites (sp.) possessing the denser lignocellulosic structure less efficient for bioH2 conversion. To better understand the transformation of cell wall components into biofuel from wetland lignocellulosic substrates, further investigations will focus on more structural elucidation of hemicelluloses and lignin components in the products obtained from the pretreated samples as consequences of SE and SE-[Bmim]Cl treatments.

Experiment section

Materials

Lignocellulosic substrates used in this study were Phragmites (sp.) and Thalia dealbata from constructed wetlands located in Linan municipal wastewater treatment plant, Zhejiang Province, China. The harvested stalks of Phragmites (sp.) and Thalia dealbata at their maturities in early winter were naturally air dried, and then ground into 60 meshes using a cutting milling Restch, SM 100. The components of cellulose, hemicelluloses and lignin in stalks were evaluated according to the procedures from Van Soest. Lignocellulosic substrates were dried at 60°C for 48h and kept under vacuum for use.
2N NaOH aqueous solution was prepared from NaOH pellets (of analytical grade purity), 4 M HCl aqueous solutions was prepared from 37% (w/w) HCl (of analytical grade purity). 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) (>95.0 % purity) was purchased from Shanghai Chengjie Chemical Reagent Ltd., China. Prior to use, [Bmim]Cl was dried under vacuum (0.1 Pa) at 70 °C (i.e. above the melting point) for at least 24 h to remove water completely.

Enzymatic hydrolysis was performed using 50 mM citric-acid-sodium citrate buffer (pH 4.8), which was prepared from citric acid monohydrate (of analytical grade purity) and trisodium citrate (of analytical grade purity). Commercial enzyme Cellulase (activity 100 FPU/g) was purchased from Wuxi Xuemei Ltd., China. 3.5-Dinitrosalicylic acid (of analytical grade purity) was purchased from Aladdin (Shanghai) Reagent Ltd., China. D-Glucose, D-xylose, and cellulose were of spectroscopic grade purities purchased from Aladdin (Shanghai) Reagent Ltd., China. Acetonitrile of HPLC grade purity was supplied by Sigma-Aldrich Co. FTIR samples were prepared with KBr (> 99.0% trace metal basis) was purchased from Sigma-Aldrich Co.

Pretreatment of Lignocellulosic Substrate with SE

Steam explosion (SE) pretreatment was performed on a QBS-80 batch steam explosion apparatus (Hebi Gentle Bioenergy Co. Ltd., China) which consisted of a high pressure vessel, a steam generator, a material tank, a receiver and a rapid-opening ball valve. The capacity of vessel was 400 mL with a maximum operating pressure of 4.0 MPa. The ground stalk lignocelluloses (~120 g) of Phragmites (sp.) or Thalia dealbata were subjected to the saturated steam in the vessel of each batch in apparatus, at ratio of water and lignocelluloses of 2:1 (ml/g). SE conditions were optimized by variation of saturated steam pressures (2.0, 2.5 and 3.0 MPa) and residence times for the pressure of saturated steam (60, 90 and 120 s) at the temperature of 230 °C.

The pressure of saturated steam was maintained in high pressure vessel by the controller in apparatus at constant values of 2.0, 2.5 and 3.0 MPa, respectively, when changing residence time of saturated steam pressure in vessel. Then SE-fractionated lignocellulosic materials were recovered in the receiver and their components (cellulose, hemicelluloses and lignin) were measured following the method of Van Soest. The raw and SE-pretreated lignocellulosic materials were dried at 60 °C for at least 48 h and kept under vacuum for use.

Pretreatment of Lignocellulosic Substrate with SE-[Bmim]Cl

Microwave-assistant solubilisation in [Bmim]Cl solvent were performed on SE-pretreated lignocellulosic, which was optimized by changing ratios of lignocellulosics in [Bmim]Cl (varied from 1/5, 1/10, 1/20, 1/30 to 1/40 (w/w)), microwave power (among 80, 240, 400, 560 and 800W), and microwave heating time (among 28, 40, 52, 64 and 72 s). To obtain optimal microwave power, vacuum dried SE-pretreated lignocellulosic were mixed with vacuum dried [Bmim]Cl (at ratio of 1/20 (w/w)) in different vials, and then microwave power was given under 80, 240, 400, 560 and 800W, respectively, for 40s heating time.

Then the optimal microwave heating time was achieved under the ratio of 1/20 (w/w) and 400 W microwave power, and the optimal ratio of lignocelluloses in [Bmim]Cl was obtained under 400 W microwave power and 40s heating time.

Mixture of SE-pretreated lignocellulosic materials and [Bmim]Cl (at a 1/20 ratio) were used to perform the optimal microwave-assisted [Bmim]Cl dissolution condition (40s, 400W). [Bmim]Cl-regenerated materials were achieved by adding the sufficient deionized water as anti-solvents, centrifuged and dried at 60 °C for 48 h, then kept for enzymatic hydrolysis. Meanwhile, the components of cellulose, hemicelluloses and lignin in [Bmim]Cl-regenerated lignocellulosic were measured following the method of Van Soest. Regarding the recovery of [Bmim]Cl after use, the combined [Bmim]Cl filtrates were concentrated by Rotary Evaporator (EYELA, Japan) under vacuum at 60 °C and finally freeze-dried under vacuum (0.1 Pa) at 70 °C for at least 48 h. The regenerated [Bmim]Cl was measured for the mass to yield recovery rate.

Enzymatic Hydrolysis

Saccharification hydrolysis occurred with 50 ml suspension of lignocellulosic substrates, using 10 ml of 50 mM citric-acid-sodium citrate buffer (pH 4.8) and Cellulase levels from 2.5 to 50 FPU/g of dry substrates. After adding Cellulase, the vials were capped and placed in a HZ-9211KB rotary incubator (HUALIDA, China) at 50 °C and 180 rpm. One-milliliter sample was withdrew at specific time intervals, placed in a boiling (100°C) water bath for 15 min to deactivate the enzymes, and then centrifuged at x1, 3000g (Fresco 17, Thermo, USA). A portion of 0.2 ml was used to measure the total reducing sugars by 49 with glucose, D-xylose and cellubiose (Aladdin) as standards. Residual filtrates were stored at -40 °C for subsequent sugar analyses by HPLC. Cellulase activity was determined by standard filter paper assay and expressed as filter paper units per gram (FPU). Hydrolysis rate of the reducing sugars from lignocellulosic materials was calculated as follows: Hydrolysis rate (%) = [(reducing sugars weight×0.9)/(dry lignocellulosic material weight×cellulose content)]×100.

BioH2 Fermentation

Mixed anaerobic cultures used as the seed were obtained from anaerobic sludge digesters (as inoculum) at Linan municipal wastewater treatment plant, Zhejiang Province, China. The inoculum was first treated at 90 °C for 1 h to inhibit activity of methanogens and enrich in hydrogen producing bacteria. After lignocellulosic substrates were subjected to enzymatic hydrolysis for 24h, the hydrolysates in 60 ml obtained together with non-hydrolyzed solid fractions were introduced into each stoppered 150 ml serum bottle. Seed sludges (as inoculum) in 20 ml were also added to each bottle and batch thermophilic fermentation experiments were continuously conducted at 60 °C, with no additional nutrient medium solution. Initial pH was adjusted to 6.0 with 2 M NaOH or 4 M HCl. The headspaces of bottles were flushed with nitrogen gas to reach oxygen-free conditions. Procedures ended when pressure in bottle headspace started to drop off indicating hydrogen consumption. Biogas volume was monitored continuously with a water displacement method in the batch thermophilic fermentation experiments. Alkali water was used to dissolve carbon dioxide and yield biogas.
Characterization

SEM images. Morphologies of raw and pretreated materials samples were observed with Scanning Electron Microscopy (SEM, HITACHI S-3400, Japan) at an acceleration voltage of 5.0 kV, using samples sputter-coated with a thin layer of gold under vacuum condition before analysis.

Surface Area and Porosity Analyses. Accessible surface area and porosity of raw and pretreated materials samples were obtained from N2 adsorption-desorption isotherms measured by an Automated Surface Area & Pore Size Analyzer (TriStarII, Micromeritics, USA), with samples evacuated at 50°C for 24 h under pressure of <0.25 Pa.

FTIR Spectra. Lignocellulosic structures of raw and pretreated materials samples were characterized. Fourier Transform Infrared (FTIR) spectra were recorded on a Bruker spectrophotometer (AVA TAR370, NICOLET, USA), ranging from 4000 to 400 cm\(^{-1}\) with the resolution of 4 cm\(^{-1}\) and 20 scans, using a KBr disc containing 1% finely ground samples.

TG/DTG Curve. A Pyris 1 TGA instruments (Perkin-Elmer, USA) was employed for the thermogravimetric tests on the raw and pretreated materials samples, with high-purity nitrogen used at flow rate of 150 ml/min. An inert was established before starting the heating program with the nitrogen purged for 20 min, then the experiments started with a drying session at a heating rate of 10 °C/min up to 600 °C and a holding time of 30 min.

HPLC Measurement. Glucose, xylose and cellulose were quantified by HPLC (Shimadzu model LC-20A; Kyoto, Japan) equipped with a refractive index detector (RID 10A) and a styrene divinylbenzene resin column (ThermoHypersil-keystone NH2, 250 mm×4.6 mm, 5 µm, UK) which was operated at 30 °C.

Statistics

All statistical analyses were done in SigmaPlot (version 11). Two-way ANOVA with Tukey test post hoc procedure was employed to evaluate whether the means were significantly different at p<0.05.

Acknowledgements

This work was supported by grants from the Key Program for International Cooperation Project of the Ministry of Science and Technology of China (No. 2010DFB33960), Key Laboratory of Yangtze River Water Environment of Ministry of Education (Tongji University) of China (No. YRWEF201102), China Scholarship Council (No. 2011833072), and State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute (No. 2013491311).

Notes and references

525.