

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Enhanced Reducibility and Redox Stability of Fe₂O₃ in the Presence of CeO₂ Nanoparticles

Zhenhua Gu,^{a, b} Kongzhai Li,^{b, c}*Shan Qing,^{b, c} Xing Zhu,^{b, c} Yonggang Wei,^{b, c} Yongtao Li,^d Hua

 $Wang^{b, c}$

^a Oxbridge College, Kunming University of Science and Technology;

^b State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming

University of Science and Technology, Kunming 650093, Yunnan, China;

^c Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,

Kunming 650093, China;

^d School of Materials Science and Engineering, Anhui University of Technology, Maanshan,

243002,China

*Corresponding author: E-mail address: kongzhai.li@aliyun.com, phone/FAX: 86 871 5153405

1

Abstract

CeO₂, Fe₂O₃ and a series of CeO₂-modified Fe₂O₃ oxides with different Ce/Fe molar ratios ranging from 5:95 to 50:50 were prepared by a co-precipitation method and thermally aged at different temperatures, which were compared with the corresponding samples prepared by physically mixing CeO_2 and Fe_2O_3 . The structural/textural feature, reduction behavior, oxygen storage capacity (OSC), and redox performance of the prepared materials were investigated by XRD, Raman, TEM, BET surface area, XPS, H₂-TPR and oxygen pulse techniques. It is found that CeO₂ particles were very small (<10 nm) and highly dispersed on the surface of Fe_2O_3 rods even after calcination at 800 °C. The nano-size effects resulted in strong chemical interaction in the Fe₂O₃-CeO₂ interfaces, which significantly improved the reducibility of Fe_2O_3 in reducing atmosphere. Hematite-like solid solutions were also observed in the mixed oxides, but it only existed on the materials with relatively low CeO₂ content (Ce/Fe \leq 20: 80). The formation of hematite-like solid solution could improve the surface reduction of Fe_2O_3 , while the deep reduction of Fe_2O_3 depends mainly on the crystal size of Fe₂O₃ particles. The size effect plays a more important role than solid solution on the reduction behavior of CeO₂-modified Fe₂O₃ oxides. In addition, the presence of CeO₂ on Fe₂O₃ also strongly improves the oxygen storage capacity and redox stability of Fe_2O_3 , which can be attributed to the chemical interaction between cerium and iron oxides, involving the formation of a complex oxide (CeFeO₃) after the TPR/OSC redox testing. This knowledge gives useful references to design novel OSC materials for chemical looping technologies.

1. Introduction

Hematite (α -Fe₂O₃), as a major and thermodynamically most stable oxide among the 16 identified iron oxidic compounds, is one of the most important iron oxides.¹ Because of the high level of reducible ferric iron (Fe(III)), Fe₂O₃-based materials have attracted significant attentions as an oxygen carrier in a novel power generation technology which is named "Chemical-Looping Combustion" (CLC).^{2,3} In this technology, Fe₂O₃ oxygen carriers were submitted to oxidize fuels to H₂O and CO₂, and then the reduced sample can be re-oxidized by air. Because of the separation of fuels from air, this technology is identified as owning inherent advantages for CO₂ separation with minimum energy losses. In addition, Fe_2O_3 was also proposed to be used for hydrogen generation via chemical looping reforming and chemical hydrogen storage.⁴⁻⁶ Both of the two technologies are performed via the two-step redox reaction of iron oxides. In the process of chemical hydrogen storage, hydrogen firstly reacts with iron oxide to form H₂O (hydrogen storage step), and then hydrogen can be recovered through the oxidation of reduced iron with water vapor (hydrogen release step). In the case of chemical looping reforming, iron oxide is firstly reduced with fuels (e.g., hydrocarbon or syngas) into iron metal or suboxides (reduction step), and then pure hydrogen can be produced through the oxidation of reduced iron with steam.

It was found that the reaction rates of hematite with fuels are slow and this material also has a tendency to deactivate during the redox process at high temperatures. To finalize the successive reduction-oxidation cycles in the above technologies, additives (e.g., NiO) or supports (e.g., Al₂O₃, TiO₂ and MgAl₂O₄) were used to improve the reactivity and to overcome deactivation in redox cycles. ^{2, 7-13} The use of supports could obviously improve the reactivity and redox stability of Fe₂O₃-based oxygen carriers, but it also reduced the amount of reducible oxygen for fuel oxidation. In the case for the additives modified Fe₂O₃ oxygen carriers, carbon deposition can not be neglected

RSC Advances Accepted Manuscript

when using hydrocarbons as fuel, because such additives (e.g., reduced Ni species) are usually active for the decomposition of hydrocarbons (e.g., methane). In this case, exploration of a suitable additive which could solve the above questions owns considerable scientific and technological value.¹⁴

CeO₂ is well known as an oxygen buffer in three way catalyst (TWC) systems due to its outstanding oxygen storage capacity and good redox property.¹⁴⁻¹⁷ CeO₂ also shows excellent resistance to carbon deposition in the partial oxidation of methane.^{18, 19} It was reported that using CeO₂ as an additive could improve the catalytic performance of Fe₂O₃-based catalysts by decreasing the particle size,²⁰ and the formation of CeO₂-doped hematite solid solution could strongly promote the catalytic stability of iron oxides.²¹⁻²³ It is reasonable to speculate that combining Fe₂O₃ with CeO₂ may improve the performance of Fe₂O₃ used in a chemical-looping process. Since the chemical-looping processes usually run at relatively high temperatures (\geq 800 °C), the estimation on physicochemical figures such as the reduction behavior, thermal stability and redox property of candidate materials under high-temperature conditions should be performed firstly.

In the present work, a series of CeO_2 -modified Fe_2O_3 materials with different Ce/Fe molar ratios was prepared and thermally aged at different temperatures. Based on the structural and chemical characterizations, their structural/textural feature, reduction behavior, oxygen storage capacity (OSC) and redox performance were investigated in detail. The discussions on the results obtained from these studies help us to understand the relationship between the structural properties and the reduction/redox behaviors of CeO₂-modified Fe₂O₃ oxides.

2. Experimental Section

2.1 Material Preparation

4

CeO₂, Fe₂O₃ and CeO₂-modified Fe₂O₃ oxides with the Ce/Fe mole ratio ranging from 5:95 to 50:50 (labeled as Ce05/Fe95, Ce10/Fe90, Ce20/Fe80, Ce40/Fe60, and Ce50/Fe50, respectively) were prepared by a co-precipitation method. The required amounts of Ce(NH₄)₂(NO₃)₆ (Wako, minimum purity 95%) and/or Fe(NO₃)₃·9H₂O (Wako, minimum purity 99%) were dissolved in distilled water, and blended using a magnetic stirrer for 30 min at room temperature. The hydroxides were precipitated by dropping an ammonia 8 wt % aqueous solution. The mixtures were stirred for 3 h at the pH of 10. The precipitates were dried at 110 °C for 24 h, subjected to decomposition at 600 °C in air for 3 h. The Ce20/Fe80-800 sample was prepared by further heat treating the Ce20/Fe80-600 material at 800°C for 3 h. The

For the preparation of the physically mixed samples, single Fe_2O_3 and CeO_2 precipitates were prepared firstly by a precipitation method in the same operation procedure as above. Both the single Fe_2O_3 and CeO_2 precipitates were calcinated at 600 for 3 h to obtain Fe_2O_3 -600 and CeO_2 -600 samples. Then, Fe_2O_3 -600 and CeO_2 -600 powders were mixed with a Ce/Fe mole ratio of 1:4 and grinded for 15 min in an agate mortar. Thereafter, the mixtures were calcinated at 600 °C for 1 h to obtain the physically mixed Ce20/Fe80-600 sample. The physically mixed Ce20/Fe80-800 sample was prepared by further heat treating the corresponding Ce20/Fe80-600 material at 800°C for 3 h.

2.2 Characterization

Powder X-ray diffraction (XRD) patterns were recorded using a Rigaku MiniFlex II diffractometer with Cu Kalpha radiation at 40 kV and 15 mA. The X-ray diffractogram was recorded at scanning rate of 1°/min with a 0.02° step size in the 20 range between 10 and 80°. Raman spectra were measured with a JASCO (Japan) NRS-3100 Raman Spectrometer, equipped with a TE-cooled charge coupled device (CCD) detector and a green laser (λ =532 nm, frequency-doubled Nd:YVO4, Showa Optronics, Japan), under the ambient atmosphere. The BET surface area was determined by a

volumetric adsorption apparatus by nitrogen adsorption at -196 °C using Micromertics TriStar II. The microstructures and morphologies were investigated using a JEOL JEM-2100(UHR) transmission electron microscope (TEM) at 200 kV.

The X-ray photoelectron spectroscopy (XPS) experiments were carried out on a PHI-5500 system equipped with a monochromatic Mg *K*a X-rays source (hv=1253.6 eV). Spectra were registered after purging the samples at ambient temperature in a vacuum (residual pressure<10⁻⁷ Pa). An electron flood gun compensated sample charging during the measurement. The electron takeoff angle was 45° with respect to the sample surface. The spectra were referenced to the C1s emission at 284.8 eV.

Temperature-programmed reduction (TPR) profiles were obtained from room temperature to 800 °C (hold at 800 °C for 20 min) in a 30 cm³·min⁻¹ flow of 5% H₂/Ar at a heating rate of 10 °C·min⁻¹. After the TPR cycle, the gas flow was switched to Ar and the sample was cooled down to 600 °C at a cooling rate of 10 °C·min⁻¹. Thereafter, O₂ pulses were injected on the reduced sample at 600 °C, and OSC of this material was obtained by calculating the consumption of oxygen. The redox treatment was performed by repeating TPR/OSC couple steps.

3. Result and discussion

3.1 Interaction between CeO₂ and Fe₂O₃

The combination of Fe_2O_3 with CeO_2 was performed in two ways: co-precipitation and physically mixed methods. Figure 1 shows the XRD patterns of the precipitated Fe_2O_3 , co-precipitated CeO_2/Fe_2O_3 samples (with a Ce/Fe mole ratio of 2:8, labelled as Ce20/Fe80) and physically mixed Ce20/Fe80 samples calcined at different temperatures. Table 1 summarized the crystallite sizes and lattice constants of CeO₂ and Fe₂O₃ along with the specific surface area for different samples.

It is shown in Figure 1 that the single Fe₂O₃ samples (Fe₂O₃-600 and Fe₂O₃-800) can be assigned to hematite $(\alpha - Fe_2O_3)^{24}$ and the Ce20/Fe80 samples (both physically mixed and co-precipitated samples) displayed mixed reflections from α -Fe₂O₃ and fluorite structured CeO₂ (*Fm*-3*m*). It is clear that higher calcination temperature results in sharper diffraction peaks, indicating the growth of the oxide particles under thermal treatment, especially for the single oxides and the physically mixed sample. A shift of CeO₂ peaks to higher diffraction position was observed over the co-precipitated Ce20/Fe80-600 sample (see the arrow in Figure 1B) compared with the single CeO_2 , which coupled with the lattice contraction of CeO₂ (see Table 1) evidences the formation of CeO₂-based solid solution.²³ In addition, a slight expansion in the unit cell of Fe_2O_3 , especially in the *c* direction, was also detected in this sample, which can be interpreted as the incorporation of Ce⁴⁺ into the Fe₂O₃ lattice to form a hematite structured solid solution.^{21,23} When increasing the calcination temperature, the lattice distortion either for CeO_2 or Fe_2O_3 in the co-precipitated Ce20/Fe80 samples disappeared (see Table 1). This indicates that both the two types of solid solution (CeO₂ and hematite-like solid solutions) are unstable under the high-temperature thermal treatment. For the physically mixed samples, the lattice constants determined from Fe_2O_3 and CeO_2 are very close to those of the pure phases, suggesting the absence of solid solution.

Raman analyses for different samples are shown in Figure 2, which supports the XRD finding that the structure of singe Fe₂O₃ is hematite and the mixed oxides contain the mixed phases of hematite and cubic CeO₂.^{21, 22} It is clear that the Fe₂O₃-800 sample shows six peaks at approximately 220, 240, 286, 404, 494 and 604 cm⁻¹ corresponding to hematite, but two peaks at ca. 240 and 494 cm⁻¹, which are usual visible in very crystalline α -Fe₂O₃, ²¹ are missing in Fe₂O₃-600 and all the mixed oxides, evidencing small particle size of Fe₂O₃ in such samples.

RSC Advances Accepted Manuscript

Noted is that the relative intensity towards the Raman bands of hematite to cubic CeO₂ is very different between co-precipitated and physically mixed samples. For the co-precipitated samples (see Figure 2, curves *e*, *f* and *g*), the hematite features were visible, whereas the Raman band of CeO₂ is very weak. This is in contrast with the Raman spectra of the physically mixed samples (Figure 2 curves *c* and *d*), which show a very observable CeO₂ band with several invisible peaks corresponding to hematite. It was reported that hematite owns strong absorbance at the wavenumber region of the Raman spectrum,¹ which usually results in weaker Raman bands towards iron oxides than CeO₂.²¹ This may explain the higher intensity of the Raman features of CeO₂ than that of α -Fe₂O₃ in the physically mixed samples, despite the low molar content of Ce (20%). On the other hand, it is known that the intensity of Raman peaks for CeO₂ is sensitive to its particle size, and bigger crystal size would result in higher intensity of Raman spectra. In this case, the weak Raman band of CeO₂ towards the co-precipitated samples may be attributed to the small size of CeO₂ particles. This is supported by the TEM results in Figure 3.

A red shift (shift toward lower wavenumbers) towards the main band of CeO₂ was also observed in Figure 2 for all the co-precipitated samples compared with the single CeO₂, evidencing the formation of CeO₂-based solid solution.²¹ Moreover, a red shift towards the features of Fe₂O₃ was also observed over co-precipitated Ce20/Fe80-600 sample. It was reported that the incorporation of additive ions into the Fe₂O₃ crystal structure could result in a shift of Raman peaks of Fe₂O₃ to lower wavenumbers due to the changes in surface strain and formation of defects.²⁵ In this case, the red shift of Fe₂O₃ Raman bands may also be attributed to the modification on the surface structure of Fe₂O₃ (e.g., inducing surface strain or defects in hematite like solid solution) due to the presence of CeO₂ particles.

Figure 3 shows the TEM micrographs of coprecipitated Ce20Fe80-800 sample and Ce10/Fe90 sample (which will be discussed in the next section). A rod-like structure with 100-300 nm in length and about 10-35 nm in diameter was observed on both samples, which were closely surrounded by numbers of small particles (5-10 nm). The lattice fringes in the high-resolution TEM micrographs (Figure 6b) indicate that the nanorods and small particles can be identified as CeO₂ and α -Fe₂O₃, respectively. It is worthy to stress that the binding interface between CeO₂ and α -Fe₂O₃ can be observed over both samples, indicating strong structural interaction between the two oxides.

Figure 4 shows the hydrogen reduction behavior of different samples, and the temperature for each reduction peak was represented in Table 2. The TPR profiles of the single Fe₂O₃ samples represented three peaks (α , β and γ), showing a stepwise reduction of Fe₂O₃ to Fe through FeO as an intermediate ^{24, 26}. All the physically mixed Ce20/Fe80 samples show similar TPR profiles with the single Fe₂O₃, but the co-precipitation samples involves one more reduction peak (δ) below 350 °C (Figure 4, curves *e* and *f*). It has been demonstrated that nanometer sized CeO₂ usually gives a reduction peak under 400 °C,²⁷ and the formation of CeO₂-based solid solution could reduce the reduction temperature of CeO₂.¹⁴ Taking the observations of the small particle size of CeO₂ (XRD finding) and the formation of surface CeO₂-based solid solution (Raman finding) into account, we ascribed the δ peak to the reduction of surface CeO₂.

It is very interesting that the physically mixed Ce20/Fe80-600 sample (Figure 4, curve *c*) shows a lower temperature of α peak compared with Fe₂O₃-600, although no obvious structural interaction was detected by the XRD or Raman characterization (Figures 1 and 2). This indicates that even simple contact between CeO₂ and Fe₂O₃ may improve the surface reducibility of Fe₂O₃ in the CeO₂-Fe₂O₃ mixed oxides. On the other hand, the temperatures for β and γ peaks towards co-precipitated Ce20/Fe80-600 sample were lower (Figure 4, curve *e*) than that towards Fe₂O₃-600

(Figure 4, curve *a*) or the physically mixed Ce20/Fe80-600 sample (Figure 2, curve *c*), indicating relatively higher reducibility. This should be related to the structural interactions (e.g., the formation of CeO₂-Fe₂O₃ interface and solid solution) occurred in the co-precipitated Ce20/Fe80-600 sample.

With the increase of the calcination temperature from 600 to 800 °C, the temperature of α peak shifted to higher temperature with respect to the single Fe₂O₃ (Figure 4, curve *a* and *b*) and physically mixed samples (Figure 4, curve *c* and *d*). By contrast, no obvious changes were observed on the α peak for the two co-precipitation samples (Figure 4, curves *e* and *f*), suggesting higher stability for the reducibility under thermal treatment. It should be stressed that co-precipitated Ce20/Fe80-600 sample owns both the ceria-like and hematite-like solid solution, but both of them disappeared when increasing calcination temperature from 600 to 800 °C (XRD observation). The similar reduction behaviors between co-precipitated Ce20/Fe80-600 and Ce20/Fe80-800 samples indicate that the solid solution may not be a determining factor for the reducibility of such CeO₂-Fe₂O₃ materials.

In summary, the comparison between co-precipitated and physically mixed Ce20/Fe80 samples indicates that physical contact between CeO₂ and Fe₂O₃ oxides could improve the surface reducibility of Fe₂O₃, and the chemical interaction in the Fe₂O₃-CeO₂ interfaces could improve both the surface and bulk reducibility of Fe₂O₃.

3.2 Effect of CeO₂ contents

As the above suggestions, the co-precipitated CeO_2/Fe_2O_3 oxides show obvious structural and chemical Ce-Fe interaction. A series of CeO_2 -modified Fe_2O_3 oxides with the Ce/Fe mole ratio ranging from 5:95 to 50:50 were therefore prepared by the co-precipitation method. The XRD patterns of CeO₂, Fe₂O₃ and CeO₂-modified Fe₂O₃ oxides with different CeO₂ contents calcined at

800 °C were shown in Figure 5. The single CeO₂ diffractogram was characteristic of a cubic fluorite-structured material (*Fm*-3*m*)¹⁷ and all the diffraction peaks for pure Fe₂O₃ was attributed to α -Fe₂O₃.²⁴ The mixed samples displayed reflections from both phases, but all the diffraction peaks for each phase broadened and weakened compared with the single oxides, evidencing smaller size of particles in the mixed oxides. This can be confirmed by the calculated crystal sizes (based on the XRD data) of Fe₂O₃ and CeO₂, as shown in Table 3.

It can also be observed from Figure 5 (B) that the diffraction of (110) plane owning to α -Fe₂O₃ shifted to lower 20 position when increasing the Ce content from 5% to 10%. Moreover, the lattice constants of hematite detected in the two samples (Ce05/Fe95 and Ce10/Fe90) were also found larger than those towards the single Fe₂O₃ (see Table 3). This lattice expansion must be due to the incorporation of larger Ce⁴⁺ into the hematite lattice, evidencing the formation of a hematite-like solid solution.²¹⁻²³ When further increasing the Ce content, *a* and *c* of the α -Fe₂O₃ parameters changed backed to those of pure hematite, as shown in Table 3, which indicates the disappearance of the hematite-like solid solution in the Ce-Fe material with relatively high CeO₂ content (\geq 20% mole content). On the other hand, the lattice constant of CeO₂ (not shown) from all the mixed oxides is very close to that of the single CeO₂, suggesting no CeO₂-based solid solution in these samples.

The contents of CeO₂ also affect the specific surface area of the mixed oxides. Since the thermal treatment temperature is as high as 800 °C, the specific surface area either for single CeO₂ or Fe₂O₃ is very low (lower than 3 m²·g⁻¹, see Table 3). But it increased to ca. 20 m²·g⁻¹ when combining Fe₂O₃ with CeO₂. It should be noted that when the content of Ce is higher than 20%, the specific surface area slightly decreased with CeO₂ content. This suggests that there is a critical content of CeO₂ for obtaining relatively high surface area toward the CeO₂-modified Fe₂O₃ materials, which

may be attributed to the absence of hematite-like solid solution in the samples with relatively high loading of CeO_2 (Ce/Fe > 20: 80).

The Raman spectra for the prepared samples are shown in Figure 6. The single CeO₂ exhibits a prominent band at 466 cm⁻¹ corresponding to F_{2g} Raman active mode in metal dioxides with a fluorite–like structure, and six bands at approximately 220, 240, 286, 404, 494 and 604 cm⁻¹ corresponding to α –Fe₂O₃ were observed over the single Fe₂O₃ sample.²¹ The mixed oxides show the Raman bands owning to both CeO₂ and α –Fe₂O₃ phases, but the full width at half maximum (FWHM) for each band is wider than that towards the single oxides. It is also clear that two weak peaks at ca. 240 and 494 cm⁻¹, which are visible in single Fe₂O₃ with low crystallite size.²¹

It should be noted that the band for CeO₂ in the mixed oxides is much weaker and wider than that towards the single CeO₂ and shifts to lower frequency (see the arrow in Figure 6). It is generally accepted that the broadening of the ceria main line is related either to a decrease of ceria crystallite size or to the presence of defects such as oxygen vacancies,²⁸ and the red shift of ceria band is a sign of lattice contraction due to the cation doping.²⁹ The above phenomena suggest the formation of CeO₂-based solid solution due to the incorporation of Fe³⁺ into the CeO₂ lattice. This is inconsistent with the XRD finding that no ceria-based solid solution in the mixed oxides. Since the Raman spectra are only sensitive to the information of materials surface, the modified CeO₂ should exist only in the surface layer of the mixed oxides.

Figure 7 shows the TPR profiles of single CeO₂, Fe₂O₃ and CeO₂-modified Fe₂O₃ oxides. As discussed in Figure 4, the TPR profiles for all the samples show three main peaks (α , β and γ) which evidence the stepwise reduction of Fe₂O₃ to Fe and one small shoulder peak (δ), relating to the reduction of surface CeO₂ particles. The α peak shifted to lower temperatures due to the addition of

CeO₂, but the degree of this shift decreased when the CeO₂ content is higher than 20%. On the other hand, the temperature of β peak for the Ce05/Fe95 and Ce10/Fe90 samples is same with that towards the single Fe₂O₃, but further increasing the CeO₂ content resulted in an obvious decrease in the temperature of this peak. It was observed from the XRD characterization that addition of small amount of CeO₂ (Ce/Fe < 20: 80) into Fe₂O₃ would lead to the formation of hematite-like solid solution, while the samples with high CeO₂ content (Ce/Fe ≥ 20 : 80) owns smaller Fe₂O₃ particles. As discussed above, the α and β peaks are attributed to the reduction of surface Fe³⁺ and the further reduction of subsurface Fe^{3+} and surface Fe^{2+} , respectively.²⁴ In this case, the shift of α peak indicates that the formation of hematite-like solid solution may improve the surface reduction of Fe₂O₃. The shift of β peak suggests that the deep reduction of Fe₂O₃ is more sensitive to the crystal size of Fe₂O₃ particles, because smaller particles would shorten the distance for oxygen migration from the bulk to surface. Another important feature in Figure 7 is the shifts of δ peak to higher temperature with the content of CeO_2 . Since the reduction temperature of CeO_2 particles is very sensitive to the particle size, this should be due to the increased crystal size of CeO₂ particles for the samples with higher loading of CeO_2 (see Table 3).

To summarise, the characterizations of CeO_2 , Fe_2O_3 and CeO_2 -modified Fe_2O_3 oxides suggest that the coprecipitation protocol allowed Fe_2O_3 -CeO₂ mixed oxides own smaller particle size and bigger specific surface area, diminishing thermal sintering at high temperature. These modifications enhanced the reducibility of CeO₂ and Fe₂O₃ in the mixed oxides, especially for the sample with a suitable content of CeO₂ (e.g., Ce20/Fe80 sample).

3.3 Redox property of CeO₂-modified Fe₂O₃

iara is and of the most important

For a chemical-looping process, the redox property of oxygen carriers is one of the most important factors for practical application. The redox property of CeO_2 -modified Fe_2O_3 was investigated by alternately carrying out the H₂-TPR characterization and oxygen storage capacity (OSC) measurements. Figure 8 compares the TPR profiles of the Fe_2O_3 and co-precipitated Ce20/Fe80-800 samples before and after redox cycles.

It can be seen that the TPR behavior of recycled Fe_2O_3 is substantially different from that exhibited by the fresh sample (Figure 8A). When the redox treatment was performed for once, all the reduction peaks (Figure 8A, cycle 1) lost a bit of their intensity, especially for the high-temperature peaks. Further increasing the cycle number modified the TPR profile to reach a final appearance with only one weak peak at ca. 505 °C (Figure 8A, cycle 6). After six redox cycles, the OSC of the single Fe_2O_3 sample decreased from 0.67 mmol/g to 0.20 mmol/g (see Figure 9), indicating that over 70% of oxygen species in single Fe_2O_3 consumed in the TPR process cannot be restored in the re-oxidation step (OSC step).

A totally different and in some respects interesting behavior pattern is observed over the recycled Ce20/Fe80 sample (Figure 8B). It is clear that the first low-temperature peak weakened, but the bulk reduction which occurs at high-temperature (600-800°C) was gradually enhanced with the redox cycle. As a result, the OSC of this sample significantly increased from 1.57 to 2.1 mmol/g after six redox cycles, as shown in Figure 9.

All these modifications on the reduction behavior and OSC towards the Ce20/Fe80 sample can be correlated to the phase changes of these materials during the redox treatment. Figure 10 compares the XRD patterns of Fe₂O₃ and Ce20/Fe80 samples before and after redox cycling. It can be seen that, after re-oxidation step, the diffractions of Fe₂O₃ disappeared, and suboxides of iron (i.e., Fe₃O₄, FeO) and Fe phases were observed (Figure 10A, cycle 1). Further recycling of the sample still 14

modifies the XRD pattern: the relatively intensity ratio of the diffractions of FeO and Fe to Fe₃O₄ obviously increased (from cycles 1 to 6 in Figure 10A). This indicates that the only reduction peak in the TPR of the recycled single Fe₂O₃ sample in Figure 8A is attributed to the reduction of Fe²⁺. It can also be used to explain the decreased OSC of the single Fe₂O₃ after successive redox cycling, as shown in Figure 9.

The redox treatment also modified the composition of the Ce20/Fe80 sample (Figure 10B). Similarly with the recycled single Fe₂O₃ sample, diffractions from Fe₃O₄ and Fe were observed on the Ce20/Fe80 sample after the first TPR/OSC redox cycle. However, it should highlight that α -Fe₂O₃ was also detected on this sample, which contrasts with the fact that no Fe³⁺ was found to appear in the recycled single Fe₂O₃ sample, suggesting that more oxygen species were restored in the re-oxidation step due to the presence of CeO₂. This phenomenon gives the reason why Ce20/Fe80 sample owns higher OSC value than the single Fe₂O₃ after the redox treatment. It also should be noted that further redox cycling slightly improved the relative intensity of the diffractions from α -Fe₂O₃ to other phases (Figure 10B, cycles 1 to 6), evidencing the increased content of α -Fe₂O₃ in this material. This is in accordance with the improvement on the OSC of Ce20/Fe80 sample after the successive redox cycling (see Figure 9).

Another interesting finding due to the combination of CeO₂ and Fe₂O₃ is the formation of CeFeO₃ in the recycled Ce20/Fe80 sample. It was reported that cerium orthoferrite (CeFeO₃) can be prepared by the reaction $3CeO_2 + Fe_2O_3 + Fe \rightarrow 3CeFeO_3$ in inert atmosphere. ³⁰ In the present work, the formation of CeFeO₃ should also follow the same route because of the coexistence of CeO₂, Fe₂O₃ and Fe phases. To investigate the redox property of CeFeO₃, pure CeFeO₃ was prepared with a calcination temperature of 800 °C. It is found that the CeFeO₃ is unstable in the TPR/OSC redox process. After six redox cycles, most of the CeFeO₃ decomposed to Fe₂O₃ and CeO₂ (see Figure S1).

RSC Advances Accepted Manuscript

It should be mentioned that CeFeO₃ is very stable in the CH₄/H₂O redox atmosphere.^{31, 32} This indicates that above mentioned decomposition of CeFeO₃ should occur in oxygen atmosphere of OSC measurement step. However, in the present work, the repetitive redox cycles did not reduce the intensity of the diffraction peaks of CeFeO₃ during the redox processes, indicating that the structure of CeFeO₃ in the recycled Ce20/Fe80 sample is highly stable under redox treatment. This may be attributed to the co-existence of CeO₂, Fe₂O₃, Fe and CeFeO₃ in this sample, which could result in a dynamic balance between the formation and decomposition of CeFeO₃ in the redox atmospheres.

It is generally accepted that exposed Ce^{3+} ions on CeO_2 -based materials could improve the rate of many chemical reactions, because adsorbed gases or catalytic reaction intermediates can interact simultaneously with several Ce^{3+} ions.³³ XPS measurement on the CeFeO₃ revealed a pair of new bands at ca. 886.5 (V') and 902.6 eV (U') with very high intensity compared with the single CeO₂, evidencing high concentration of Ce^{3+} ions on this material (Figure S2). In this case, the CeFeO₃ with abundant Ce^{3+} ions may act as a catalyst to improve the reducibility of Ce and Fe oxides in the recycled Ce20/Fe80 sample through activating hydrogen and lattice oxygen in the TPR process. That is to say, the formation of CeFeO₃ in the CeO₂-Fe₂O₃ system may be a key to maintain a relative high reducibility and oxygen storage capacity in the repeated reduction/oxidation cycle.

Figure 11 reveals the Raman spectra of Ce20/Fe80 before and after redox treatment, which give more information on the surface iron species. Fe₃O₄ and Fe, which is detected in the XRD measurement (Figure 10), cannot be observed by Raman spectra (Figure 11, cycles 1 and 6). This should be attributed to the low content of Fe₃O₄ and the extremely low sensitivity of Raman to metals. It should be noted that the Raman bands corresponding to α -Fe₂O₃ broadened, weakened and shifted to lower wavenumbers after redox cycles. These phenomena evidence the decrease of α -Fe₂O₃ particle size and the presence of surface strain or defects on the surface of recycled

Ce20/Fe80 sample. This may also be a possible contribution to the relatively high reducibility of Ce20/Fe80 material after the successive redox treatments. Beyond this, a red shift towards the Raman band of CeO₂ (Figure 11, cycles 1 and 6) was also detected in the recycled Ce20/Fe80 sample, indicating the lattice distortion of cerium oxide due to existence of $Ce^{3+.30}$ This can be related to the presence of CeFeO₃, which owns abundant Ce³⁺ ions, as observed by XPS measurement (Figure S2).

The above results indicate that the presence of CeO_2 on Fe_2O_3 could improve the oxygen storage capacity and redox stability of Fe_2O_3 due to strong chemical interactions between cerium and iron oxides, involving the formation of a complex oxide (CeFeO₃).

4. Conclusions

The modification of CeO₂ (with different loadings) on the structure, reduction behavior, OSC and redox property of Fe₂O₃ was investigated. Incorporation of Fe₂O₃ with CeO₂ using a co-precipitation method reduced the crystal size of both oxides and increased the specific surface area, diminishing thermal sintering at high temperature. TEM images shows that CeO₂ particles were very small (<10 nm) and highly dispersed on the surface of Fe₂O₃ rods, even after high-temperature treatment. This suggests that the Fe₂O₃ rods as support could inhibit the growth CeO₂ nano particles under thermal treatment. The nano-size effects resulted in strong chemical interaction in the Fe₂O₃-CeO₂ interfaces, which could improve the reducibility of cerium and iron oxides both on the surface and in the bulk. The physically mixed samples showed that even simple contact between CeO₂ and Fe₂O₃ oxides could improve the reducibility of Fe₂O₃, but this enhancement was restricted to surface reduction behavior.

The presence of CeO₂ could also improve the reversibility of Fe_2O_3 in the successive reduction/oxidation testing, which resulted in a significant improvement on the OSC of the mixed oxide compared with the single Fe_2O_3 . The improved redox property of CeO₂-modified Fe_2O_3 sample seems to be related with the formation of perovskite-type CeFeO₃ after the redox treatments. It should be stressed that the recycled CeO₂-modified Fe_2O_3 oxides own good reducibility only at high-temperature, indicting this material could potentially be valuable in the redox process occurred

at high temperature, such as the chemical-looping technologies.

Acknowledgements

Financial supported from the National Natural Science Foundation of China (Project Nos. 51374004, 51204083, 51104074 and 51174105).

Notes and references

1 R. M. Cornell and U Schwertmann, The iron oxides: structure, properties, reactions, occurrence, and uses. Wiley-VCH: Weinheim 2003.

- 2 M. M. Hossain and H. I. de Lasa, *Chem. Eng. Sci.*, 2008, **63**, 4433-4451.
- 3 J. Adanez, A.Abad, F. Garcia-Labiano, P. Gayan and L. F. de Diego, *Prog. Energy Combust.* Sci., 2012, **38**, 215-282.
- 4 S. Takenaka, V. T. D. Son, C. Yamada and K. Otsuka, Chem. Lett., 2003, 32, 1022-1023.

5 K. Otsuka, C.Yamada, T. Kaburagi and S. Takenaka, *Int. J. Hydrogen Energy*, 2003, 28, 335-342.

⁶ M. A. Gondal, A. Hameed, Z. H. Yamani and A. Suwaiyan, *Appl. Catal., A*, 2004, 268, 159-167.

- 7 M.Johansson, T. Mattisson and A. Lyngfelt, Ind. Eng. Chem. Res., 2004, 43, 6978-6987.
- 8 S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura and K. Otsuka, J. Catal., 2004, 228, 66-74.
- 9 S. Takenaka, N. Hanaizumi, V. T. D. Son and K. Otsuka, J. Catal., 2004, 228, 405-416.
- 10 J. C. Ryu, D. H. Lee, K. S. Kang, C. S. Park, J. W. Kim and Y. H. Kim, *J. Ind. Eng. Chem.*, 2008, 14, 252-260.
- 11 M. Ryden, E. Cleverstam, M. Johansson, A. Lyngfelt and T. Mattisson, *AlChE J.*, 2010, 56, 2211-2220.
- S. Y. Chen, Q. L. Shi, Z. P. Xue, X. Y. Sun and W. G. Xiang, *Int. J. Hydrogen Energy*, 2011, 36, 8915-8926.
- 13 H. Wang, X. J. Liu and F. Wen, Int. J. Hydrogen Energy, 2012, 37, 977-983.
- 14 A. Trovarelli, Catal. Rev., 1996, 38, 439-520.
- 15 M. J. Ozawa, Alloys Compd., 1998, 275–277, 886-890.
- 16 C. Larese, M. L. Granados, F. C. Galisteo, R. Mariscal and J. L. G. Fierro, *Appl. Catal.*, *B*, 2006,
 62, 132-143.
- 17 P. Munusamy, S. Sanghavi, T. Varga and T. Suntharampillai, RSC Adv., 2014, 4, 8421.
- 18 T. L. Zhu and M. Flytzani-Stephanopoulos, Appl. Catal., A, 2001, 208, 403-417.
- 19 F. B. Passos, E. R. de Oliveira, L. V. Mattos and F. B. Noronha, Catal. Today, 2005, 101, 23-30.
- 20 Y. Liu and D. Z. Sun, J. Hazard. Mater., 2007, 143, 448-454.
- 21 F. J. Perez-Alonso, M. L. Granados, M. Ojeda, P. Terreros, S. Rojas, T. Herranz, J. L. G. Fierro,
- M. Gracia, and J. R. Gancedo, Chem. Mater., 2005, 17, 2329-2339.
- 22 F. J. Perez-Alonso, M. L. Granados, M. Ojeda, T. Herranz, S. Rojas, P. Terreros, J. L. G. Fierro,
- M. Gracia, J. R. Gancedo, J. Phys. Chem. B, 2006, 110, 23870-23880.

- 23 F. J. Perez-Alonso, I. Melian-Cabrera, M. L. Granados, F. Kapteijn and J. L. G. Fierro, *J. Catal.*,
 2006, 239, 340-346.
- 24 J. Zielinski, I. Zglinicka, L. Znak and Z. Kaszkur, Appl. Catal., A, 2010, 381, 191-196.
- 25 G. Litt and C. Almquist, Appl. Catal. B, 2009, 90, 10-17.
- 26 G. Magnacca, G. Cerrato, C. Morterra, M. Signoretto, F. Somma and F. Pinna, *Chem. Mater.*, 2003, 15, 675-687.
- 27 K. Zhou, X. Wang, X. Sun, Q. Peng and Y. Li, J. Catal., 2005, 229, 206-212.
- 28 L. Ilieva, G. Pantaleo, J. W. Sobczakc, I. Ivanov, A. M. Venezia and D. Andreeva, *Appl. Catal., B*, 2007, 76, 107-114.
- 29 G. S. Li, R. L. Smith and H. Inomata, J. Amer. Chem. Soc., 2001, 123, 11091-11092.
- 30 M. Robbins, G. K. Wertheim, A. Menth and R. C. Sherwood, J. Phys. Chem. Solids, **1969**, 30, 1823-1825.
- 31 X. Zhu, H. Wang, Y. G. Wei, K. Z. Li, X. M. Cheng, J. Rare Earths, 2010, 28, 907-913.
- 32 F. Mahmoodi, S. H. Najibi, A. Shariati, J. Am. Sci., 2012, 8,453-459
- 33 C. T. Campbell and C. H. F. Peden, *Science* 2005, 309, 713-714.

Table captions

Table 1. Structural characterizations of Fe₂O₃, physically mixed and co-precipitated Ce20/Fe80 samples with different calcination temperatures.

Table 2. Temperatures of the TPR peaks in Figure 4.

Table 3. Structural characterizations of Fe₂O₃, CeO₂, CeO₂-modified Fe₂O₃ oxides.

Samples	Crystallite size (nm)		Lattice constant of Fe ₂ O ₃ (nm)			
		E O	CeO ₂ –	Fe ₂ O ₃		S_{BET} $(\text{m}^2 \cdot \text{g}^{-1})$
	CeO_2	Fe_2O_3		а	с	
Fe ₂ O ₃ -600		38.6		0.5035	1.3739	8.3
				± 0.0001	± 0.0002	
Fe ₂ O ₃ -800		71.1		0.5031	1.3741	2.7
				± 0.0001	± 0.0001	
PM-600	18.5	39.5	0.5410	0.5034	1.3736	13.2
			± 0.0002	± 0.0005	± 0.0003	
PM-800	56.5	69.7	0.5412	0.5032	1.3740	2.5
			± 0.0001	± 0.0002	± 0.0003	
CP-600	6.6	5.4	0.5378	0.5029	1.3825	51.2
			± 0.0004	± 0.0005	± 0.0009	
CP-800	13.2	10.2	0.5408	0.5040	1.3772	23.9
		10.2	± 0.0001	± 0.0002	± 0.0006	

Table 1. Structural characterizations of Fe_2O_3 , physically mixed and co-precipitated Ce20/Fe80 samples with different calcination temperatures.

S_{BET}: specific surface area; PM: physically mixed Ce20/Fe80; CP: co-precipitated Ce20/Fe80

Table 2 Temperatures	of the T	FPR neaks	s in '	Figure 4
rable 2. remperatures	of the	II IN POAK	5 III .	i iguit 4.

Samula	Temperature of TPR peaks / °C				
Sample	δ	α	β	γ	
Fe ₂ O ₃ -600		438	719	800	
Fe ₂ O ₃ -800		456	676	800	
PM-600		421	680	800	
PM-800		443	691	800	
CP-600	343	435	611	790	
CP-800	335	440	629	800	

Samplas	Crystallite size (nm)		Lattice constan	$S_{\rm BET}$	
Samples	CeO ₂	Fe ₂ O ₃	а	С	$(m^2 \cdot g^{-1})$
Fe ₂ O ₃		71.1	0.5031 ± 0.0001	1.3741 ± 0.0001	2.7
Ce05/Fe95	11.5	32.7	0.5040 ± 0.0002	1.3812 ± 0.0002	19.7
Ce10/Fe90	10.3	31.8	0.5045 ± 0.0002	1.3838 ± 0.0003	24.2
Ce20/Fe80	13.2	30.6	0.5040 ± 0.0002	1.3772 ± 0.0006	23.9
Ce40/Fe60	20.2	23.3	0.5030 ± 0.0003	1.3761 ± 0.0002	18.5
Ce50/Fe50	20.1	10.8	0.5032 ± 0.0004	1.3766 ± 0.0003	13.8
CeO ₂	58.7				2.2

Table 3. Structural characterizations of Fe₂O₃, CeO₂ and CeO₂-modified Fe₂O₃ oxides.

S_{BET}: specific surface area

Figure captions

Figure 1. (A) XRD patterns of Fe_2O_3 , physically mixed and co-precipitated Ce20/Fe80 samples with different calcination temperatures: (a) Fe_2O_3 -600, (b) Fe_2O_3 -800, (c) physically mixed Ce20/Fe80-600, (d) physically mixed Ce20/Fe80-800, (e) co-precipitated Ce20/Fe80-600, and (f) co-precipitated Ce20/Fe80-800; (B) amplification of the (111) reflection for CeO₂.

Figure 2. Raman spectra of Fe_2O_3 , physically mixed and co-precipitated Ce20/Fe80 samples with different calcination temperatures: (a) Fe_2O_3 -600, (b) Fe_2O_3 -800, (c) physically mixed Ce20/Fe80-600, (d) physically mixed Ce20/Fe80-800, (e) co-precipitated Ce20/Fe80-600, and (f) co-precipitated Ce20/Fe80-800

Figure 3. TEM and HRTEM micrographs of Ce10/Fe90 (a and b) and co-precipitated Ce20/Fe80-800 (c and d) samples.

Figure 4. TPR profiles of Fe_2O_3 , physically mixed and co-precipitated Ce20/Fe80 samples with different calcination temperatures: (a) Fe_2O_3 -600, (b) Fe_2O_3 -800, (c) physically mixed Ce20/Fe80-600, (d) physically mixed Ce20/Fe80-800, (e) co-precipitated Ce20/Fe80-600, and (f) co-precipitated Ce20/Fe80-800

Figure 5. (A) XRD patterns of CeO₂, Fe₂O₃ and CeO₂-modified Fe₂O₃ oxides; (B) Amplification of the (110) reflection for α -Fe₂O₃.

Figure 6. Raman spectra of of CeO₂, Fe₂O₃ and CeO₂-modified Fe₂O₃ oxides.

Figure 7. TPR profiles of CeO_2/Fe_2O_3 mixed oxides calcinated at 800 °C: (a) Ce50/Fe50, (b) Ce40/Fe60, (c) Ce20/Fe80, (d) Ce10/Fe90, (e) Ce05/Fe95, (f) Fe₂O₃

Figure 8. Effect of redox treatment on the reduction behaviors of Fe₂O₃ (A) and Ce20/Fe80 sample

(B).

Figure 9 Effect of redox treatment on the OSC of Fe₂O₃ and Ce₂₀/Fe₈₀ sample.

Figure 10. Effect of redox treatment on the XRD patterns of Fe₂O₃ (A) and Ce₂₀/Fe₈₀ sample (B).

Figure 11. Effect of redox treatment on the Raman spectra of Ce20/Fe80 sample.

Figure 1. (A) XRD patterns of Fe_2O_3 , physically mixed and co-precipitated Ce20/Fe80 samples with different calcination temperatures: (a) Fe_2O_3 -600, (b) Fe_2O_3 -800, (c) physically mixed Ce20/Fe80-600, (d) physically mixed Ce20/Fe80-800, (e) co-precipitated Ce20/Fe80-600, and (f) co-precipitated Ce20/Fe80-800; (B) amplification of the (111) reflection for CeO₂.

Intensity /a.u.

Figure 2. Raman spectra of Fe_2O_3 , physically mixed and co-precipitated Ce20/Fe80 samples with different calcination temperatures: (a) Fe_2O_3 -600, (b) Fe_2O_3 -800, (c) physically mixed Ce20/Fe80-600, (d) physically mixed Ce20/Fe80-800, (e) co-precipitated Ce20/Fe80-600, and (f) co-precipitated Ce20/Fe80-800

Figure 3. TEM and HRTEM micrographs of Ce10/Fe90 (a and b) and co-precipitated Ce20/Fe80-800 (c and d) samples.

Figure 4. TPR profiles of Fe_2O_3 , physically mixed and co-precipitated Ce20/Fe80 samples with different calcination temperatures: (a) Fe_2O_3 -600, (b) Fe_2O_3 -800, (c) physically mixed Ce20/Fe80-600, (d) physically mixed Ce20/Fe80-800, (e) co-precipitated Ce20/Fe80-600, and (f) co-precipitated Ce20/Fe80-800

Figure 5. (A) XRD patterns of CeO₂, Fe₂O₃ and CeO₂-modified Fe₂O₃ oxides; (B) Amplification of the (110) reflection for α -Fe₂O₃.

Figure 6. Raman spectra of of CeO₂, Fe₂O₃ and CeO₂-modified Fe₂O₃ oxides.

Figure 7. TPR profiles of CeO_2/Fe_2O_3 mixed oxides calcinated at 800 °C: (a) Ce50/Fe50, (b) Ce40/Fe60, (c) Ce20/Fe80, (d) Ce10/Fe90, (e) Ce05/Fe95, (f) Fe₂O₃

Figure 8. Effect of redox treatment on the reduction behaviors of Fe₂O₃ (A) and Ce₂₀/Fe₈₀ sample (B).

Figure 9 Effect of redox treatment on the OSC of Fe₂O₃ and Ce₂₀/Fe₈₀ sample.

Figure 10. Effect of redox treatment on the XRD (A) patterns of Fe₂O₃ and Ce₂₀/Fe₈₀ sample (B).

Figure 11. Effect of redox treatment on the Raman spectra of Ce20/Fe80 sample.