

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	One-pot synthesis of thiol- and amine-bifunctionalized mesoporous silica and
2	applications in uptake and speciation of arsenic
3	
4	Peng Li, Xiao-qin Zhang, Yi-jun Chen, Tian-yi Bai, Hong-zhen Lian*, Xin Hu*
5	State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry &
6	Chemical Engineering and Center of Materials Analysis, Nanjing University, 22
7	Hankou Road, Nanjing, 210093, China
8	
9	* Corresponding authors. Tel.: +86 25 83686075; fax: +86 25 83325180. E-mail
10	address: hzlian@nju.edu.cn (H.Z. Lian); Tel.: +86 25 83592247; fax: +86 25
11	83325180. E-mail address: huxin@nju.edu.cn (X. Hu)
12	
13	
14	Abstract
15	A series of thiol- and amine-bifunctionalized mesoporous silicas were synthesized
16	by one-pot co-condensation of tetraethyorthosilicate,
17	3-mercaptopropyltrimethoxysilane and
18	N-(2-aminoethyl)-3-aminopropyltriethoxysilane. The mesoporous materials were
19	characterized by X-ray diffraction, scan electron microscopy, transmission electron
20	microscopy, nitrogen gas adsorption, infrared spectroscopy, thermogravimetric
21	analysis and elemental analysis. As(V) and As(III) were effectively adsorbed by
22	amine and thiol on the functionalized silica, respectively, through electrostatic

	ript
	nsc
	Man
	oted
	Accel
	Ces
	Advan
	RSC

23	interaction and chelation. Adsorption isotherms and kinetic uptake profiles of As(V)
24	and As(III) onto these adsorbents were investigated by batch adsorption experiments.
25	On the other hand, this material was employed for speciation analysis of arsenic using
26	a homemade syringe-based solid phase extraction device. As(V) and As(III) were
27	effectively separated and preconcentrated in a single run through a sequential elution
28	strategy, in which 0.1 M HNO ₃ was used to selectively elute $As(V)$ first and then 1 M
29	HNO ₃ with 0.01 M KIO ₃ to elute As(III). The merits of easy preparation, low cost,
30	high adsorption capacity and selective desorption, make the bifunctional mesoporous
31	silica an ideal solid material for removal and speciation analysis of arsenic in
32	environmental waters.
33	Key words: Bifunctional mesoporous silica, one-pot reaction, arsenic adsorption,
34	speciation analysis, solid phase extraction
35	
36	
37	1. Introduction
38	
39	In recent decades, heavy metal contamination to natural waters is of great concern
40	because of the toxicities of heavy metals in relatively low concentrations and
41	tendency towards bioaccumulation to plants, animals and human beings. ^{1,2} It is thus of
42	necessity to control the harmful effects of heavy metal ions through daily monitoring
43	and removal technologies. Solid material, also as adsorbent, used for adsorption of
44	heavy metal ions has received increasingly more attentions in recent years since it is

45	simple, low-cost and easy to be automated.3 Moreover, it can be easily incorporated
46	into automated solid phase extraction (SPE) procedures for determination of trace
47	metal ions and their species. ⁴ A variety of adsorbents, such as biomass, ⁵ carbon, ⁶
48	zeolites, ⁷ and functionalized inorganic supports ⁸ have been applied to trace elements
49	area with satisfactory results. In contrast with some other solid materials, a great deal
50	of attention has been paid to mesoporous silica due to its large specific surface area,
51	good dispersibility and controllable morphology. ^{9,10} Recently, Wang et al. ¹¹ prepared a
52	L-cysteine-functionalized SBA-15 for Hg(II) sorption, which shows a large
53	adsorption capacity. Awual et al. ¹² synthesized
54	6-((2-(2-hydroxy-1-naphthoyl)hydrazono)methyl)benzoic acid (HMBA)
55	functionalized material as optical mesoporous adsorbent for selective recognition and
56	removal of ultra-trace Cu(II) and Pd(II) ions.

Up till now, a series of functionalized mesoporous silicas, generally synthesized by 57 post modification of pure mesoporous silica gel or direct co-condensation of 58 organosilane reagents with tetra-alkoxysilanes (either tetraethoxysilane (TEOS) or 59 tetramethoxysilane (TMOS)), are available to adsorb heavy metal ions. Three main 60 types of functional groups (amine, thiol and carboxylic) have been demonstrated to be 61 the specific ligands for most of metal ions.¹³⁻¹⁵ However, there is a difference for 62 some elements, e.g., arsenic, selenium, antimony and tellurium, because they exist in 63 different species in environmental water, and property of each species is quite 64 different.¹⁶ Take arsenic as an example, it is an omnipresent toxic trace element and is 65 mainly found in environmental water with two oxidation states, As(III) and As(V). 66

Since the different properties of these two species, it is hard to adsorb them simultaneously through mono-functionalized mesoporous silica like thiol- or amine-functionalized.^{8,17-19} In addition, it is worth noting that most of the adsorbents including mesoporous silica are facing the similar problem, so a pre-oxidation or pre-reduction operation is indispensable for uptake both arsenic species. For example,

67

68

69

70

71

a pre-oxidization of As(III) to As(V) is usually involved using oxidizing agents or
 photocatalytic oxidation to enhance As(III) removal.^{20,21}

The studies have shown that the toxic effect of arsenic in an environmental or 74 biological system depends critically on its chemical form, and As(III) is the most toxic 75 form of the water-soluble species while As(V) is also relatively toxic. Thus, it is not 76 only important to remove As(III) and As(V), but also necessary for quantitative 77 determination of each arsenic species in daily monitoring.²²⁻²⁹ Conventionally, the 78 79 speciation of inorganic arsenic without employing chromatographic separation can be achieved by selective adsorption of one species onto adsorbents, and the other species 80 was calculated by subtraction with total inorganic arsenic. To obtain the total 81 inorganic arsenic content, an additional extraction procedure was usually needed after 82 pre-oxidization/pre-reduction of arsenic in sample,²⁴⁻²⁷ or adjustment of sample 83 pH,^{28,29} which make the sample pretreatment a bit time-consuming. 84

For the removal or speciation analysis of arsenic, the conversion of species from one form to another may not only cause operational complexity, but also introduce interferences. In this paper, we report the first attempt to synthesize a thiol- and amine-bifunctionalized mesoporous silica by one-step method for simultaneous

	uptake of $As(III)$ and $As(V)$. The novel material synthesized under different reactant
90	proportions between organosilane reagents and TEOS was characterized by using
91	X-ray diffraction (XRD), scan electron microscopy (SEM), transmission electron
92	microscopy (TEM), N ₂ adsorption, Fourier-transform infrared spectroscopy (FT-IR),
93	thermogravimetric analysis (TGA) and elemental analysis (EA). The batch adsorption
94	experiments were performed to investigate their adsorption behaviors and capacities
95	for As(III) and As(V). Then, by means of a facilely homemade syringe-based SPE
96	device, a sequential elution strategy for arsenic speciation analysis was proposed, and
97	simultaneous separation and preconcentration of As(III) and As(V) was achieved in a
98	single run without any change of sample conditions.
99	
100	
101	2. Experimental
101 102	2. Experimental
101 102 103	2. Experimental2.1 Reagents and materials
101 102 103 104	2. Experimental2.1 Reagents and materials
101 102 103 104 105	2. Experimental2.1 Reagents and materialsCetyltrimethylammonium bromide (CTAB) was purchased from TCI (Tokyo,
101 102 103 104 105 106	 2. Experimental 2.1 Reagents and materials Cetyltrimethylammonium bromide (CTAB) was purchased from TCI (Tokyo, Japan). Tetraethyorthosilicate (TEOS) and 3-mercaptopropyltrimethoxysilane
101 102 103 104 105 106	 2. Experimental 2.1 Reagents and materials Cetyltrimethylammonium bromide (CTAB) was purchased from TCI (Tokyo, Japan). Tetraethyorthosilicate (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were purchased from Alfa Aesar (Tianjing, China), and
101 102 103 104 105 106 107 108	2. Experimental 2.1 Reagents and materials Cetyltrimethylammonium bromide (CTAB) was purchased from TCI (Tokyo, Japan). Tetraethyorthosilicate (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were purchased from Alfa Aesar (Tianjing, China), and N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AAPTES) was purchased from
101 102 103 104 105 106 107 108 109	 2. Experimental 2.1 Reagents and materials Cetyltrimethylammonium bromide (CTAB) was purchased from TCI (Tokyo, Japan). Tetraethyorthosilicate (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were purchased from Alfa Aesar (Tianjing, China), and N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AAPTES) was purchased from Ourchem (Shanghai, China). HNO₃ was of guarantee reagent and obtained from

111	used without further purification. Deionized water (DIW, 18.25 $M\Omega$ cm) obtained
112	from a Milli-Q water system (Millipore, Bedford, MA, USA) was used throughout the
113	experiment.
114	Stock standard solutions of As(III) and As(V), 1000.0 mg L ⁻¹ , were prepared by
115	respectively dissolving appropriate amounts of Na ₃ AsO ₃ and As ₂ O ₅ (both of analytical
116	grade, purchased from Johnson Matthey, UK) in DIW. Lower concentration standard
117	solutions were prepared daily by appropriate dilutions from their stock solutions.
118	
119	2.2 Synthesis of bifunctional mesoporous silica
120	
121	Bifunctional mesoporous silica was synthesized via co-condensation of TEOS,
122	MPTMS and AAPTES with surfactant (CTAB) as the template in alkaline solution
123	(Scheme 1). Typically, 120 mL DIW and 3.5 mL NaOH (1 M) were added to 0.5 g
124	CTAB and stirred at 80 °C for 30 min. Then, $(1-2X) \times 12.5$ mmol of TEOS, $X \times 12.5$
125	mmol of MPTMS and $X \times 12.5$ mmol of AAPTES were mixed and added to the above
126	clear basic surfactant solution. Following the injection, a white precipitation was
127	observed within 4 min. The reaction mixture was allowed to stir at 80 $^{\circ}$ C for 2 h under
128	the atmosphere of nitrogen, and then the resulting slurry was filtered and rinsed with
129	excess H ₂ O, followed by ethanol and naturally dried overnight. Afterwards, the dried
130	solid was extracted with a mixed solution of 0.5 mL HCl and 150 mL ethanol by
131	stirring at 50 °C for 3 h. The extraction was repeated twice to accomplish complete
132	removal of CTAB. Then, the solid was filtered and washed with copious amounts of
	6

152

RSC Advances

	ļ		
1	1	2	5
	ì		2
	ļ	L	
	Ì	r.	
	ļ		
		ľ	P
	ļ		D
	i	-	
	ì		
		٩	
	1	2	
ī	(D
	(đ	5
	ì		5
	i	r	
	Ì		
	(9	D
	(Ċ	5
		Ē	5
			2
			Ŋ
	1	İ	Ś
	Ì	1	1
	ļ		
	(C	
	(٩	
	i		2
	1	2	2
1	(D
	į		
1			
	1		
	ļ	Ì	
Ĩ			

133 water until neutral, and subsequently rinsed repeatedly with ethanol. The resulting 134 mesoporous silica was finally dried under vacuum for 24 h. 135 The molar composition of the reaction mixture was (1-2X) TEOS : X MPTMS : X 136 AAPTES : 0.11 CTAB : 0.28 NaOH : 532 H₂O, where the reaction molar proportion between MPTMS/AAPTES and total Si is represented by X. Four different X = 0, 137 138 0.025, 0.075 and 0.15 were taken, and the bifunctionalized mesoporous silica 139 materials thus obtained are hereafter noted as MP-AAP-0%, MP-AAP-2.5%, 140 MP-AAP-7.5% and MP-AAP-15%, respectively. 141 Scheme 1 142 143 144 2.3 Characterization of bifunctional mesoporous silica 145 XRD, SEM, TEM, N₂ adsorption, FT-IR, TGA and EA were employed for the 146 147 characterization of the synthesized bifunctional mesoporous silica. Powder XRD experiment was performed on the Philip X'Pert Pro using a Cu Ka radiation source. 148 Low angle diffraction with a 2-theta range of 1 to 10° was used to investigate the 149 150 long-range order of the materials. Particle morphology of these materials was 151 obtained by SEM using a Hitachi S-3400N II with 10 kV accelerating voltage and

high resolution transmission electron microscopy (HRTEM) on a JEM-200CX
microscope operating at a 200 kV accelerating voltage. N₂ adsorption measurement

0.005 nA of beam current for imaging. The microstructure was characterized by a

155 was carried out on a Micromeritics ASAP 2020 BET surface analyzer system at liquid N_2 temperature (-196 °C). Before measurement, the sample was outgassed at 90 °C for 156 157 1 h and then at 150 °C for 4 h. The data were evaluated using the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods to 158 calculate the surface area and pore volumes/pore size distributions, respectively. 159 160 FT-IR spectra were recorded on a Nicolet-6700 spectrometer in the range of 4000-450 cm⁻¹. TGA of the materials was performed on a Perkin-Elmer Pyris 1 DSC from 303 161 to 973 K with a heating rate of 10 K min⁻¹. EA of the particles was carried out on an 162 163 Elementar Vario EL III using oxygen as the combustion gas.

164

165 **2.4 Batch adsorption experiments**

166

The adsorption of As(III) and As(V) on the bifunctional mesoporous silica was 167 168 measured in batch experiments by adding a fixed amount of adsorbent (0.010 g) into a 169 definite volume (10 mL) of either As(III) or As(V) solution. Initial pH of the solutions 170 was adjusted with diluted HNO₃ or $NH_3 \cdot H_2O$ by using a pH meter. The mixture was 171 placed in a rotary mixer and shaken (100 rpm) at room temperature for 30 min. After 172 centrifugation, the remaining arsenic in the supernatant liquid was quantified using an 173 inductively coupled plasma atomic emission spectrometer (ICP-AES, Perkin-Elmer, 174 Model Optima 5300DV) by measuring the signal intensity at the emission wavelength 175 of As 189.042 nm. The amount of arsenic adsorbed was calculated using the following 176 equation:

177
$$Q_e = [(C_e - C_e)^* V]/m$$
178Where C_o and C_e are the original and equilibrium concentrations, respectively, in179the solution of the arsenic species (mg L⁻¹), V is the solution volume (mL), and m is180the adsorbent mass (mg).1812.5 Speciation analysis procedure183Syringe filter tip (0.45 μ m) of 13 mm in diameter was used to form a simple SPE184Syringe filter tip (0.45 μ m) of 13 mL in diameter was used to 10 mL DIW, the185device. Briefly, 200 mg mesoporous silica were dispersed into 10 mL DIW, the186suspension was then inhaled into a 10 mL syringe cylinder and was injected averagely187into ten syringe filter tips sequentially and rapidly. In this case, DIW was passed188through the filter membrane while the silica particles were collected on the surface of189the filter membrane. As a result, a layer of 20 mg silica particles was immobilized in190each syringe filter tip.191In the extraction step, 10 mL As(III) or As(V) solution was allowed to flow through192the filter tip at a flow rate of 1 mL min⁻¹ for preconcentration of As(III) and As(V).

In the extraction step, 10 mL As(III) or As(V) solution was allowed to flow through the filter tip at a flow rate of 1 mL min⁻¹ for preconcentration of As(III) and As(V). The flow rate was precisely controlled by a pump (Baoding Longer, Model BT100) or roughly controlled by pushing the syringe by hand. The effluent was collected and ⁷⁵As was monitored by an inductively coupled plasma mass spectrometer (ICP-MS, Perkin-Elmer, Model Elan-9000) to calculate the adsorption percentage. In the elution step, 1.5 mL of 0.1 mol L⁻¹ HNO₃ was injected into the filter to desorb As(V) from the silica firstly and the eluent was collected. Then, 1.5 mL of 1 M HNO₃ with 0.01 M

199	KIO ₃ was injected into the filter to desorb As(III) and the eluent was also collected.
200	Finally, two portions of the eluent were directly introduced into ICP-MS for
201	determination of As(V) and As(III), respectively.
202	
203	
204	3. Results and discussion
205	
206	3.1 Structure, property and function of the bifunctional silica
207	
208	3.1.1 Structural and morphological characterization of the bifunctional silica
209	The mesoporous structure and morphology of the bifunctionalized silica particles
210	were studied using XRD, TEM, SEM and N ₂ adsorption.
211	Small-angle XRD patterns of the final materials with different initial reactant ratios
212	are shown in Fig. 1. The well-resolved diffraction patterns characteristic of hexagonal
213	MCM-41 silica, including (1 0 0), (1 1 0) and (2 0 0) peaks, were observed in
214	MP-AAP-0%, MP-AAP-2.5% and MP-AAP-7.5%, while MP-AAP-15% appeared to
215	be disordered. The peak intensity of the samples weakens as the organosilane dosage
216	increases, implying that the organosilane in the synthesis mixture would perturb the
217	self-assembly of surfactant micelles and the silica precursors. Meanwhile, a
218	systematic shift of the diffraction peaks to larger 2θ angles with increasing
219	organosilane contents suggests that slight lattice contractions occur as a result of the
220	incorporation of the organosilane groups within the mesostructure synthesis (Table 1).

221	
222	Fig. 1
223	
224	The particle morphology and mesoporous structure of the resulting materials were
225	analyzed by SEM and TEM. The SEM micrographs in Fig. 2A show a dramatically
226	transformation of the particle morphology, with ellipsoidal particles being observed at
227	low concentration of organosilane reagents (MP-AAP-0% and 2.5%) and elongated
228	rods being observed at higher concentration of organosilane reagents
229	(MP-AAP-7.5%). The TEM micrographs of Fig. 2B revealed that the mesopores are
230	uniformly aligned along the long axes of MP-AAP-0%, MP-AAP-2.5% and
231	MP-AAP-7.5%. However, there were no ordered pores observed on the irregular
232	particles for MP-AAP-15%, which is consistent with the result from XRD observation
233	shown in Fig. 1.
234	
235	Fig. 2
236	
237	The N ₂ adsorption analyses were performed on the synthesized materials. As shown
238	in Fig. 3, MP-AAP-0%, 2.5% and 7.5% display a type IV isotherm, while the
239	isotherm of MP-AAP-15% is different probably due to its out-of-order structure. The
240	surface area, pore volume and pore size distribution of the bifunctional materials are
241	listed in Table 1. It was found that the overall trend is that of a decrease in these
242	parameters with the increase of the initial organosilanes (X) .

RSC Advances Accepted Manuscript

244 Fig. 3

245

246	3.1.2 Chara	cterization	of the	functional	groups	on the	bifunction	onal silica
-----	-------------	-------------	--------	------------	--------	--------	------------	-------------

247	FT-IR, TGA, and EA of N and S were carried out to confirm the organic functional
248	groups on the bifunctional mesoporous materials. FT-IR spectra of the obtained four
249	materials were acquired as shown in Fig. 4. The intensity of characteristic absorption
250	of C-N bond around 1480 cm ⁻¹ , C-H stretching in the range of 2850-3000 cm ⁻¹ and
251	S-H bond at 2575 cm ⁻¹ (inset) increases with increasing organic loading content,
252	which demonstrates the successful incorporation of N and S containing functional
253	groups in the matrix. N and S contents of the bifunctional silicas determined by EA
254	are listed in Table 1. As can be seen, the larger X results in more N and S in products.

255

256 Fig. 4

257

TGA (Fig. 5) shows that the weight loss of MP-AAP-*X* materials in the temperature range between 473 and 923 K was 6.1%, 10.5%, 13.8% and 22.2% for MP-AAP-0%, MP-AAP-2.5%, MP-AAP-7.5% and MP-AAP-15%, respectively, which are attributed to the decomposition of the organic functional groups. The results were in accordance with the FT-IR and EA.

263

264 Fig. 5

265	
266	Table 1
267	
268	3.2 Batch adsorption behaviors of the bifunctional mesoporous silica
269	
270	3.2.1 Influence of pH on adsorption
271	Solution pH determines the distribution of arsenic species and surface property of
272	the bifunctional mesoporous silica, thereby influencing arsenic adsorption onto the
273	adsorbent. The effect of solution pH on the adsorption behaviors of As(III) and As(V)
274	is presented in Fig. 6. It is clear to see that As(III) and As(V) adsorption by the
275	bifunctional silica was sensitive to solution pH. The affinity of the bifunctional silica
276	to As(V) is mainly due to the strong electrostatic interaction of the protonated amine
277	group towards anionic arsenate species, which is the dominant species of As(V) in the
278	pH range of 3.0-7.0. ²⁶ Whereas, the affinity to As(III) can be explained by the strong
279	chelation of mercapto group to As(III). ^{29,30} So, the bifunctional material has the
280	simultaneous or selective adsorption ability for As(V) and As(III) within different pH
281	range. In addition, MP-AAP-0%, i.e., the pure SiO ₂ , shows no appreciable adsorption
282	to any of the two arsenic species.
283	
284	Fig. 6
285	

287	To obtain adsorption equilibrium isotherm data, adsorption experiments were
288	performed using a fixed adsorbent/liquid ratio and varied concentrations of either
289	As(III) or As(V) solution. The obtained adsorption isotherms of As(V) and As(III) are
290	shown in Figs. 7A and B, respectively. According to Langmuir adsorption isotherm
291	models, the adsorption capacities (Q_m) for As(III) and As(V) were calculated and
292	listed in Table 1. From the results, for the four as-prepared bifunctional materials with
293	the elevation of the X value from 0 to 15%, the uptake of $As(III)$ increased from 0 to
294	192 μ mol g ⁻¹ , and the uptake of As(V) increased from 0 to 417 μ mol g ⁻¹ . At the same
295	time, we noted that Q_m for As(III) increased slowly when X increased from 7.5% to
296	15%. It might be because more mercapto groups are embedded in the co-condensation
297	and less percentage of the active mercapto groups are exposed to As(III) species,
298	which consequentially leads to a decrease in the As(III)/-SH molar ratio. In addition,
299	the adsorption of As(III) on MP-AAP-7.5% at pH 1.0 revealed that the strong
300	interaction between As(III) and the material cannot be destroyed by diluted acid.
301	Fig. 7C displays the As(V) and As(III) uptake curves for the two bifunctional
302	materials, MP-AAP-7.5% and MP-AAP-15%. It can be seen that two adsorbents
303	exhibit similar performance in the time. The adsorption for As(V) was finished in 30 s,
304	while for As(III) was in 5 min. As in the previous section of characterization of the
305	adsorbents, the difference between MP-AAP-7.5% and MP-AAP-15% is the degree of
306	mesoporous structure order and surface area. However, despite the high surface areas
307	and uniform mesoporosities of the adsorbents, the results do not demonstrate any
308	remarkably rapid arsenic uptake by the mesostructure.

309	
310	Fig. 7
311	
312	3.2.3 Adsorption capacity
313	A comparison of the adsorption capacity with the previous functionalized silica
314	materials reported for arsenic was made, and the results are listed in the Table 2. As
315	could be seen, the adsorption capacity of the bifunctionalized mesoporous silica
316	synthesized via one-pot co-condensation method is comparable with those obtained
317	by other reported adsorbents.
318	
319	Table 2
320	
320 321	3.3 Speciation analysis of arsenic species
320 321 322	3.3 Speciation analysis of arsenic species
320 321 322 323	3.3 Speciation analysis of arsenic species3.3.1 Characteristics of the homemade SPE tip
320321322323324	3.3 Speciation analysis of arsenic species3.3.1 Characteristics of the homemade SPE tipConventionally, SPE adsorbents were usually filled into a polymer or glass tube
 320 321 322 323 324 325 	 3.3 Speciation analysis of arsenic species 3.3.1 Characteristics of the homemade SPE tip Conventionally, SPE adsorbents were usually filled into a polymer or glass tube plugged with a small portion of glass wool at both ends to construct a SPE
 320 321 322 323 324 325 326 	 3.3 Speciation analysis of arsenic species 3.3.1 Characteristics of the homemade SPE tip Conventionally, SPE adsorbents were usually filled into a polymer or glass tube plugged with a small portion of glass wool at both ends to construct a SPE microcolumn or cartridge. The fabrication of microcolumn or cartridge is a little
 320 321 322 323 324 325 326 327 	3.3 Speciation analysis of arsenic species 3.3.1 Characteristics of the homemade SPE tip Conventionally, SPE adsorbents were usually filled into a polymer or glass tube plugged with a small portion of glass wool at both ends to construct a SPE microcolumn or cartridge. The fabrication of microcolumn or cartridge is a little tedious, and the reproduction between different batches is a little difficult. More
 320 321 322 323 324 325 326 327 328 	3.3 Speciation analysis of arsenic species 3.3.1 Characteristics of the homemade SPE tip Conventionally, SPE adsorbents were usually filled into a polymer or glass tube plugged with a small portion of glass wool at both ends to construct a SPE microcolumn or cartridge. The fabrication of microcolumn or cartridge is a little tedious, and the reproduction between different batches is a little difficult. More important, the back pressure of these devices is very high, especially using the small
 320 321 322 323 324 325 326 327 328 329 	3.3 Speciation analysis of arsenic species 3.3.1 Characteristics of the homemade SPE tip Conventionally, SPE adsorbents were usually filled into a polymer or glass tube plugged with a small portion of glass wool at both ends to construct a SPE microcolumn or cartridge. The fabrication of microcolumn or cartridge is a little tedious, and the reproduction between different batches is a little difficult. More important, the back pressure of these devices is very high, especially using the small size adsorbents at large flow rate. Syringe filter tip, which is ubiquitous in the

schematic diagram of this device using for the separation of arsenic species. MP-AAP-7.5% was used as the adsorbent due to its uniform structure, large surface

area and high adsorption capacity. As described in the experimental section, the fabrication procedure of SPE tip is very simple. Furthermore, experiment results indicated the SPE device possessing advantages, such as high permeability, low pressure and facile assembly.

337

331

332

338 3.3.2 Preconcentration and elution

According to the results of batch experiments, As(V) and As(III) could be 339 340 simultaneously concentrated on the bifunctional adsorbent in a certain pH. Considering the adsorption capacity, a pH of 4.0 was selected to guarantee 341 342 quantitative adsorption of As(III) and As(V) at the same time. The effect of sample flow rate on the adsorption was examined by ejecting 10 mL sample solution 343 containing 100 μ g L⁻¹ As(V) or As(III) through the prepared SPE tip with different 344 345 sample flow rate. It was found that a quantitative adsorption for As(V) and As(III) could be obtained when the sample flow rate was below 4 mL min⁻¹ and 1 mL min⁻¹, 346 respectively. So a sample flow rate of 1 mL min⁻¹ controlled by pump or hands was 347 348 adopted for speciation analysis. For sampling volume, a handheld syringe-based SPE 349 was achieved and sensitive ICP-MS was used for detection of arsenic, so a volume of 10 mL of sample solution was taken for easy operation and appropriate detection level. 350 351 However, the sensitivity could be further increased by increasing the sampling volume. 352

353	As described in the previous section, As(III) can be adsorbed on the bifunctional
354	silica both at pH 1.0 and 4.0, suggesting 0.1 M HNO ₃ (pH 1.0) does not affect the
355	adsorption of As(III) on the adsorbent. In the view of As(V), the adsorption was much
356	affected by pH, especially the adsorption percentage decreased to 0% at pH 1.0. A
357	sequential elution strategy for As(III) and As(V) was proposed therefore, in which 0.1
358	M HNO ₃ was employed to selectively elute As(V) first and then 1 M HNO ₃ with 0.01
359	M KIO ₃ was employed to elute As(III). The probable elution mechanism is that As(V)
360	is transformed from anion to uncharged species (H_3AsO_4) in 0.1 M HNO ₃ and loses
361	electrostatic interaction with the adsorbent, and then mercapto groups are oxidized by
362	KIO ₃ and the chelation between mercapto and As(III) is destroyed. Using individual
363	As(V) or As(III) solution, it was found that As(V) can be eluted quantitatively by
364	using 1.5 mL 0.1 M HNO ₃ , and no As(III) was observed in this process, and then,
365	As(III) can be eluted quantitatively by 1.5 mL 1 M HNO ₃ with 0.01 M KIO ₃ . These
366	results confirmed the feasibility of the sequential elution strategy.

367

368 3.3.3 Interference study

Commonly encountered co-existing ions in environmental waters, e.g., alkali, alkaline and transition metal ions may cause interferences on the preconcentration and determination of arsenic. The influences of these ions were investigated by using 10 μ g L⁻¹ As(V) and As(III). It was found that the main ions existing in water such as Na⁺, K⁺, Ca²⁺, Mg²⁺ and Cl⁻ can be tolerated at least 1000 mg L⁻¹. For the potential ions which may compete with arsenic for thiol and amine sites, 5 mg L⁻¹ Al³⁺, Fe³⁺ and

RSC Advances Accepted Manuscript

 Zn^{2+} , 100 µg L⁻¹ Sb(III), Se(IV) and Hg²⁺ did not cause obvious change to results in the determination of As(V) and As(III). Therefore, the proposed method could be

applied for speciation analysis of inorganic arsenic in environmental waters.

378

379 3.3.4 Analytical performance and its validation

With a sampling volume of 10 mL and desorbing volume of 1.5 mL, the obtained 380 limits of detection (LODs, defined as 3-fold signal-to-noise ratio) were 0.015 μ g L⁻¹ 381 for As(V) and 0.025 μ g L⁻¹ for As(III), which were much lower than the allowed limit 382 of arsenic in environmental waters. The calibration curves were established in the 383 range of 0.1-100 μ g L⁻¹ As(V) and As(III) with linear equation of y = 12039.4x + 384 507.1 ($R^2 = 0.999$) and v =13841.8x + 1494.0 ($R^2 = 0.998$), respectively. The 385 386 precisions (Relative standard deviations, RSDs) for six replicate determinations of 10 $\mu g L^{-1}$ As(V) and As(III) were 5.6% and 4.5%, respectively. Adsorbent 387 (MP-AAP-7.5%) prepared within batch (n = 4) and between different batches (n = 3)388 was examined by measuring the recoveries of the same solution containing 10 μ g L⁻¹ 389 390 As(V) and As(III) under the optimized conditions. It was found that the RSDs of eluted As(V) and As(III) were 4.0% and 6.9% for intra-batch, and were 4.3% and 4.7% 391 392 for inter-batch, respectively.

The accuracy of the proposed separation scheme was evaluated by analyzing standard solution and two certified reference materials, namely GSBZ 50004-88 (Standard environmental water sample) and GSB 080230 (Standard seawater sample). The results of these analyses are summarized in Table 3. As can be seen, the

397	concentrations of As(V), As(III) and As(Total) were in good agreement with the
398	standard or certified values. These results indicated that As(III), As(V) and As(Total)
399	in these water samples can be successfully determined based on simultaneous
400	retention of As(Total) on the SPE tip, and sequential elution with appropriate eluent.
401	
402	Table 3
403	
404	In addition, if the levels of monomethylarsenic acid (MMA) and dimethylarsenic
405	acid (DMA) are need to be considered, a tandem SPE method that combined the
406	MP-AAP-7.5% with strong cation-exchange resin (SCX 732, Sinopharm Chemical
407	Reagent Co., Ltd) was investigated (Fig. 8B). The first SPE unit was filled with SCX,
408	and the second SPE unit was filled with MP-AAP-7.5%. After loading sample
409	solution, the tandem syringe filter tips were separated. The first one was eluted by 1
410	M HNO_3 for the retained DMA, and the second one was eluted orderly by 50 mM
411	acetic acid (HAc) for MMA, 0.1 M HNO ₃ for As(V) and 1 M HNO ₃ with 0.01 M
412	KIO ₃ for As(III). The recoveries in ranges of 97-104%, 83-92%, 92-101% and 96-108%
413	were obtained for 10 mL of 10 μ g L ⁻¹ DMA, MMA, As(V) and As(III), respectively.
414	
415	Fig. 8
416	
417	
418	4. Conclusions

419

420	Thiol- and amine-bifunctionalized mesoporous silica was for the first time
421	synthesized by one-pot co-condensation of TEOS, MPTMS and AAPTES under basic
422	CTAB solution. The amounts of MPTMS and AAPTES in the initial synthetic mixture
423	were varied, and their effects on the structural and chemical properties of these porous
424	materials were investigated systematically. Due to the different interaction
425	mechanisms between arsenic with bifunctional groups, As(V) and As(III) can be
426	simultaneously adsorbed by the adsorbents in a wide pH range, and their separation
427	can be realized by selective and sequential elution of $As(V)$ with diluted 0.1 M HNO ₃
428	and then As(III) with 1 M HNO3 with 0.01 M KIO3. The homemade syringe-based
429	SPE device possessing the characteristics such as portability and simplicity provides a
430	promising application for field sampling and pretreatment. These advantages make the
431	bifunctional mesoporous silica to be an attractive and desirable adsorbent not only for
432	arsenic removal from contaminated water, but also for arsenic speciation analysis.
433	Further investigations on the adsorption of other heavy metal ions on the

bifunctionalized mesoporous silica have been conducted to fully evaluate the propertyof this adsorbent, which will be reported elsewhere.

436

437

438 Acknowledgements

Page 21 of 39

440	This work was supported by National Natural Science Foundation of China
441	(21275069, 90913012), National Basic Research Program of China (973 program,
442	2009CB421601, 2011CB911003), National Science Funds for Creative Research
443	Groups (21121091), and Analysis & Test Fund of Nanjing University.
444	
445	
446	References
447	
448	1 S. Babel and T. A. Kurniawan, J. Hazard. Mater., 2003, 97, 219-243.
449	2 F. L. Fu and Q. Wang, J. Environ. Manage., 2011, 92, 407-418.
450	3 T. M. Mututuvari and C. D. Tran, J. Hazard. Mater., 2014, 264, 449-459.
451	4 B. Hu, F. Zheng, M. He and N. Zhang, <i>Anal. Chim. Acta</i> , 2009, 650 , 23-32.
452	5 X. W. Chen, A. M. Zou, M. L. Chen, J. H. Wang and P. K. Dasgupta, Anal. Chem.,
453	2009, 81 , 1291-1296.
454	6 M. L. Chen, Y. M. Lin, C. B. Gu and J. H. Wang, <i>Talanta</i> , 2013, 104 , 53-57.
455	7 W. Qiu and Y. Zheng, J. Hazard. Mater., 2007, 148, 721-726.
456	8 S. Mandal, T. Padhi and R. K. Patel, J. Hazard. Mater., 2011, 192 , 899-908.
457	9 J. Aguado, J. M. Arsuaga, A. Arencibia, M. Lindo and V. Gascón, J. Hazard.
458	Mater., 2009, 163, 213-221.
459	10 B. G. Trewyn, I. I. Slowing, S. Giri, H. T. Chen and V. S. Lin, Acc. Chem. Res.,
460	2007, 40 , 846-853.
461	11 Q. Li, Z. Wang, D. M. Fang, H. Y. Qu, Y. Zhu, H. J. Zou, Y. R. Chen, Y. P. Du and

- 462 H. L. Hu, New J. Chem., 2014, 38, 248-254.
- 463 12 M. R. Awual, I. M. Rahman, T. Yaita, M. A. Khaleque and M. Ferdows, Chem.
- 464 Eng. J., 2014, **236**, 100-109.
- 465 13 D. Rahmi, Y. Takasaki, Y. Zhu, H. Kobayashi, S. Konagaya, H. Haraguchi and T.
- 466 Umemura, *Talanta*, 2010, **81**, 1438-1445.
- 467 14 L. Zhang, W. Zhang, J. Shi, Z. Hua, Y. Li and J. Yan, *Chem. Commun.*, 2003, 0,
 468 210-211.
- 469 15 Y. L. Wang, L. J. Song, L. Zhu, B. L. Guo, S. W. Chen and W. S. Wu, Dalton
- 470 *Trans.*, 2014, **43**, 3739-3749.
- 471 16 Z. Mester, R. Sturgeon and J. Pawliszyn, *Spectrochim. Acta B*, 2001, 56, 233-260.
- 472 17 D. Mohan and C. U. Pittman Jr, J. Hazard. Mater., 2007, 142, 1-53.
- 473 18 E. McKimmy, J. Dulebohn, J. Shah and T. J. Pinnavaia, Chem. Commun., 2005, 0,

474 3697-3699.

- 475 19 H. T. Fan, T. Sun, H. B. Xu, Y. J. Yang, Q. Tang and Y. Sun, Desalination, 2011,
- **278**, 238-243.
- 477 20 T. Nakajima, Y. H. Xu, Y. Mori, M. Kishita, H. Takanashi, S. Maeda and A. Ohki,
- 478 J. Hazard. Mater., 2005, **120**, 75-80.
- 479 21 A. H. Fostier, M.d. S. S. Pereira, S. Rath and J. R. Guimarães, *Chemosphere*,
 480 2008, 72, 319-324.
- 481 22 X. C. Le, X. Lu and X. F. Li, *Anal. Chem.*, 2004, **76**, 26 A-33 A.
- 482 23 T. Llorente-Mirandes, J. Calderón, F. Centrich, R. Rubio and J.F. López-Sánchez,
- 483 *Food Chem.*, 2014, **147**, 377-385.

- 484 24 X. P. Yan, X. B. Yin, X. W. He and Y. Jiang, Anal. Chem., 2002, 74, 2162-2166.
- 485 25 X. P. Yan, R. Kerrich and M. J. Hendry, *Anal. Chem.*, 1998, **70**, 4736-4742.
- 486 26 D. H. Chen, C. Z. Huang, M. He and B. Hu, J. Hazard. Mater., 2009, 164,
- 487 1146-1151.
- 488 27 M. L. Chen, C. B. Gu, T. Yang, Y. Sun and J. H. Wang, *Talanta*, 2013, 116,
 688-694.
- 490 28 C. Z. Huang, B. Hu and Z. C. Jiang, Spectrochim. Acta B, 2007, 62, 454-460.
- 491 29 E. Boyacı, A. Çağır, T. Shahwan and A. E. Eroğlu, *Talanta*, 2011, **85**, 1517-1525.
- 492 30 A. Howard, M. Volkan, D. Y. Ataman, *Analyst*, 1987, **112**, 159-162.

493

495 Table legends

- 496
- 497 **Table 1** Physicochemical characteristics of the bifunctional silicas
- 498 Table 2 Comparison of adsorption capacity with other silica based functionalized
- 499 adsorbents
- 500 Table 3 Analytical results of As(V) and As(III) in standard solutions and certified
- 501 materials
- 502

504	Figure captions
505	
506	Fig. 1 XRD patterns of MP-AAP-0% (a), 2.5% (b), 7.5% (c) and 15% (d).
507	Fig. 2 SEM (A) and TEM (B) images of MP-AAP-0%, 2.5%, 7.5% and 15%.
508	Fig. 3 (A) N_2 adsorption-desorption isotherms and (B) Pore size distribution of
509	MP-AAP-0%, 2.5%, 7.5% and 15%.
510	Fig. 4 FT-IR spectra of MP-AAP-0% (a), 2.5% (b), 7.5% (c) and 15% (d).
511	Fig. 5 TG curves of MP-AAP-0% (a), 2.5% (b), 7.5% (c) and 15% (d).
512	Fig. 6 Influence of solution pH on the adsorption of As(III) and As(V) onto
513	MP-AAP-0% and 7.5%.
514	Fig. 7 Adsorption isotherms of As(V) (A) and As(III) (B) onto MP-AAP-0%, 2.5%,
515	7.5% and 15%, solution pH=4.0. Adsorption kinetics (C) of As(V) and As(III) onto
516	MP-AAP-7.5% and 15%, solution pH=4.0.
517	Fig. 8 Schematic diagram of the SPE procedure for speciation analysis. (A) Single
518	SPE tip for inorganic arsenic. (B) Tandem SPE tips for main organic and inorganic
519	arsenic.
520	
521	

522 Scheme

523

Scheme 1 Preparation of the bifunctional mesoporous silica of MP-AAP-*X*.

526 Tables

527

Table 1 Physicochemical characteristics of the bifunctional silicas

Adsorbent	Initial X	d spacing	SBET (m ²	Pore size	Pore volume (cm ³	EA (µmol g ⁻¹)		$Q_m (\mu mol g^{-1})$	
		(nm)	g ⁻¹)	(nm)	g ⁻¹)	Sulfur	Nitrogen	As(III)	As(V)
MP-AAP-0%	0	4.0	992	3.5	0.87	0	0	0	0
MP-AAP-2.5%	0.025	3.9	940	3.2	0.73	199	536	33	49
MP-AAP-7.5%	0.075	3.8	706	2.0	0.35	739	807	139	156
MP-AAP-15%	0.15	3.4	547	<2.0	0.34	1912	1500	192	417

adsorbents				
Adsorbent	Adsorption ca	Adsorption capacity (mg g ⁻¹)		
	As(V)	As(III)		
MP-AAP-2.5%	3.7	2.5	Thia	
MP-AAP-7.5%	11.7	10.4	1 IIIS	
MP-AAP-15%	31.3	14.4	WUIK	
Mercapto-functionalized mesoporous silica		19.4	[18]	
AAAPTS modified silica gel	13.9		[19]	
AAPTS modified mesoporous silica	10.3		[26]	
(NH ₂ +SH) modified silica gel	0.29	2.7	[29]	

Table 2 Comparison of adsorption capacity with other silica based functionalized 530

531

532

certified materials						
Sample	Certified (µg L ⁻¹)		Found (µg L ⁻¹)			
	As(V)	As(III) As(Total)		As(V)	As(III)	As(Total)
ST1	10	10	20	10.8±0.7	11.0±0.9	21.8±1.6
ST2	100	100	200	98.6±7.8	107.5±8.6	216.1±16.4
50004-88			124±8	2.1±0.8	128.5±9.6	130.6±10.5
080230			1000±40	70.4±16.6	945.3±73.4	1015.7±80.0

Table 3 Analytical results of As(V) and As(III) in standard solutions (ST) and 534

535

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Graphical Abstract

Removal and separation of As(V) and As(III) can be achieved by the bifunctional silica.