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Abstract 

       A new type of indices, the mean molecular connectivity indices (MMCI), based on nine different 

concepts of mean are proposed to model, together with molecular connectivity indices (MCI), experimental 

parameters and random variables, eleven properties of organic solvents. Two model methodologies are used 

to test the different descriptors: the multilinear least-squares (MLS) methodology and the Artificial Neural 

Network (ANN) methodology. The top three quantitative structure-property relationships (QSPR) for each 

property are chosen with the MLS method. The indices of these three QSPRs were used to train the ANNs 

that selected the best training sets of indices apt to estimate the evaluation sets of compounds. The best ANN 

relationships for most properties are of the semiempirical types that include mean molecular connectivity 

indices (MMCI), molecular connectivity indices (MCI) and experimental parameters. Refractive index, RI, 

viscosity, η, and surface tension, γ, prefer a semiempirical relationship made of MCI and an experimental 

parameter only. In our previous study with no MMCI, random variables contributed to semiempirical 

relationships for two properties at the ANN level (MS, and El), here the use of MMCIs undo the contribution 

of such variables. Most of the MMCIs that contribute to improve the model of the properties are valence-

delta-dependent (δ 
v
), that is, they encode both the hydrogen atom contribution and the core electrons of 

higher-row atoms.  

      

1. Introduction 

      Molecular connectivity became a full grown-up branch of chemical graph theory with Randić 
1
 

and Kier and Hall 
2
 and nearly quarter of a century later Todeschini and Consonni 

3
 were able to 

write an opus magnum on descriptors. In it they elegantly stated that “a descriptor is the final result 

of a logico-mathematical procedure, which transforms an information, encoded within a symbolic 

representation of an event, into useful numbers”. Descriptors are critical in QSAR/QSPR modeling 

studies, thus, finding new and useful ones is an important task for those working in the field. 
4 
 

   In the literature, nine definitions of mean between two numbers (see Appendix) can be found, and 

these definitions are used to define new type of indices, the mean molecular connectivity indices 

(MMCI). These new indices are here used together with molecular connectivity indices, 

experimental parameters, and random variables to build optimal semiempirical quantitative 

structure-property relationships (QSPR) for eleven properties of a set of organic solvents. These 

properties were recently modeled 
5
 with a semiempirical set of descriptors that encompassed only 

the molecular connectivity indices (MCI), empirical parameters, and random variables. The cited 

work 
5
 emphasized the advantage in using ANN for model purposes. The two main aims of the 

present study are: (i) test the usefulness of the new MMCI indices and (ii) the related usefulness of 

the ANN methodology.     
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2. Computational Tools 

  In the following are the definitions of the mean molecular connectivity indices (MMCI), 
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Here, i (and j) assigns the N atoms of a hydrogen-depleted molecule, ij means two atoms directly 

bonded through a σ bond, and p = N, even if other values are possible. It should be underlined that 

N for the studied molecules (see Table 1) is not that large. The reader may notice, among other 

similarities, that the Lehmer mean, 
L
M, for p = 2 equals the symmetrical mean, 

S
M.  

     Replacing throughout these definitions δ, with: (i) the valence delta, δ 
v
, (ii) the Intrinsic-I-State 

indices, and (iii) the Electrotopological-S-State indices (see Refs. 5-7 and Appendix), it is possible 

to obtain the three subsets: the valence MMCI,{
A
M

v
, 

G
M

v
, 

H
M

v
, 

R
M

v
, 

S
M

v
, 

U
M

v
, 

Ho
M

v
, 

L
M

v
, 

St
M

v
}, 

the  I-State MMCI: {
A
MI, 

G
MI, 

H
MI, 

R
MI, 

S
MI, 

U
MI, 

Ho
MI, 

L
MI, 

St
MI}, and E-State MMCI: {

A
ME, 

G
ME, 

H
ME, 

R
ME, 

S
ME, 

U
ME, 

Ho
ME, 

L
ME, 

St
ME}. The basic notions of delta, valence delta, I- and S-

indices belong to the origins of the molecular connectivity theory, and are based on graph concepts. 

1-3, 8-10
 To avoid imaginary S-State MMCIs, as some S values for highly electropositive atoms can be 

negative, a rescaling of the S value is undertaken (see Ref. 5). Summing up we have thirty-six 

MMCIs. Other MMCI can be derived following different types of bonding and branching as 

suggested by Kier and Hall 
9
 but for our present purpose these are enough. To model our eleven 

properties we will also use thirty MCI (see Table 2 in Ref. 5), fifty random variable rn1 - rn50 

(where 0 < rn < 1). The five experimental variables, {M, Tb, ε, d, RI}, of Table 1 will also be used 

as indices throughout the present calculations, i.e., in some cases they will show up on the right-side 

of the modeling relationships, and then the relationship will  be labeled semiempirical. The final 

number of independent variables sums up to 121. The best relationship for each property might then 

encompass these four different type of indices: MMCIs, MCIs, experimental variables, and random 

variables.   
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       The MMCI have been obtained with a visual basic home-made program that uses both 

adjacency and distance matrices 
6 

and that runs on a PC. The number of indices of the present 

multilinear relationships equals the number of indices of the corresponding relationship of ref. 5 

that obeyed the Topliss-Costello rule: 
11

 the ratio of data points to the number of variables should be 

higher or equal to five and should provide a correlation coefficient r > 0.84 (r
2
 > 0.70).   

    The multilinear least-squares procedure of Statistica 8 is used to find out the best relationship for 

the training compounds of Table 1, which is then used to evaluate the left-out compounds [those 

with (°) in Table 1]. It should be underlined that in principle the experimental values of the 

evaluated points are unknown, and they have to be guessed from the predictive relationship 

obtained with the training points. This equation will check how much the guessed evaluated points 

will deviate from the true values, and how symmetrically are the residuals (deviations) placed 

around the zero line in a residual plot. 
12

 The overall quality of the model for each property, that is,  

r
2
, s, and N (here number of compounds), is obtained with the EXCEL spreadsheet plotting the 

observed property (P) vs. the calculated one, Pclc. The quality of the training regression equation is 

given also by the q
2
 leave-one-out statistics

5
 (Table 2).   

        Our previous ANN study 
5
 has shown that, as a rule, ANN models fit the data better than the 

MLS ones and this is the reason that three best sets of MLS descriptors, with similar quality, for the 

training set of compounds have been passed over to the ANN method. Additionally, the ANN 

program chooses a small set (20%) of test compounds (underlined and bold compounds in Table 1) 

belonging to the training compounds to achieve a rapid convergence and to avoid overtraining.  

     ANN methods, which are capable of performing regression and data validation, carry out both 

tasks in a non-parametric way that makes no assumption regarding the relationship between y and x, 

where y = f(x). This means that the function Property = f(indices) is not known a priori. In short, a 

non-parametric model is a kind of black box that tries to discover the mathematical function that can 

approximate the relationship between the indices and the property well enough. It uses highly 

flexible transfer functions with adaptable parameters that can model a wide spectrum of functional 

relationships.
13

 ANN results were obtained with the built-in utility of Statistica 8, the multilayer 

perceptron neural network (MLP). The ANN-MLP network used here has three-layered feedforward 

architecture with unidirectional full connections between successive layers and with error 

backpropagation (or backprop). The three layers are: input units - hidden units - output units, that 

correspond to: indices - hidden units – 1 (one), where the only output unit or neuron is the targeted 

property. The connections between the units (here two sets of links: input-hidden, and hidden-

output) are the weights that determine the values assigned to the nodes. There exist additional 

weights assigned to the bias values that act as node value offsets. The weights that are adjusted by 
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the training process are initially random and are passed to all nodes of the following layer. The 

training process is iterative and each iteration is called an epoch. The weights are slightly varied in 

each epoch to minimize the sum-of-squares error function: SOS = ∑i=1-N(Piclc - Pi)
2
, where Piclc (clc 

= calculated) is the i
th 

predicted value (network outputs) of the property, Pi (target value), to be 

predicted. This function is the sum of differences between the prediction outputs and the target 

defined over the entire training set of points (compounds) N. The number of hidden nodes in 

Statistica 8 is set, by default, between 3 and 11. For UV, MS, and El this number is set between 3 

and 10. This means that the final weight values for a single property of, for instance, a [5-7-1] 

network could fill an entire page. In Table 3 are given, as in our previous work, only the sensitivity 

values, which are the values that are due to the sensitivity analysis that rates the importance of the 

models' input variables. The activation functions for both hidden and output nodes in Statistica 8 

are: identity (i), logistic sigmoid (l), hyperbolic tangent (t), sine (s), and exponential (e). The 

detailed activation function together with the neuronal architecture will be given in Table 3 together 

with the statistics,  r
2
 and s, for each property, that were obtained with the EXCEL spreadsheet 

plotting the observed P vs. the calculated Pclc ANN-MLP values. 

       Statistica 8 allows one to set only the number of networks to train and retain (100 / 40), without 

taking into account the number of training cycles/epochs. The type of algorithm that optimizes the 

network is the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm that ensures a fast 

convergence rate. 
14

 In Table 3 are given the number of epochs for which it runs even if the actual 

number of cycles used to train the model might be greater. As the number of epochs is not definitive 

it cannot be held as an unfailing parameter (it can exceed the given number).   

      It is not rare the case that the model becomes exceedingly good giving rise to overfitting with 

exceedingly poor externally evaluated values. The choice of training (here 80%) and test ( here 

20%) sets normally avoids overfitting because the network is repeatedly trained for a number of 

cycles so long as the test error is on the decrease, as soon as it increases again the training is halted.  

 

3. Studied Properties 

      The eleven properties of organic solvents are listed in Table 1. The source of the experimental 

values is given in ref. 7. Compounds with (°) in Table 1 build the evaluation set of compounds 

while the remaining compounds build the training set used to find out, with a full combinatorial 

least-squares regression, the best descriptors.  
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Table 1  Eleven properties of organic solvents plus their molar mass M (g⋅mol
-1

): Tb,  boiling points (K); ε, dielectric 

constant; d,  density (at 20°C±5°C relative to water at  4°C, g/cc); RI, refractive index (20°C); FP, FlashPoint (K); η, 

viscosity (Cpoise, 20°C; 1at 25°C, 2 at 15°C); γ, surface tension (mN/m at 25°C); UV, Cutoff UV values (nm); µ, dipole 

moments in Debye (1D = 10-18 esu cm = 3.3356 10-3 C m); MS (-χ·106),  magnetic susceptibility (also, - χ·10
6, in emu 

mol
-1

, 1 emu = 1 cm
3
, temperatures cover a range from 15°C to  32°C); and El, Elutropic value (silica).   

Solvents M Tb                  ε d RI FP η γ UV µ MS El 

(°)Acetone  58.1 329 20.7 0.791 1.359 256 0.32 23.46 330 2.88 0.46 0.43 

(°)Acetonitrile  41.05 355  37.5 0.786 1.344 278 0.37 28.66 190 3.92 0.534 0.50 

Benzene  78.1 353 2.3 0.84 1.501 262 0.65 28.22 280 0 0.699 0.27 

Benzonitrile  103.1 461 25.2 1.010 1.528 344 1.241 38.79     

1-Butanol  74.1 391  17.1 0.810 1.399 308 2.95 24.93 215    

(°)2-Butanone  72.1 353 18.5 0.805 1.379 270 0.40 23.97 330   0.39 

Butyl Acetate  116.2 398 5.0 0.882 1.394 295 0.73 24.88 254    
CS2  76.1 319 2.6 1.266 1.627 240 0.37 31.58 380 0 0.532  

CCl4  153.8 350 2.2 1.594 1.460  0.97 26.43 263 0 0.691 0.14 

Cl-Benzene  112.6 405 5.6 1.107 1.524 296 0.80 32.99 287    
1Cl-Butane  92.6 351 7.4 0.886 1.4024 267 0.35 23.18 225    

CHCl3  119.4 334 4.8 1.492 1.446  0.57 26.67 245 1.01 0.740 0.31 

Cyclohexane  84.2 354 2.0 0.779 1.426 255 1.00 24.65 200 0 0.627 0.03 

(°)Cyclopentane  70.1 323 2.0 0.751 1.400 236 0.47 21.88 200  0.629  

1,2-diCl-Benzene  147.0 453 9.9 1.306 1.551 338 1.32  295 2.50 0.748  

1,2-diCl-Ethane  98.95 356 10.4 1.256 1.444 288 0.79 31.86 225 1.75   

diCl-Methane  84.9 313 9.1 1.325 1.424  0.44 27.20 235 1.60 0.733 0.32 

N,N-diM-Acetamide  87.1 438  37.8 0.937 1.438 343   268 3.8   

N,N-diM-Formamide  73.1 426  36.7 0.944 1.431 330 0.92  268 3.86   

1,4-Dioxane  88.1 374 2.2 1.034 1.422 285 1.54 32.75 215 0.45 0.606  

Ether  74.1 308 4.3 0.708 1.353 233 0.24 16.95 215 1.15  0.29 

Ethyl acetate  88.1 350 6.0 0.902 1.372 270 0.45 23.39 260 1.8 0.554 0.45 
(°)Ethyl alcohol  46.1 351 24.3 0.785 1.360 281 1.20 21.97 210 1.69 0.575  

Heptane  100.2 371 1.9 0.684 1.387 272  19.65 200   0.00 

Hexane   86.2 342 1.9 0.659 1.375 250 0.33 17.89 200   0.00 
2-Methoxyethanol   76.1 398  16.0 0.965 1.402 319 1.72 30.84 220    

(°)Methyl alcohol   32.0 338  32.7 0.791 1.329 284 0.60 22.07 205 1.70 0.530 0.73 

(°)2-Methylbutane  72.15 303 1.8 0.620 1.354 217       
4-Me-2-Pentanone 100.2 391 13.1 0.800 1.396 286   334    

2-Me-1-Propanol  74.1 381  17.7 0.803 1.396 310       

2-Me-2-Propanol  74.1 356  10.9 0.786 1.387 277  19.96  1.66 0.534  
DMSO  78.1 462  46.7 1.101 1.479 368 2.24 42.92 268 3.96   

(°)Nitromethane  61.0 374 35.9 1.127 1.382 308 0.67 36.53 380 3.46 0.391  

1-Octanol  130.2 469  10.3 0.827 1.429 354 10.62 27.10     
(°)Pentane  72.15 309 1.8 0.626 1.358 224 0.23 15.49 200   0.00 

3-Pentanone  86.1 375 17.0 0.853 1.392 279  24.74     

(°)1-Propanol  60.1 370  20.1 0.804 1.384 288 2.26 23.32 210    
(°)2-Propanol  60.1 356  18.3 0.785 1.377 295 2.30 20.93 210   0.63 

Pyridine  79.1 388 12.3 0.978 1.510 293 0.94 36.56 305 2.2 0.611 0.55 

tetraCl-Ethylene 165.8 394 2.3 1.623 1.506  0.90    0.802  

(°)tetra-Hydrofuran 72.1 340 7.6 0.886 1.407 256 0.55  215 1.75  0.35 

Toluene  92.1 384 2.4 0.867 1.496 277 0.59 27.93 285 0.36 0.618 0.22 

1,1,2triCl,triFEthane  187.4 321 2.4 1.575 1.358  0.69  230   0.02 

2,2,4-triMe-Pentane  114.2 372 1.9 0.692 1.391 266 0.50  215   0.01 

o-Xylene  106.2 417 2.6 0.870 1.505 305 0.81 29.76     

p-Xylene  106.2 411 2.3 0.866 1.495 300 0.65 28.01     
(°)Acetic acid 60.05 391  6.15 1.049 1.372   27.10  1.2 0.551  

Decaline  138.2 465 2.2 0.879 1.476      0.681  

diBr-Methane 173.8 370 7.8 1.542 2.497   39.05  1.43 0.935  
1,2-diCl-Ethylen(Z) 96.9 334 9.2 1.284 1.449     1.90 0.679  

(°)1,2-diCl-Ethylen(E) 96.9 321 2.1 1.255 1.446     0 0.638  

1,1-diCl-Ethylen  96.9 305 4.7 1.213 1.425     1.34 0.635  
Dimethoxymethane 76.1 315 2.7 0.866 1.356      0.611  

(°)Dimethylether  46.1 249  5.0          

Ethylen Carbonate 88.1 511  89.6 1.321 1.425     4.91   

(°)Formamide  45.0 484  109 1.133 1.448   57.03  3.73 0.551  

(°)Methylchloride  50.5 249  12.6 0.916 1.339     1.87   

Morpholine  87.1 402  7.3 1.005 1.457      0.631  

Quinoline  129.2 510 9.0 1.098 1.629   42.59  2.2 0.729  

(°)SO2  64.1 263  17.6 1.434      1.6   

2,2-tetraCl-Ethane  167.8 419 8.2 1.578 1.487   35.58  1.3 0.856  
tetraMe-Urea  116.2 450 23.1 0.969 1.449     3.47 0.634  

triCl-Ethylen   131.4 360 3.4 1.476 1.480      0.734  

    (°) externally validated compounds. Underlined bold values: test compounds used in ANN-MLP calculations. 
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     As we already explained in the previous section the ANN-MLP methodology further subdivides 

the training compounds into training (80%) and test compounds (20%, underlined and bold in Table 

1). Concerning the model for dipole moments, all indices were multiplied by a two-valued 

symmetry indicator variable which is zero for symmetric molecules (with µ = 0 in Table 1) and 1 

otherwise. Due to PC limitations the entire space of {MMCI, MCI, Rn, ExpPar} could not be 

searched for the best descriptor. The search was done in two different ways: (i) search for the best 

descriptor within the set {MMCI, MCI, Exp.Par.}, i.e., best (MMCI, MCI, Exp.Par.), and, finally, 

(ii) search for the best descriptor within the set {best(MMCI, MCI, Exp.Par.), Rn}.  

 

4. Results  

     Table 2 shows the best relationships and their statistical parameters obtained with the stepwise 

multilinear least-squares (MLS) search procedure. The quality of each training equation is also 

accounted by the errors (± ∆ci) of the regression parameters ci (in vector form in parenthesis with no 

± signs). Each training equation (obtained without (°) compound in Table 1) has then been applied 

to model the evaluated points of Table 1 (those with (°)).  

      Table 3 shows the ANN-MLP results: the 1
st
 column describes the MLP architecture with the 

abbreviation for the activation functions for the hidden and output layers, the number of epochs, and 

the training and test errors. The second column shows the best set of indices of the ANN-MLP 

method, the values of the sensitivity analysis for the indices (2
nd

 line), the statistical parameter for 

the training [N(Tr)], and for all compounds [N(Tr+n°Te+n°EV)] ] (3
rd

 line). Notice that the training 

(TR) set of Table 2 throughout the ANN-MLP calculations of Table 3 is subdivided into training 

(Tr) and test (Te) sets.   

    The reader can notice that in Table 2 viscosity, η, is silent as MMCI contribute no model equation 

with improved quality relatively to the one given in ref. 5, where there was no talk about MMCI. 

For the same reason in Table 3 refractive index, RI, viscosity, η, and surface tension, γ, are silent.   

 

5. Discussion 

      Tables 2 and 3 show that the best regression equations (relationships) are always of 

semiempirical type, i.e., composed of MCI, MMCI, experimental parameters, and, in two MLS 

cases (FP, and El in Table 2), of a random variable also. ANN-MLP calculations, instead, show no 

preference for random variables. 
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Table 2. The best MLS results for ten out of the eleven properties. 1
st
 column: δ

v
 type 

5
 for the valence-

dependent indices. 2nd column: relationships and statistical results for the training, N(TR), and training plus 

evaluation compounds, N(T). In the last line, the excluded strong outliers (those with residuals > 3s). 

δv - type† Regression equations   

 

δv
ppo(0.5) 

 

           Tb = 183.6 + 1.807ε + 5.556
R
M 

v
+7.02

G
ME - 41.59D + 102.02

1χχχχ 
v
 + 8.241TΣ/M                        (10) 

(8.3, 0.1, 1.0, 0.6, 4.4, 8.4, 1.01) 

N(TR) = 45, q
2
 = 0.948, r

2
 = 0.963, s = 10; N(T) = 62, r

2
 = 0.874, s = 20   

Excluded strong outliers in EV: Formamide. 

δv
po(50) 

              ε = - 8.668 + 0.145Tb - 0.069M - 5.934
Ho

ME + 4.802D
v
 + 17.14

1
ψI + 13.07TΣ/M                   (11) 

(5.3, 0.01, 0.01, 1.0, 0.8, 3.4, 3.0) 

N(TR) = 44, q
2
 = 0.905, r

2
 = 0.941, s = 2.5; N(T) = 60, r

2
 = 0.937, s = 2.8  

Excluded strong outliers: Ethylencarbonate (TR), HAc & Formamide (EV) 

δv
ppo(2) 

                   d = - 1.840 + 0.001Tb + 0.592AM v - 0.031 D v + 0.239 0χ v + 1.737 TψI                    (12) 

(0.1, 0.0001, 0.01, 0.002, 0.01, 0.1)   

N(TR) = 45, q
2
 = 0.981, r

2
 = 0.986, s = 0.03; N(T) = 60, r

2
 = 0.953, s = 0.06  

Excluded strong outliers in EV: formamide, MeOH; (N = 62, r
2 

= 0.906, s = 0.08**) 

δv
ppo(1) 

               RI = 1.287 + 0.0007Tb - 0.131
Ho

MI + 0.011M - 0.479
1
χ + 0.071D

v
 - 0.080∆                  (13)  

(0.03, 0.0001, 0.005, 0.0003, 0.02, 0.002, 0.006) 

N(TR)  = 45, q
2
 = 0.970, r

2
 = 0.983, s = 0.02;  N(T) = 61, r

2
 = 0.979, s = 0.02  

 

δ
v
po(-0.5) 

 

                 FP = - 75.22 + 0.873Tb + 21.26d + 7.018
A
M 

v
 - 1.112

G
M 

v
 + 13.72Rn41                     (14) 

(8.2, 0.02, 4.1, 0.6, 0.07, 2.8) 

N(TR) = 29, q
2 = 0.986, r2

 = 0.992, s = 3.1; N(T)= 41, r
2
 = 0.967, s = 6.4  

δv
ppo(2) 

                 γ = - 14.25 + 0.153 Tb + 3.467 RI + 2.345 GMI + 0.475 0ψId - 0.902 SψE                       (15) 

(2.3, 0.01, 1.2, 0.2, 0.09, 0.05) 

N(TR)  = 29, q
2 

= 0.953, r
2
 = 0.977, s = 1.1; N(T) = 40, r

2
 = 0.865, s = 3.0  

                                       Excluded strong outlier in EV: methanol. 

δv
po(5) 

                             UV = - 776.0 + 682.0 RI - 35.44
H

M + 7.259
H

M 
v
 + 27.69D                              (16) 

(68, 40, 5.6, 0.8, 6.2) 

N(TR)  = 25, q
2 

= 0.928, r
2
 = 0.955, s = 9.1; N(T) = 33, r

2
 = 0.919, s = 12  

Excluded strong outlier: 4-Me-2-Pentanone (TR); 2-butanone, MeCl, nitromethane (EV) 

 

δ
v
ppo(50) 

φ = 0, 1 

                          µ = 0.0311 + 0.043ε + 0.327
H

M 
v
 - 0.293

S
ME + 3.317

1
χ + 0.188Σ                       (17) 

(0.1, 0.003, 0.04, 0.03, 0.3, 0.02) 

N(TR) = 24, q
2 

= 0.939, r
2
 = 0.984, s = 0.2; N(T) = 34, r

2
 = 0.897, s = 0.4 

Excluded strong outlier in EV: formamide.  

δv
po(50) 

                 - χχχχ·10
6
 = 0.231 + 0.004M - 0.008

L
ME - 0.004

St
ME - 0.137

 1
ψI  + 0.252

1
ψEs                  (18) 

(0.03, 0.0003, 0.001, 0.0006, 0.02, 0.05)  

N(TR)  = 23, q2 = 0.842, r2 = 0.945, s = 0.02; N(T) = 31, r2 = 0.911, s = 0.03  

Excluded strong outlier in EV: nitromethane. 

δv
po(5) 

                        El = - 1.479 + 0.006Tb + 0.332
A
M 

v
 - 0.021

S
ME - 0.166Rn12                                (19) 

(0.1, 0.0003, 0.01, 0.001, 0.03) 

N(TR) = 15, q
2 

= 0.945, r
2 

= 0.986, s = 0.02; N(T) = 20, r
2 

= 0.831, s = 0.1  

pentane and tetrahydrofurane ∈{TR} 

 *TR = Training compounds; N(T) =  Training plus evaluation compounds. 

** With no outliers to allow comparison with previous results 5 (present are better). 

† For the meaning of po and ppo see Appendix 2. 
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Table 3. ANN - MLP results for eight out of eleven properties. 1st column: the MLP architecture, the 

abbreviation for the activation functions for the hidden and output layers, the number of epochs, and the 

training and test errors; 2nd column: indices of the ANN relations, sensitivity values for the indices, and 

statistical parameters for the training (Tr), and training plus test (Te) and evaluation (EV) compounds.  

MLP 

 
δv (type) – (Descriptors) → Property  

  

6 - 3 - 1 
(e, t)* 

30 

0.001/0.001 

                                                   δ
v
ppo(0.5) - (ε, 

R
M 

v
, 

G
ME, D, 

1 
χ 

v
, TΣ/M)  → Tb                                           (20) 

(12.9, 17.63, 149.0, 86.34, 24.26, 2.443) 

             N(Tr) = 38, r
2
 = 0.968, s = 9.4, N(Tr + 7Te + 16EV) =  61 r

2
 = 0.909, s = 17  

Excluded strong outlier in EV: SO2. 

 

6 - 3 - 1 

(l, i) 

54 

0.0002/0.0003 

 

 

                                                       δv
po(50) - (Tb, M, HoME, Dv, 1ψψψψI, TΣ/M)  → ε                                           (21) 

(53.26, 2.150, 240.0, 108.1, 24.37, 2.646) 

              N(Tr) = 38, r
2
 = 0.985, s = 2.0, N(Tr+ 7Te + 16EV) = 61, r

2
 = 0.984, s = 2.5 

Excluded strong outliers in EV: Acetonitrile, and HAc. 

5 - 6 - 1 

(e, t) 

37 

0.0004/0.0001 

                                                  δ
v
ppo(1) - (Tb, 

A
M 

v
, D

v
, 

0
χ 

v
, 

TψψψψI)  → d                                                         (22) 

                                                   (5.100, 138.9, 111.7, 74.96, 61.29) 

              N(Tr) = 36, r
2
 = 0.992, s = 0.03, N(Tr + 9Te + 15EV) = 60, r

2
 = 0.992, s = 0.03 

Excluded strong outliers in EV: formamide, and Me-Cl. 

5 - 5 - 1 
(t, i) 

13 

0.0004/0.001 

 

                                                      δv
ppo(5) - (Tb, RI, GMI ,

 1χχχχ v, TΣ/M) → FP                                                   (23) 

(133.3, 3.009, 4.263, 5.809, 2.443) 

             N(Tr) = 22,  r
2
 = 0.990, s = 3.3, N(Tr + 7Te + 12EV) = 41, r

2
 = 0.979, s = 5.1 

 

4 - 5 - 1  
(e, t) 

29 

0.0009/0.0004 

 

                                                         δ
v
ppo(2) - (RI, 

H
M, 

G
M 

v
, ∆)  → UV                                                       (25) 

                                                         (20.90, 138.9, 186.1, 19.98) 

               N(Tr) = 20,  r
2
 = 0.969, s = 7.7, N(Tr + 5Te + 8EV) = 33, r

2
 = 0.936, s = 11 

  Excluded strong outliers: 4M2-Pentanone in Tr, nitromethane, 2-butanone, and acetone in EV   

 

5 - 5 - 1  
(l, s) 

53 

0.0004/0.00006 

 

                                              δ
v
ppo(5) [φ = 0, 1] - (ε, 

L
ME, 

1
χd, 

SψψψψE, 
 0ψψψψEd) → µ                                              (26) 

(89.93, 98.12, 69.91, 127.5, 212.0) 

              N(Tr) = 19,  r
2
 = 0.989, s = 0.1, N(Tr + 5Te + 10EV) = 34, r

2
 = 0.937, s = 0.3 

                                                    Excluded strong outliers in EV: MeOH. 

5 - 5 - 1  
(t, e) 

33 

0.0009/0.0006 

 

 

                                             δ
v
po(0.5) - (M, 

L
ME, 

St
ME, 

1ψψψψ I, 
1ψψψψ Es) → - χχχχ·10

6
                                                (27) 

(79.09, 57.12, 15.52, 38.21, 8.276) 

    N(Tr) = 19,  r
2
 = 0.968, s = 0.02, N(Tr + 4Te + 8EV) = 31, r

2
 = 0.932, s = 0.03 

                                               Excluded strong outliers in EV: nitromethane. 

 

4 - 9 - 1  
(e, l) 

33 

0.0002/0.00004 

 

                                                          δ
v
po(0.5) - (ε, 

L
M 

v
,
 1ψψψψE, ∆)  → El                                                          (28) 

                                                           (37.46, 247.3, 489.7, 18.30) 

              N(Tr) = 12,  r
2
 = 0.995, s = 0.01, N(Tr + 3Te + 5EV) = 20, r

2
 = 0.932, s = 0.06 

pentane and tetrahydrofurane belong here to {TR} 

 

* 
Activation functions (in parenthesis): e = exponential, i = identity, l = logistic, t = tanh, s = sin 
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For six properties out of eleven (RI, FP, γ, UV, µ, El) ANN-MLP methodology do not choose the 

best descriptive equation of the MLS method. In general, ANN-MLP overall model quality (training 

+ test + evaluation) improve (Table 3) over MLS (training + evaluation) model ability (Table 2).  

This confirms our previous findings 
5
. Let us now compare MLS results of the present Table 2 with 

results of the corresponding results of Tables 3 (MLS for - χ·10
6
, and El), and 4 (MLS all other 

properties) of ref. 5. On the whole, semiempirical equations with one or more MMCI fare better 

than the corresponding semiempirical equations with no MMCI. Only exception being, as already 

told in the previous paragraph, the viscosity, η, whose semiempirical equation has no use for 

MMCI. The training semiempirical relationship for the magnetic susceptibility (- χ·10
6
) with no 

MMCI (ref. 5) show a better quality, but it is made of three random variables also, while the 

corresponding present training semiempirical regression with MMCI+MCI  has no use for random 

variables.  

      Going over to the overall model ability (training plus evaluated properties) of the MLS 

regressions things change a bit: Tb, FP, γ, and µ, show preference for relationships with MCI only 

(Table 4 of ref. 5), UV, and - χ·10
6
 show no interesting improvement with MMCI, while for the ε 

(dielectric constant) r
2
 prefers MCI only (ref. 5) but s improves when MMCI are added. Only for 

the remaining three properties, d, RI, and El there is a clear preference for model equations that 

include MMCI.    

    Comparison of ANN-MLP results of Table 3 with the corresponding results of Table 5 in ref. 5, 

show that more often than not training semiempirical equations with MMCI+MCI fare better. There 

are some exceptions: the already cited case for η, RI, γ, and for - χ·10
6
. Comparison, instead, of the 

overall description (i.e., training plus evaluated points) shows improvements with nearly the same 

exceptions: η, RI, and γ. The overall description of - χ·10
6 

improves
 
consistently, while for UV, and 

El the model quality is rather similar. All in all mean molecular connectivity indices (MMCI) are 

useful both to improve a model quality and also to get rid of the random variables. 

 Fig.1. Plot for density (d) obtained in our previous ANN study 5 (left) and in the present study (right). Full 

circles: training compounds; crosses: evaluation compounds; empty squares: test compounds. 
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         The model plots for the different properties improve relatively to the previous ones 
5
. To give 

the reader an idea of the improvement two model plots for the density, d, are here shown. Fig. 1 on 

the left side shows the plot obtained in Ref. 5 with ANN-MLP-{Tb, M,  
0
χ

v
, χt

v
, 

1
ψIs}, and on the 

right side the plot obtained with the present ANN-MLP -{Tb, M, 
A
M 

v
, D

v
, TψI}, where 

A
M 

v
 is a 

MMCI.  

      The detected asymmetry in the residual plots for the evaluated points (more deviations are 

located on one side of the zero line than on the other side), is not as drastic as in ref. 5 but it 

continues to show up. This detail that is probably due to the fact that higher order regressions are 

needed to model the present properties does not thwart the predictive character of the present 

relationships.     

     Before closing this section let us add some words about the descriptive quality of relationships 

made either with MMCI or with MCI alone 
15

: RI, FP, UV, and El are advantageously described 

with equations made of pure MMCI indices, µ is indifferent to the type of indices, while, Tb, d, ϵ, η, 

γ, and MS (- χ·10
6
) are advantageously described with pure MCI descriptors. Needless to say the 

present semiempirical equations perform much better.          

 

6. Conclusion 

      Once E. Bright Wilson remarked (cited in ref. 20): “it is always worthwhile to explore a region 

which is really new. Unexpected results can generally be relied upon under these circumstances”. 

Now, of the two main aims of the present work one is unexpected while the other is partially 

unexpected: (i) the new indices here proposed are really useful, and (ii) the ANN methodology 

gives rise to better estimations than the normal least-squares methods. Even if this was already 

known from ref. 5, the unexpected finding is that the quality of ANN calculations can be improved 

if they were allowed to choose, by the aid of a combinatorial search algorithm, the best subset of 

indices. Present ANN computations rely on prior least-squares-combinatorial calculations that 

choose the first, second, and third best subset of indices. These three subsets are then passed over to 

ANN that chooses the optimal subset of indices that is usually better and different from the very 

best one chosen with least-squares method. The message is that coupling ANN with a combinatorial 

search algorithm could surely help to improve the modeling relationships. Present paper even if it is 

not a study into the details and complexity of ANN nonetheless suggests how to improve it. 

  The implementation brought about by the new mean indices is a good hint that strategies to find 

new descriptors, even if not always successful, are always worth to trying 
16-18

.   Thirteen out of 

thirty-six MMCI show up in our semiempirical equations side-by-side with MCI and experimental 

parameters. MCI nearly double in number the MMCI, and the five experimental parameters are 

always a good help. Concerning the MMCIs  
A
M 

v
 shows up four times, 

L
ME, thrice, 

H
M, 

 H
M 

v
, 

G
MI, 
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G
ME, 

G
M 

v
, 

S
ME, 

R
M 

v
, 

Ho
ME, and 

St
ME, twice, and 

Ho
MI, and 

L
M 

v
, only once. A brief look at these 

indices shows that they are mainly δ 
v
-dependent (only exception being 

H
M), either directly or 

through the intrinsic I-State and electrotopological S-State indices. This means that, not only they 

depend on properties of general graphs, but that both the hydrogen contribution and the complete 

graph contribution for the core electrons (see appendix) play an important role in the descriptive 

quality of the MMCI. Notice that in eqs. (13) and (17) the simple and seminal Randić 
1
χ index 

1
 

shows up underlining how the corresponding more complex 
1
χ 

v
 index 

2, 9
 does not cover all the 

properties.    

     The index 
Ho

ME brings about the greatest improvement in the model of a property, the dielectric 

constant, ε:  with no MMCIs we had, N(T) = 61, r
2
 = 0.933, s = 3.9 

5
, while with 

Ho
ME we have, 

N(T) = 61, r
2
 = 0.984, s = 2.5. MMCI help to reduce the importance of random variables while 

MMCI together with the ANN-MLP calculations have no use of them.   

     Concerning the different types of configurations of the MMCI & MCI indices due to the 

different types of valence delta, δ 
v
 po / ppo(n), it is possible to notice that in MLS calculations half of 

the properties prefer the ppo configuration, while in ANN-MLP calculations five out of eight 

properties prefer this configuration. Concerning the n values of δ 
v
 po/ ppo(n) practically all values 

show up. Thus, general and complete graph characteristics like multiple bonds and core electrons of 

heteroatoms (here chlorine and bromine), as well as the hydrogen contribution, are an important 

factor in modeling studies.  

               

Appendix 

1. The Original Means 

     In literature 
19

 the following nine definitions of means between numbers a and b can be found, 

                                    Arithmetic mean: AM = (a+b)/2                                                        (A1) 

                                    Geometric mean: GM = (ab)
1/2                                                                                                     

(A2) 

                                      Harmonic mean: HM = 2/(a
-1

 + b
-1

)                                                 (A3) 

                                   Root mean square: RM = [(a
2
 + b

2
)/2]

1/2                                                                              
(A4) 

                                         Symmetric mean: SM = (a
2
 + b

2
)/(a + b)                                             (A5) 

                             Unsymmetrical mean: UM = [b – a + (a
2
 – 2ab + 5b

2
)
0.5

]/2                      (A6) 

                                    Hölder mean : HoM(p) = (a
p
 + b

p
)
1/p 

/ 2                                              (A7) 

                                  Lehmer’s mean: LM(p) =  (a
p
 + b

p
)/(a

p-1 
+ b

p-1
)                                   (A8) 

                             Stolarsky’s mean : StM(p) = [(a
p
 - b

p
)/(pa - pb)]

1/(p-1)
                               (A9) 
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       The reader can notice that the Stolarsky’s mean has a minus instead of a plus sign in the 

denominator. The plus sign in eq. 9 was introduced to avoid an undefined value, zero/zero, 

whenever δ i = δ j  (a = b in A9) had we hold on to the minus sign.  

2. The Valence Delta 

      All χ, ψ, ∆, Σ, and TΣ/M indices employed in the present study are defined in Table 2 of Ref. 5. 

Here we will only define some concepts that will help to understand Tables 2 and 3. The δ 
v
 number 

used throughout present and previous works 
5
 is defined in the following way, 

 

                                                           
)1(

)()(

+⋅

+
=

rp

ps
vn

fq
v

δ
δδ                                                           (A10) 

 

     δv
(ps) is the valence of a vertex in a chemical pseudograph (or general graph) that allows 

multiple bonds and self-connections (or loops). Normally, in chemical graph theory simple graphs 

(with no multiple bonds and loops) and general graphs (or pseudographs) are hydrogen-depleted. 

Parameters p (= 1, 2, 3, 4, ....) is the order of a complete graph, Kp, and r is its regularity (r = p – 1). 

A complete graph is a graph where every pair of its vertices is adjacent. The first order complete 

graph, K1, is just a vertex and it is usually used to encode second row atoms. Parameter q in Eq. 

(A1) is two-valued: q = 1 or p. Generally, two representations (or configurations) for δ 
v 

are useful 

(see Tables 2, and 3): δ 
v
po(n) where q = 1, and p = odd, and δ 

v
ppo(n) where q = p and p = odd. 

Number n that appears in the two deltas is the value of exponent n in fδ (eq. A10). It quantifies the 

importance of the hydrogen perturbation: the higher the n values the lower the importance of the 

perturbation. The values for n here used that generate different sets of indices are: n = - 0.5, 0.5, 1, 

2, 5, 50. This parameter could be used as a fine-tuning optimization variable, something like (but 

not quite) the Randić’s variable chi index, 
21, 22 

that was proposed as an alternative way of 

characterizing heteroatoms in molecules. The fδ fractional hydrogen perturbation parameter that 

encodes the depleted hydrogen atoms is defined in the following way,
 

 

                                               fδ = 1 - δ
v
(ps)/δ

v
m(ps) = nH / δ

v
m(ps)                                         (A11) 

 

     δ
v
m(ps) is the maximal δ

v
(ps) value a heteroatom (a vertex) can have in a hydrogen depleted 

chemical pseudograph when all bonded hydrogen atoms are substituted by heteroatoms, and nH 

equals the number of hydrogen atoms bonded to a heteroatom. For completely substituted 

heteroatoms, fδ = 0 as δ
v
m(ps) = δ

v
(ps) (i.e., nH = 0). In hydrocarbons δ

v
(ps) = δ, which is the delta 

number in simple chemical graphs with no multiple bonds and loops. In this case: δ
v
 = (1+ fδ

n
)δ (for 

p = 1). For quaternary carbons fδ = 0 and δ 
v
 = δ.  
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3. The Intrinsic I-State and Electrotopological S-State indices 

     The I- and E-State indices (in ψE,I : E means Electrotopological, and I intrinsic) are related to δ
v
 

in the following way, 
10

 

  

                                    I = (δv
 +1) / δ,  S = I + Σ∆I,  with ∆I = (Ii – Ij) / r

2
ij                               (A12)  

 

    rij counts the atoms in the minimum path length separating atoms i and j, which equals the graph 

distance, dij + 1; Σ∆I incorporates the information about the influence of the remainder of the 

molecular environment.  
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  Mean molecular connectivity indices  (MMCI) defined as averages of vertex invariants together 

with molecular connectivity indices (MCI) and experimental parameters build optimal 

semiempirical relationships for eight out of eleven properties of organic solvents studied with 

artificial neural network. 
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